
Physics of Materials 
Dr. Prathap Haridoss 

Department of Metallurgical and Materials Engineering 
Indian Institute of Technology, Madras 

 
Lecture No. # 06 

The Ideal Gas 
 

Hello, welcome to the sixth class in the physics of materials lecture series. In the last 

class we looked at the initial stages of how you go about putting together free electron 

theory for conduction in metallic system. So, we will continue with this discussion. What 

we saw last class was we compared, we took the idea that 1 of the models for metals is 

that there are ionic cores and there are electrons freely running across the extend of the 

solid. So, we have a block of metals the electrons the so called free electrons are free to 

run across the extend of the solid. So, that is the picture that we have. 

And to the extend that the those are free to run across the extend of the solid. We treat 

them almost as though they where behaving like molecules of a gas. So, with this idea or 

this picture or this analogy between a gas and solid the intent is to see if there is a theory 

that we can use for gases which we are familiar with and extend it to solid. So, gas being 

a state where the atoms are free to run around and this minimal interaction between the 

atoms or molecules of the gas is generally much easier to model, much easier to write 

equation to describe the behavior of the gas. 

So and therefore, it make sense that at least our initial attempt to try and understand what 

is happening inside the solid starts off with something that we understand of the gas 

which we extend to that of the solid to the extent that the constituent within the solid 

have at least some resemblance to what in the behavior to what a gas does. We also did 

some calculation in the last class to what extend we are justified in making this analogy, 

to what extend we can make this connection between behavior that we see in a gas and 

behavior that see amongst the electron in the solid.  

The positives aspect that we noted was in favor of making this comparison was that 

depending on the crystal structure even up to 50 percent of the solid might be vacant. So, 

I specifically pointed out you pick up a solid metallic object in your hand, it is not 



immediately apparent to 25 percent or 50 percent or even more depending on the ionic 

radii and so on even more can actually be vacant space. It does not look like that, very 

solid continuous object that you have in your hand. It is just that vacant space is evenly 

dispersed across the extend of that solid that we do not perceive it like that when you 

pick it up in your hand so but, never the less if you can actually do the calculation, if you 

look at the atomic radii of those atoms present or their ionic radii which in this case 

maybe smaller and you just look at the total volume that is available given the crystal 

structure, there is lattices parameters attached to the crystal structure which we can 

experimentally verify using x-ray diffraction or other such techniques.  

We can experimentally verify that lattices parameters. If you take all that in to account 

you realize that you know anything like 50 percent, 25 percent, 50 percent or even higher 

to be vacant space within the solid. Therefore, given that their such a large vacant space 

and the fact that the electron is such a tiny particle relative to gas molecules taking this 

two into account. It is it seems, it comes across to us that it is reasonable to treat it as 

though these are gas molecules, treat the electron inside the solid as though they were 

gas molecules running freely across the very large volume and from that perceptive it 

seems that it is reasonable to extend this gas loss to free electrons which are present 

within a solid. We also did some other calculation to compare the number density so to 

speaks of particles of the particle density that is prevalent in this gas at s t p to that which 

is prevalent in the solid, the number of electron that are, the density of electron present in 

a solid.  

We find that there is a 3 orders of magnitude difference in the particles, the number of 

particles that gas particles that are there, upper unit volume at s t p when you compare 

that with number of electrons present per unit volume in a solid in a metallic solid. So, 

we took silver as an example. We came up with some numbers. So, we find 3 orders of 

magnitude difference. In other words there are every molecules that you find unit volume 

in a gas there are 1000 electrons that you find for the same unit volume inside the solid. 

So, this is the huge difference, 3 orders of magnitude difference is very significant 

difference and therefore, there is reason from this perspective to be cautious on making 

such a jump in trying to make a connection between the behavior of the gas and behavior 

of an electron gas in a solid but we still believe that over all there, is it is not far fetch to 

make this connection, it is not far fetch to try and make some equations out of it.  



So, we treat and it is also rewritable it is straight forward to do so, to write the equations 

down. So, we just run through the process, we make put this equations down we will see 

what we get in terms of electronic conductivity, we will see what will get in terms of 

thermal conductivity and we will see how well this kind of theory is able to predict 

experimental values in both cases and also how well it is able to predict the relationship 

between thermal conductivity and electronic conductivity because as we said one of 

earlier classes in general we find the metallic system which are also good conductors of 

electricity also happen to be good conductors of heat, given all this things we would like 

to see how well this theory is able to predict all of this, the electronic conductivity, the 

thermal conductivity and the relationship between them.  

So, this is where headed with this. What we will do today is we will review of few the 

important results from the kinetic theory of gases because those will be results that we 

will directly utilize in our calculations when it comes to electrons in a solid. So, that it 

what we are going to do. So, we will please remember at this moment the discussion is 

pertaining to gases in a volume. So, we will extend the results so at the moment still gas 

in the unit volume in some volume. 
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Now, let us take a volume. We will take a box of side L, a cube of side L and we will 

designate this as your positive x direction and in to the plane of the board will be the 

positive lie and vertical direction will be z. So, we have this x, y, z coordinates system 



we are using here and we have let us say that we have n moles of an ideal gas. We have n 

moles of an ideal gas inside this volume. So, that is what we have that is the system that 

we are working. What we will do we will start with 1 particular we would say an atom or 

molecules of this gas and let us say moving with velocity v x in the x direction. 

So and we will say the molecules have mass m. So, the momentum of this particle for 

this is the initial momentum of this particle. We will say that goes and let us assume that 

it is the cube of side L. So, all side are L, all the dimensions are L, this is just for our 

convenience we start with something like this so that it we are able to something out of 

the results. So, we have the momentum m v x headed in the positive x direction. So, this 

is what is state for with this respect to particular molecule. Let us say it collides with this 

phase out here and then it bounces back and will assume this is the large box collision is 

elastic.  

So, it bounces back momentum after collision. So, we will say this is final, this is initial, 

equals it will back it will headed back after collision with v x in opposite direction so we 

will just call this minus v x, it is the velocity. So, momentum is now minus m v x. So, 

final momentum is this. So, for the particle which has now bounced off of the surface, 

change in momentum with the final momentum minus the initial momentum minus m v 

x minus so it is minus m v x final momentum minus of the m v x which is the initial 

momentum. So, this is simply minus 2 m v x. So, for this particles to which moves which 

had a component of velocity in the x direction v x as it bounced off of the surface that is 

out here, the change in momentum for it is minus 2 m v x that is the result we have.  

Therefore, the momentum that it has transferred to front surface is the opposite of this. 

So, this is the change for it so the opposite change will since momentum is concerned the 

opposite would have occurred for the box, so the momentum transferred to this front face 

or to this face not a front face it is a side face. 
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Momentum transferred is plus 2 m v x. So, that is the positive opposite of what happen to 

the particles is been transferred to this front of the box. Now, we know the change in 

momentum. So, we know change in momentum for the particle which we now change in 

momentum for the box. These are 2 things that we know, from here we would like to get 

some expression for force, then some expression for pressure. So, force is rate of change 

of momentum. So, we like to know the rate at which change in momentum is occurring, 

this is change in momentum we would like to know rate at which is occurring. So, if you 

go back to this picture here we have a box of side L and velocity here is v x.  

So, once you have a collision here for it to come back and collide at this surface once 

again, it has to travel all the way back here, make a collision with the face surface on this 

side and then come all the way back to the front to this face. So, it has to travel L and it 

has travel back L that basically what will happen before it can make a second collision 

with this surface. It has to travel a distance 2 L and its velocity is v x. So, the time it will 

take travel to a distance. So, this the time it is going to take before it collide against the 

same surface. So, it is transferring the momentum and the time interval over which it is 

doing this transfer is effectively this because that is when the next transfer will occur.  

Therefore, rate of change of momentum for the box 2 m v x by 2 L by v x so 2 will 

canceled so this is equal to m v x square by L, this is rate of change of momentum for the 

box as the result of the single particles repeatedly colliding with 1 surface of that box. 



So, that is the rate of change of momentum of the box due to the particles that is moving 

with this velocity v x and rate of change of momentum is effectively force. 

So, the force is defined as the rate of change of momentum. So, force exerted by the 

particle repeatedly colliding with that surface is this expression m v x square by L. So, 

this is for that specific particle. So, if we had other particles they may have different 

velocity and so for each of those particles we would have to identify the specific velocity 

and use that specific velocity. For the particle that we have considering it is this, this is 

the expression of which m is fixed for all the particle in the system all of them are the 

same kind of gas molecule, so m is same for every particle you consider of the box, L is 

also the same because that is the box, we do not have the different box, this is all the 

same. 

Only difference from particle to particle is the velocity there is the bound to be some 

distribution of velocity some particles may have higher v x, some may have lower v x, 

some may have same v x and so on. So, you have variation here. Now, total force exerted 

by all of the particles, exerted by all of the particles on the same surface is this simply the 

sum of this expression for all of the particles and as I said m is the same, l is the same, 

only v is going to change. So, depending on the particles we will call it particle 1, 

particle 2, particle 3 and so on and we will assume that there are total of n particles there. 

Capital n particles. So, we basically have m v x 1 square by L plus m v x 2 square by L 

plus m v x 3 square by L plus dot dot dot all the particles, this is what we have. We have 

the sum of the m v x v x 1 square by L plus m v x 2 square by L plus m v x 3 square by L 

plus all the particles plus m v x n square by L. 

So, this is the total force exerted by all the capital n particles that are present within the 

system. We already know that we started by saying n moles of ideal gas present inside 

therefore, this n if you have avogadro number this capital n is simply small n is times 

avogadro number that is your total number of particles present. So, we will write this as a 

summation here. 
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This is simply m v x i square by L. Now, it is a big cumbersome. So, in fact you will we 

will actually even simplify this so m and L are constant as I pointed out. So, m and L are 

out, so m and L are constant. So, they are already out. So, we actually have sum of the 

squares of all of the velocity of all of the particles present in the system. So, that is what 

we have here. In reality it is going to be cumbersome for you to actually know. In fact 

not cumbersome it is just not practically feasible for you to actually know the velocity of 

every single particles present within the system.  

Therefore, what we actually do is if there is a way in which we can figure out an average 

velocity, we will assume that know there is an average velocity. If you know the average 

velocity then the sum is simply the average velocity times the total number of particles. 

So, that basically all it is, that is the sum and capital n as I pointed out is simply the 

number of moles times avogadro number. So, N a is Avogadro number, this is the 

number of moles, that is a total number of particles. This capital n is total number of 

particles present in the system therefore, we have total force times total number of 

particles which is this N a times the average of the squares of those velocities and it is 

simply denoted by this notation here.  

So, this notation simply means average of the squares of those velocities. So, v x v x 1 

square plus v x 2 square plus v x 3 square like that up to v x n square divided by capital n 

so that is therefore, that will be the average square squares of the I mean average of the 



squares of the velocities. That it is what we are looking at. So, this sum here has been 

replaced by average times for total number. So, that is basically how it is. Sum over all 

the particles has been changed to the average for all the particles kinds the total number 

of particles. 

So, this is what we get for the total force. Now, you would also recognize that we are 

only taken the x component into account. So, we are only discuss the x component in 

general if we look at the square of the modules of the velocity, it is going to be v x 

square plus v y square plus v z square. So, given particle could have a velocity some in 

arbitrary direction v so it has an x component, y component and z component. So, this 3 

are there. So, in general the actual velocity that you have square of the actual velocity 

will be v x square plus v y square plus v z square and in general if we take all the 

particles into account as such there is no since we do not have any specific preferred 

direction, there is no specific preferred direction, particle could have equal probability 

that it has certain velocity in x direction or the y direction or the z direction. 

So, there is no preferred direction where it is likely to have higher velocity. In general we 

can treat that v x square will be of the same magnitude as v y square and also the same 

magnitude as v z square. So, in general since we are assuming equally random direction, 

random velocity and so on that there is no preferred direction, preferred orientation, 

preferred direction for higher velocity. In general these 3 will be of essentially the same 

magnitude. Therefore, we could write v x square. 

So, this is same as saying v square is equal to 3 v x square, assuming everything is 

random this is the same as saying this. Therefore, we can write for a given particle this is 

in general going to be the case, in general. Roughly it is going to be this is going to be 

the case. Therefore, now we can this is just the general velocity we are now removed the 

components x, y, z are all equally probable. So, that is this already accounts for all of 

them. So, we need not we are not looking only at the x direction. We have generalized 

the situation.  

Therefore, now total force simply m n N a. So, we have m the mass of the molecule, n is 

the number of moles present in that volume L cube that we have been discussing, N a is 

the avogadro number n capital a here, N A is the avogadro number. This average of the 

square is essentially the mean of the squares. So, when we calculate root mean square 



velocity that is the square root of this. So, this is mean square, mean of the square that is 

all it is, we have not taken the root here, mean of the square is the value that we are 

interested in that is what we have here m, n, avogadro number, mean of the squares, 3 

times the extend of that solid L of that box L.  

So, this is the expression we have for total force. Now, we have an expression for total 

force and we still have our original picture of the box of side L therefore, cube of side L. 

So, from this we would like to come up with an expression for pressure, pressure is 

simply pressure excreted on this face for example, is simply the force excreted on this 

face by the area of that face. 
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So, we have pressure equals f by L square and that is therefore, equal to m n N A, we had 

3 L, now it becomes 3 L cube. This is what we have and L cube as we can, as we can 

imagine is simply the volume of this cube. So, If we rearrange now we have p v equals m 

n N A. So, we started out by looking at this cube, we have come up. 

We have try to see what kind of change in momentum exists for a single particle. 

Therefore, try to come up therefore, identified the expression for the change in 

momentum for the box then converted that to a force, excreted by the single particles on 

that box and then force based on all the particles effect of all of the particles undergoing 

a similar change in momentum, generalized for the velocity in the system and then we 

have come up with this situation where you have p v equals m n N A v square by 3.  



Now, based on our knowledge of the ideal gas laws, we can we see that you know based 

how the ideal gas behaves, we have p v equals n R T. R is the gas constant per mole on 

per mole basis, n is the number of moles and T is the temperature of this system. So, we 

have these 2 expression. So, clearly we can equate them since both of them are referring 

to the same ideal gas and same expression we have on the left hand side.  

Therefore, n R T or m n N A v square by 3 equals n R T. So, we can cancel out n and 

therefore, we have m v square equals 3 R T by N A. So, this is the expression we have m 

v square this is mass of the single molecules, square of mean of the squares of the 

velocities 3 R T by N A. So, this is what we get and we have the definition for 

Boltzmann constant which is simply the gas constant per on a per molecules basis which 

is since this gas constant is on a per mole basis and you have N A molecules per mole. 

So R by N A is the Boltzmann constant which is k b. So, therefore, is 3 k b t, for us more 

than m v square the quantity or the expression that is of use for us is half m v square 

which is the kinetic energy of the system. Therefore, we would like an expression for the 

half m v square which is half of this. So therefore, so we get this expression half m v 

square which is the translational kinetic energy of the molecules.  

Translational kinetic energy of the molecules is 3 by 2 k b t. So, this is a very useful 

expression. So, we will make note of this. So, this is the translational kinetic energy of a 

single molecules on average. On average for single molecules this is the translational 

kinetic energy, this relates to this Boltzmann constant which is this gas constant per unit 

per molecule on per molecule basis and this is the absolute temperature that we have. 

This is what we get so this is 1 expression that we will find useful for our later purposes, 

we will extend this little bit more. So, we have an expression for the translational kinetic 

energy of a single particle.  
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So, supposing you have on a, we started off with a volume V equals L cube. Given that 

the we now have an expression for the translational kinetic energy of a single molecule. 

Supposing we have Nt. Supposing you have Nt molecules per N subscript T molecules 

per unit volume. In case you do this then the translational kinetic energy associated with 

of the kinetic energy, total kinetic energy from all these molecules running around is 

simply Nt times 3 by 2 k b t.  

Therefore, E equals 3 by 2 Nt k b t. So, this is the energy of the kinetic energy therefore, 

the energy held by the those molecules upper unit volume because this is this is the 

number of molecules per unit volume if you took some other number then you could be 

on the volume on that basis. So, volume corresponding to this. So, this is energy per unit 

volume effectively. Now, if you want the specific heat of the system on a per unit 

volume basis we now have the energy on a per unit volume basis as a function of 

temperature. Therefore, c v is the differential of this with respect to t and this is simply 3 

by 2 Nt k b. So, c v is simply 3 by 2 Nt k b. 

So, this is the specific heat per unit volume associated with the system of all these 

molecules running around at that temperature t inside that box. So, on a per unit volume 

basis we are able to come up with this and so this another useful expression for us we 

just put it down here again c v equals 3 by 2. So, we have 2 important expressions, we 



have 1 for the translational kinetic energy half m v square equals 3 by 2 k b t and 1 for 

the specific heat at constant volume which is 3 by 2 Nt k b.  

So, this is what it is and as I mentioned this Nt is the number of molecules per unit 

volume. Now, all of this discussion we have done keeping in our the system we have 

spoken about the ideal gas system and therefore, the molecules present within that 

system are all ideal gas molecules. So, they are fairly massive so you could have organ 

or something like that which is mimicking an ideal gas present within that box. We are 

and these are results that we have derived on the basis of the assumption such a gas is 

occupying this volume. What we are headed towards is that we are going to take this 

results and apply it on a gas containing effectively gas of electrons.  

Therefore, what will happen our system the way our equations will change is that 

specifically this m which we would normally associate as the mass of that molecules and 

therefore, would be very large mass in general, this m will now become the mass of the 

electron. This equation though we have derived for a ideal gas we are extrapolating it is 

for the gas of electron that we have in the metal, we are assuming the those are all ideal 

they are behaving close to that of ideal gas molecule kind of behavior and therefore, the 

equation we will use will be the same except that we will this m that we have here, we 

will know change from the mass of the molecule to the mass of the electron.  

These velocity will be the velocity of those electron inside that solid object, those 

electrons as we said are now free to run around across the extend of the solid. So, 

whatever we associate as their velocity in manner that we can identify a velocity 

associated with those electron, those velocities we will incorporate here. This Boltzmann 

constant those are all universal constants, nothing is going to change. So, this part of the 

equation is going to remains the same k b this is the temperature at which the system is. 

So, this is going to look exactly the same. This expression here is the specific heat at unit 

for unit volume as I said so if you take a solid when you look at a specific heat of a solid 

as opposed to that of a gas. In a gas we are directly talking of the gas molecules.  

So, when you raise the temperature of a gas, those gas molecules pick up that energy 

they run around all around the place. The velocity is go up and so on, that is how the 

temperature of the solid that is how it is able to exhibit higher temperature that gas that 



container containing the gas. Now, in a solid we actually have 2 things, we have 

especially in a metallic system we have those ionic course which are present.  

So, that is definitely still present in the solid. In fact when you pick up the solid that is 

what to be actually feel, that is that solid piece that you feel. All those ionic course that 

are present. Then you also have this free electron gas that is running all around the 

system. Now, when you raise the temperature of that solid the energy is being absorbed 

by those electron which are running across the extend of the solid as well as those ionic 

course. So, together all of them are actually absorbing the energy. So, it is not that it 

absorbed only by the electron or absorbed only by the ionic course.  

In a metallic system we have a very distinct I mean capability of distinctly identifying or 

at least distinctly associating our analysis with a free electron gas present there. So, we 

will assume for the moment there is the free electron gas and with the free electron gas 

we have the ionic course, the temperature of the entire system is going up so the ionic 

course also absorb energy, the electrons also absorb energy. So, when you talk of 

specific heat per unit volume you have to accept the fact that in that unit volume there is 

there are electrons as well as ionic course ok. 

So, where as the analysis that we have done so for has talked only about the ideal gas and 

that behavior that ideal gas behavior we are extending only to the electrons, to those free 

electrons. We are not extending this behavior we are not making the comparison of these 

behavior with the behavior of ionic course. In our picture the ionic course are held in 

very rigid position or relatively rigid positions in the form a crystal structure or a lattices 

and so on. So, they are not free to run across the extend of the solid largely they are stuck 

where they are stuck but they do vibrate about the mean positions. 

So, we will look that greater detail we have to keep in mind that those ionic course are 

not stationary, they vibrate about the mean positions. So, one of the way in which the 

solid absorbs energy as we raise the temperature of the solid is that the amplitude with 

which those ionic course vibrate actually goes up. So, when you when you look at 

specific heat what you looking at is the amount energy you have to provide to that solid 

for a unit increase in temperature that is basically what we are looking at some unit 

increase in temperature, what is the total amount of energy you have to provide that 

system. So, clearly if there is more than 1 mechanism which can absorb the energy you 



have to provide energy to allow the both those mechanisms to again the equivalent 

amount of temperature.  

Only then the temperature of the solid actually goes up. So, when you talk of specific 

heat of solid per unit volume it is the specific heat of all of its constituent per unit 

volume. So, it is the specific heat of electron per unit volume plus the specific heat of the 

ionic course per unit volume. Now, in the expression we have derived we have focused 

only on the part of the solid that behaves like an ideal gas which is the electrons. So, this 

equation here is the c v equals 3 by 2 Nt k b will be something that we can extend only to 

those that to the free electron cloud, to the free electron cloud. 

So, we will simply in our notation we will simply called as c v with a superscript e 

indicating the fact that this is specific heat at constant volume for the electrons. So, the 

specific heat at constant volume for the electrons or the electronic contribution to the 

specific heat at constant volume. If you wish to call it that.  

This is the electronic contribution to the specific heat at constant volume, the ionic 

course also have a contribution to the specific heat at constant volume which we are 

neglecting. So, this is now the same expression 3 by 2 Nt k b and in this these are 

identical expression except I have added the superscript e. Here, so if you look at this 

original expression we derived for an ideal gas. 

We are extending that to the electronic course present in the system. So, this is specific 

heat at constant volume, electronic contribution to the specific heat at constant volume, 

the other thing is that Nt is now the number of electrons, number of free electrons per 

unit volume. So, this Nt is now number of free electron per unit volume. So, Nt is now 

the number of free electrons per unit volume. This is again something you should pay 

attention to because the solid actually has a lot of electrons so when you have essentially 

given the atomic number of that solid, whatever is the atomic number that many 

electrons are present per atom in that solid.  

So, that is the huge number of electrons. So, that is a very large number electrons of 

which only a small number, very small number which is equivalent which is essentially 

equivalent to the valancy of that atom, the most common valancy that it adopts. So, in 

the case of silver for example it is plus 1, only 1 electron per silver atom is contributed to 

the free electron gas, every atom in the in the silver metallic system so you have a block 



of silver in that every atom is contributing only one electron to that free electron gas. So, 

when you look at the number of free electron per unit volume it is only this 1 per atom 

that is getting counted even though that atom actually has many other electrons which 

are all bound to the ionic core which stay with that ionic core and therefore, it is a large 

number of electrons per unit volume.  

For this calculation we are only looking at number of free electrons per unit volume. So, 

these are 2 distinctions that we should be very conscious of as we continue this analogy, 

as we continue this discussion, as we extend it from a gas to a solid the first thing we 

have to be cautious about is that we are talking of electrons and not the ionic course and 

importantly that the ionic course also make a very major contribution to the specific heat. 

In fact if you at higher temperature the contribution from the ionic course to the specific 

heat is way greater than what the electron contribute to the specific heat.  

The electronic contribution to the specific heat is visible only at only very low 

temperatures. So, largely it gets warmed by the ionic contribution at the higher 

temperatures. So, that is the number 1 point you keep in mind. Number 2 point is the 

electronic contribution to the specific heat is also something that we are associating only 

with the free electron in the system, not all the electrons in the system. So, they are 2 

major issues that we have to keep in mind. 

Therefore, this equation when you extended to the electrons in the solid we keep those 2 

things in mind, this is Nt is the total number of free electrons per unit volume and this is 

of course, the Boltzmann constant. So, what we have done today is we have looked at the 

kinetic theory of gases and derived or refreshed in our mind some of the major results of 

this kinetic theory of gases. Specifically, we have come up with an expression for the 

translational kinetic energy associated per molecules and we have also come up with an 

expression for the specific heat at constant volume. 

We have done this for a ideal gas and we have seen with what kind of precautions we 

can extend this to a solid and therefore, identified how those equations are (( )) different 

when you actually talk in terms of what is occurring inside the solid and the fact that 

these are going to now be associated with the electrons in the solid. So, in our in at 

general scheme of things when you look at what we did last class and what we have done 

today, we have now said that we will extend this ideal gas theory into a solid and predict 



its electronic conductivity, predict its thermal conductivity. So, to do that we have to 

actually, we will do those two in the next couple of classes but, as we do those 

derivations we will borrow the, incorporate the ideal gas theory into those derivations 

and specifically we will incorporate these 2 results, these 2 results that we have just seen 

here today.  

Both of these results will be incorporated into the derivation that we would make for the 

electronic conductivity as well as the ionic conductivity I am sorry electronic 

conductivity as well as the thermal conductivity. And as I mentioned we recognized the 

fact that the general metallic system which happen to be good conductors of electricity 

also happen to be good conductors of heat. So, it turns out that of for all metallic system 

there is a relationship, there is a ratio for the thermal conductivity to the electronic 

conductivity.  

So, as I mentioned in one of our earliest classes whole purpose of creating a model is to 

understand the system and the extent to which we have succeeded in the process depends 

on how well we are able to make a every prediction or rather we make a prediction. 

How well does it match to what is actually experimentally observed. So, when we make 

prediction for the electronic conductivity and so we when come up with the expression 

for the electronic conductivity, we will look at the literature and I will show you some 

value for a electronic conductivity for a common metallic system and we will see how 

well the number compares. This theory we are coming up with will depend on something 

very fundamental to the system.  

So, we are talking of mass of electron, velocity of electron and so on which are all 

fundamental to the system. So, from their actually come up with the value for electronic 

conductivity. Similarly, we would also look at something very fundamental to the system 

and come up with the value for thermal conductivity. Again, we will look at the 

literature, we will see look at value for thermal conductivity which are commonly seen 

for various metallic system and we will see how well our theory has predicted that 

thermal conductivity. So, these are 2 now independent predictions we have made.  

Even as an expression we will able to take a ratio of the thermal conductivity to the 

electronic conductivity based on the expressions that we will derive and therefore, we 

will see what ratio we will come up with and we will discuss these in the next class. So, 



when we come up with ratio again there will be a value associated with that ratio. We 

will see how well that value matches with what is in the literature. 

So, these are some things that we will do. In all these cases one of the issue that we have 

to keep in mind is in all these derivations we often make some approximations. 

Therefore, in general our prediction needs to be looked at from the perspective of an 

order of magnitude. So, if we are right order of magnitude there is a good chance, there 

is a reason to believe that our general approach and the manner in which we have made 

this analysis is reasonable. So, we will not so even when I look at the electronic 

conductivity value and compare it with what is there in the literature, our intend is not 

look at the exact specific value of what it is going to be.  

So, it is for satisfactory plus if the metallic system has certain order of magnitude of 

conductivity and say 10 power 7 siemens per meter and the prediction comes out the 

roughly in that range. So, this is the this order of magnitude issue is another thing we 

wish to look at and so when we do this we will also see that you know some we are 

intend is to see how well this model has predicted all the experimental data that we see. 

So, not only will we see, we will try and identify all the places where it actually does the 

good job in making the prediction.  

We will also try and see what are those specific instances where this kind of an approach 

of imposing ideal gas rules on the electrons inside the solid, in which in which condition 

does this approach actually fail. So, what kind of experiments are giving you results 

where this kind of an approach finding itself inadequate to give you correct prediction. 

So, that also gives us clues to where exactly this theory is weak and on that basis we will 

now able to modify and then try and see if there is much more robust theory that we can 

think of that we can incorporate.  

This is the way in which gradually go from theory of this sort to more sophisticated 

theory and as I mentioned also in one of our earlier classes that to the extent that the 

theory makes a prediction that is acceptable to as in a range in a range of conditions, then 

within that range of condition we can continue to use the theory. So for example, as we 

go forward I will point out that there are reasons, we will find that there are places where 

the theory that we are using is going to be a successful and there are places where it is 

going to fail.  



Just the fact that it has failed in some cases does not mean the whole theory entirely 

useless to us. To the extent that we used it within its limitations this theory is still 

acceptable to us. So, that is the framework within which we look at each of this theories. 

So, in our next class we will develop the electronic conductivity and then the class after 

that the thermal conductivity and then we look at limitations and successes of this theory 

and we will always keep this in mind that the failure does not mean it is utterly useless 

because even the subsequent theories that we come up with will each independently have 

an additional level of success that they will attain but still we will able to look at 

experimental data and find places where those theories are also still not adequate enough.  

So, we will have to go through several levels of sophistication before we will find the 

theory which is actually quite comprehension which is actually do a pretty good job of 

explaining several aspects associated with conductivity at room temperature or a range of 

temperature for a wide range of material. So, only when will reach that far do we get the 

confidence that our theory is sophisticated enough, that it is accounting for enough 

number of details, it is realistic, it is realistic enough that it is actually working. So, we 

will reach that state and that stage we will have satisfactory theory for the material 

system. We are now in our process of getting that. So, with this we will halt this class 

and we will take up our discussion on electronic conductivity and how these equations 

get can be incorporated into it in our next class. Thank you.  

 


