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Lecture No. # 39
Bose-Einstein Statistics

Hello, welcome to the thirty ninth class in this course the physics of materials. In our in
the last several classes that we have seen we have often encountered various particles
and try to understand what their behavior is what it represents in terms of material

behavior.
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So, throughout this course at several occasions we ran into the photons. So, those are the
particles of lights so to speak. When light indicates its behavior in the form of particles
we call them as photons. We also looked at vibrations in the lattice and it is said that you
know those are waves, but you could also look at them as particles because the manner in
which they interact with respect to energy, the way they pickup energy, they look the
way they lose energy that is also still quantized and so, in a sense they behave like
particles, those particles of a lattice waves are referred to as phonons and in the last class
we looked at particular combination of particles which basically we said that you know

pairs of electrons with opposite spin and opposite wave vectors could combine together



and operate in a coordinated manner and in that sense would behave like a combined

particles so to speak.

All though they are quite far off from each other, but their behavior would appear like
that and those would be called the cooper pairs. So, we saw these. So, this is what we
saw last class and so these are all the or some of the particles that we have seen through
the course. As it turns out and as | mentioned in the last class, all of these have
characteristics that are common to them and which makes them a certain type of particle
which is called a boson. So, this is a boson each of them is a boson and 1 of the
requirements for particle to be a boson is that it has to have integer spin. So, an electron
by itself has half integer spin. So, half we say plus or minus half. Spin is plus or minus

half we say.

So, it has half integer spin and therefore, by itself it would actually qualify as a fermion.
So, Fermi Dirac statistics is what it would follow, but cooper pairs for example, it to the
extent that they behave as a combined entity, they are actually having a net spin of 0 and
therefore, it now suddenly shows you an integer spin and therefore, it satisfies the
requirement for it being a boson and so do phonons and photons. So, they have integers
spin. So, they satisfy the criterion for being boson. So, so this is what they are. We have
already seen these 3. | also mentioned that for example, when | when | spoke about these
use of superconductors and the fact that they are used often in this particle accelerator
and colliders. So, to speak particle colliders then we have even there for example, at
CERN they are using effectively superconductors which use phonons as well as cooper
pairs and therefore, or 2 bosons and they are searching for another boson called the

Higgs bosons.

So, at the time of recording this lecture that is what is being done. So, it is of interest
therefore, since we have discussed these in detail to see what is a boson, what is that
behavior that characterizes boson, what is that distribution because we always say you
know when you when you look at a set of particles we would like to know in terms of
energy how are those particles distributed because that gives you a very good feel for
what will that a system of such particles do, when they are subject to certain condition.
So, that is why we need these kinds of information. Bosons they get their name because
they are credited to Bose, Satyendranath Bose who first proposed this and essentially
they follow statistical distribution referred to as the Bose Einstein statistics.



So, they follow Bose Einstein statistics and so, and hence the name bosons. So, today we
will look at Bose Einstein statistics. So, that is that is our topic for today. Basically for a
for 1 of the requirements for Bose Einstein statistics is we are we are dealing with a set
of particles which are showing us quantum mechanical behavior, but in the specific case
of Bose Einstein statistics it applies to a set of particles which are not subject to the
Pauli’s exclusion principle. So, the particles are not subject. So, these particles that are
not subject to the Pauli’s exclusion principle. They are quantum mechanical in the in
their behavior, but they, but they are not subjected to the Pauli’s exclusion principle. This
is very important because when we did the Fermi Dirac statistical distribution this was

the main principle that we incorporated.

We had the Pauli’s exclusion principle there. So, it is in this fundamental sense that this
distribution differs from the from what we are doing for the Fermi Dirac distribution. So,
it exempts the particles from the Pauli’s exclusion principle and when we say it exempts,
we are basically talking of particles which do not care of I mean which are not affected
by the Pauli’s exclusion principle. So, that is why this statistics which is based on this
idea works for that those sets of particles. So, they are not subject to the Pauli’s
exclusion principle meaning they are exempt from the Pauling Pauli’s exclusion
principle. The direct result of this is that see when we say Pauli’s exclusion principle the
idea that it reduces to is that you cannot have more than 1 particle in a quantum state.
Once, you define all the quantum numbers at a finally, when you pick up a particular
state which if it includes if that definition of the state includes the spin of the state and so
on. If you put particles in their you cannot put more than 1 particle per state, that is the
definition of I mean that is what it reduces to when you say Pauli’s exclusion principle
that is what it in terms of how you will enforce it in the system that is the rule that you

will use to enforce it in the system.

Now, when you say that system is not subject to Pauli’s exclusion principle, it means
immediately this restriction is no longer true. It means in a given state you can put as
many particles as you wish. So, the that is the big difference whereas, previously you
could put only 1 particle per state now you can put as many particles as you wish in the
state because they are not subject to the Pauli’s exclusion principle. So, this is the general
idea. On this basis we will do the statistical distribution and see what kind of a result we
get. So, again we have a system where we have energy levels.
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So, we let us say that the energy levels are quantized. So, you have energy levelse 1, e 2,
e 3, e 4 and so on. So, some up to some e r and let us say it has a certain each of them has
certain number of states. So, s 1, s 2, s 3, s 4 and so on s r. So, these are fixed for the
system, given the system we it has a certain set of energy levels and certain set of states.
So, again this is a constant volume system and so on we are and at equilibrium that is
what we are looking at. Now, we would like know we will say that up front we do not
know, but we will say that perhaps there are n 1 particles at energy level e 1, given that
these are the states, n 2 at energy level e 2, n 3 at energy level e 3, n 4 at energy level e 4
and so on with a total number of particles being n and the total number of total amount of
energy being capital d. So, the total energy is fixed at capital e these are the energy states
that are available and the total number of particles is fixed at capital n, these are this is
the way in which that capital n particles has been distributed across all these energy

levels.

We have n 1, n 2, n 3, n 4 at those respective energy values. Now our problem of course,
as we have done before is to find out what is the relationship that helps us figure out
what is the value of n 1, what is the value n 2, what is the value of n 3 and so on. We do
not know upfront what this values are, we would like to find out what these values are
given that is the system subject to the rules that we have just described. And again these
2 are fixed, this is the 1 that we have freedom to change subject to this restriction the

total number is n. So, given this scenario what we are interested in actually finding out is



the effectively the information we are interested in we are finding out is the probability

of occupancy of a state at energy level e i.

So, | said that we really want to know what are these numbers? Mathematically it
reduces to this you want to find out what is the probability that a particular state at any
given energy level is occupied. If you have a general expression for that probability that
effectively will sort of give you all this information that we are interested in. So, then
you can go to any energy level you can get an idea of what the n is at that level because
that will give you because we know this. So, we have some probability of occupancy and
we can sort of figure it out and there. So, we would like to get probability of occupancy

of a state at energy level e i. So, if you take any energy level e i.

We basically have s 1 states and n 1 particles. | am sorry s i states and n i particles at
energy level e i. So, actually the probability of occupancy of a state is simply ni by s i.
So, this is all we are, this is the probability of you have s i state, you have n i particles.
So, what is the chances that a particular state at this, 1 of this states is occupied its simply
n i by s i. So, this is all we are interested in. So, actually. So, the problem actually
reduces to finding out an expression for this.

We want an expression of for this based on the conditions that are imposed on the
system. So, this is the expression we are interested in once we get an expression for this,
we sort of have the answer for the information that we are looking for. So, that is that is
all we are going to try and do in this class now. So, let us get on to the mathematics of
how we go about it. What we will do is we are now faced with a slightly with a slightly
different situation than what we are we have dealt with before and that is simply that
since Pauli’s exclusion principle does not apply, any number of particles could be setting
at a given state.



(Refer Slide Time: 11:22)

So, therefore, what we actually have is we have s 1 states and n 1, s i state and n i
particles and really you can mix them of any which way you want at a given energy level
e i. So, there is since any number of them could sit in 1 particular state, there is we are
free to mix them up in any which way that you wish. So, we will just put it put down
here we have let us say n i particles which I will mark as x with small x is here and then
we have some states, some arbitrary number of states we have. These are the particles,
these are the states. We would like to put this particles into the states in any which way
that you want. Now, in general if you have. So, you have what is this mathematically you
have s I, you have s i items of 1 kind and n i items of another kind. What is the ways in
which you can mix this 2 up that is in how many ways can you arrange these given that

you have s i items of 1 kind and n i items of another kind.

Normally, when you write such a problem when you have you know A items of 1 kind
and B items of another kind and you would like to know in how many ways you can
arrange these 2? The general answer is actually A plus B factorial by A factorial times B
factorial. This is the general answer for this kind of a problem. The only issue of this
kind of an answer. So, in principle we can apply this kind of an answer here, but there is
1 small detail that we have to address before we do this kind of an we apply it and that is
when you do this kind of a problem you are permitted to have a situation where you have
all the A items first. So, let us say A item. So, all the A items. So, let us say they are
squares, A squares. So, we can have all the squares and let us say B is triangle.



So, we can have all the triangles after this. This is a valid arrangement as far as this kind
of a mathematical problem is there. You can put all the squares first and then all the
triangles next similarly you can put all the triangles first followed by all the squares. So,
you this is allowed under this under the problem that we have defined like this in the
mathematical sense and so this is. So, those are 2 arrangements that are included in this
in this condition that you are looking at. Now, in the condition that we are looking at we
have particles and we have states. If you have this kind of a situation here it is the same
as saying you will have all the particles first and then all states or you will have all the
states first and then all the particles. That creates a situation that that corresponds to

what?

It corresponds to situation where all the particles are outside all of the states. So, that is
not a situation that is acceptable for us. All the particles are free to be in any state they
wish, but they have to been in some state you cannot have. So, this is not a valid
condition to have all the particles outside all of the states, like this kind of an
arrangement is not acceptable here. So, we cannot simply write we cannot use this
equation in exactly this form you cannot simply say A plus B factorial by A factorial
plus times B factorial. In this case you cannot simply say s i plus n i factorial by s i
factorial times n i factorial, you cannot do that because that would imply that you are
allowing this system, this possibility that all the particles are outside or several particles
are outside that is not allowed. All the particles have to be somewhere in those states.

So, how do we do that? How do we handle that situation? A simple way to do that is to
say that we will actually treat it as we will we will eliminate 1 state in our count. So, how
many ever states are there we will take 1 less state and then we will arrange all the
particles in the remaining states using the same kind of a formula then whenever we say
that all the particles are before or after it simply means they are in the last state or in the
first state. So, or alternatively if you have you know let us say for example, you have
here 1, 2, 3, 4, 5. 5 states you have here, if you look at it the number of partitions
between these states is 1, 2, 3 and 4. So, how many our states you have you have that
many minus 1 partitions. So, we can treat the problem as though you are trying to

arrange s i minus 1 partitions and n i particles in any which way that you can.

If you treat it as s i minus 1 partitions you will never have a situation where all the

particles are outside the states because if all the partitions occur before the particles then



you have all the particles sitting in this last state because all the four partitions are before
all the particles. The other example that we have is all the four partitions are in the end,
the particles are before that all the 4 partitions. So, therefore, they are in the first state.
So, you can now not worry about this situation that we just described, they particles will
never be outside these states, they will be stuck within this state and regardless of what
possibility you look at you can always come back to this picture and you can see that
they are either in the first state or in the last state or in some of the states in the middle.
So, therefore, that issue is addressed. So, instead of directly just using s i and n i which
can create this kind of a controversy, we will use s i minus one and n i. So, if you use

that all the possibilities are addressed reasonably.
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So, we will do that. So, therefore, we now have, if you use now this formula we will
have n i plus s i minus 1 factorial by n i factorial times s i minus 1 factorial. This we will
designate as omega n i. So, this is the number of ways in which you can attain you can
arrange n i particles in s i states subject to all the conditions that the Bose Einstein
statistics requires. So, this is how we get it. So, for the entire systems. So, this is a for
entire system the for each energy level you can do this, for every energy level this is only
an i. So, you for energy 1 you can do it, energy level 1,e 1, e 2, e 3, e 4 for every 1 of

them you can do this.



So, the total number of ways in which you can accomplish a particular micro state. So, so
for that micro state for example, we which will designate with capital omega. So, on
particular distribution we have chosen where this distribution representsn 1 ate 1, n 2 at
e 2, n 3 ate 3 and so on. The number of ways you could do that is the product of all this
omega of n i n 1 times omega of n 2 times omega of n 3 times omega of n 4 and so on.
For each number of particles at that particular energy level whatever e i. So, n 1 is also at
e 1. So, that is the other thing we are looking at. So, if you took you write this formula
down for every 1 of those energy levels and they are corresponding number of particles
and number of states each 1,each of these terms will look like this and if you multiply all
those terms that is a number of ways in which you can attained that micro state. So, that

is that is what we are looking at.

So, that is the number of ways in which you can attained the micro state. So, this is
simply as | using the same notation that we have done before i equal to 1 to r omega n i.
So, this is simply pi over i of this, what we have just written. This is omega n bar. So, of
course, So, this is the expression that we have. As we have always stated that for when
we use quantum mechanical steps, | mean when we look at statistical mechanical
approach of dealing with such problems which is what we are doing now. The idea is

that we would like to find the conditions here which maximize this omega n bar.

So, that would represent the micro state with the maximum number of ways that it is
possible to attain that micro state and that would then represent the equilibrium state of
the system because as we have discussed before the most probable state is more probable
then all the other states combined. We discussed that in detail before. So, will just accept
it now. So, that is what we are going to do. So, we are going to try and maximize this and
also in general if you look at omega n bar the it is of the form that whether you maximize
this or the maximize the log of this, both of them will give you the same result. The 2
functions are such that lone omega n bar and omega n bar will behave in such a way that
when you maximize omega n bar lone omega n bar maximizes. Similarly lone when lone
omega n bar reaches a maximum whatever is that condition same condition omega n bar

would maximize and mathematically it is easier to handle lone omega n bar.



(Refer Slide Time: 20:44)

So, that is what we will do. So, rewriting it we have omega n bar is pi over I, ni plus s i
minus 1 factorial by n i factorial times s i minus 1 factorial. So, if you take the lone of
this it is simply, now it becomes a somewhat was product because you taken log natural
log, natural logarithm of this product you get it becomes a sum, it is lone n i plus s i
minus 1 factorial minus you can put this under bracket because it is sum over the same i
is in for every time, it is the same i minus lone n i factorial minus lone s i minus 1
factorial. So, this is what we have and in general what is true is that given the values of n
iand si, niplussiismuch larger than 1, in general n i plus s i will be much larger than
1. So, ni plus s i minus 1 can be reasonably approximated to n i plus s i because it is
larger than minus 1. The same will not be true for this term, but for this term it will be
true. So, therefore, here we will leave the minus 1, here we will remove the minus 1
because n i plus n i is the very large number generally. So, n i plus s i minus 1 is simply

nl, issimply niplussi.

So, we can do that here. So, this is simply. So, we that is 1 thing, 1 change we will make
plus we will use Stirlings approximation which simply says lone of x factorial is x lone x
minus X. So, for every 1 of these term each is a lone of some factorial, for every 1 of
those terms we will do this approximation and x and we will change this n i plus s i
minus 1 to just simply n i plus s i. So, therefore, this is simply equal to will write that
here lone of. So, this is n i plus s i. The summation is still there. So, summation is still

there we are only looking at the terms within the bracket. Summation over i, ni plus s i



lone ni plus s i minus n i plus s i minus you can put a bracket here curly bracket n i lone

niminus niplussiminus1lonesiminus1minussiminus 1.

So, this is what we have. Now, if you look at it there is a minus n i here and there is a
minus of minus n i. So, that is a plus n i. So, these n i and this n i will cancel. Again there
is a minus s i here, there is a minus of minus s i here. So, this s i will cancel. So, they
cancel out. So, we are just simply use Stirlings approximation to get here and substituted

niplussiminus1asniplussi. So, those are the changes we have made.

The summation is still there, this summation that you see here that you see up here
continuous to remain there. So, that is what we continue to have here. So, this is what we

got. These terms go.
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V. i =C

So, therefore, this is. So, we have the result to be and then plus 1 will be there. Now, you
will have minus of minus. So, its plus minus 1 here minus 1 there. So, they have 3 minus
here minus, minus and minus. So, you have a minus 1 there. So, this is the result that we
have got. Now, as we have always discussed the you know if it if you are maximizing
this then effectively you know the differential of this with respect to n 1, the variable you
have here is only n i.

So, if you maximizing this the differential of this with respect to n i should be a 0 and it
we can also write it as simply as del lone w n bar should be equal to 0 where you



effectively differentiating that with respect to n i. So, if everything else is a constant here
s i is a constant and of course, 1 is a constant. So, now, when you differentiate it this is.
So, this is entirely a constant. 1 is a constant, all of this term is a constant. So, this entire
things simply reduces to 0. So, we will only have terms coming from the first term and

the second term here. This simply disappears.

So, if you write it down we get. So, this implies that sigma over i, n i plus s i that is
differentiate this term. So, that will be one by n i plus s i times del n i because that that n
i will be differentiated that is del n i and you can also differentiate the n i here. So, plus
del niagain s i is a constant. So, that goes to 0 times lone n i plus s i. Now, you take the
second term again you will have minus ni by 1 by ni del n i and also minus del n i lone
n i. So, that is the. So, this will give you the 2 terms because you have 2 n i here and this

also gives you 2 terms because you have 2 n i.

So, these are the 4 terms that you get, of this if you see again this reduces to simply plus
del n i because this will cancel. So, that is plus Del n i and this reduces to minus del n i
this will cancel. So, minus del n i. So, again this entire term will cancel with this entire
term. So, this is go, this will go and so, you basically have del lone. So, this implies that
you know of course, this the fact that this is equal to 0 simply implies whatever we have
calculated here equals 0. So, that simply implies that the summation over i the only terms
that are left are this Del n I, of lone ni plus s i minus lone n i equals 0 and since it is lone

you can actually simply put that in denominator.

So, this implies sigma over i with marginal and put this just rearranging the terms, we
will have or will write it write the beginning del n'i lone n i plus s i by n i equals 0. So,
we have got this combination. We have got simply taking the number of ways in which
we can arrange this system and trying to maximize it we have found this 1 condition that

needs to be satisfied which we have got as del ni lone ni plus si by niequals 0.
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So, we will write that down here. So, that is our first equation sigma over i, del n i times
lone of sii plus ni by niequals 0. So, this is the condition that we have good got. So, this
is the equation 1. As before the total energy in the system is conserved and the total
number of particles in the system is conserved. Conserved meaning you cannot increase
or decrease this, the number of particles is already there, you can you have no choice in

it. It is not going to change. So, therefore, some of all the particles sigma overini.

So, n 1 plus n 2 plus n 3 plus n 4 plus n 5 etcetera equals the total number of particles
equals a constant. Therefore, if you just differentiate this with respect to n i that has to be
0. So, that simply means sigma over i del n i equal 0, that is the same as saying you know
you have a total number of particles, you simply remove a few particles from 1 state you
distribute it amongst the other states. So, what is the change? You removed some
particles. So, you have reduced. So, some minus term comes there. So, the change in
particles there is some minus 5 particles let us say because you removed 5 particles, the
same 5 particles you put in like 3 other states. So, therefore, you have you know plus 2,

plus 2 and plus 1 let us say.

So, minus 5plus 2 plus 2 and plus 1 should give you O that is basically all it says.
Whatever particles you remove from 1 state you have to add some other state. Therefore,
this sum of all the changes has to be 0. Similarly, the energy is a constant total energy of

the system is a constant. So, epsilon i n i equals constant which we designated as capital



E. So, again here the each energy level in the system is already fixed you do not have a
freedom on that. So, this is already fixed for you. So, therefore, only change that you can
do is here. So, again the changes in energy that you will do when you remove some
particles is the energy level times the number of particles that you remove and when you
add increase energy when you add it to some other state it will be the energy of that state

times the number of particles that you have adding to it.

So, therefore, changes in energy total change in energy is simply sum over i epsilon i del
n i for all the states what is the number of particles you are adding or removing times the
energy of that state that gives you the total change in energy with respect to that energy
level. Sum of all those changes has to be 0 because the sum of all the energies together is
any way equal to a constant. So, this is equal to 0. So, we now have 3 equations we
already identified equation 1 here, this is equation 2 and this is equation 3.

So, we have three equations and what we will do is effectively as we have done before
when we looked at Maxwell Boltzmann statistics and we also looked at the Fermi Dirac
statistics. What we will do is we will use the Lagrange method of undetermined
multipliers and then we will solve this system. So, we are going to use the Lagrange
method of undetermined multipliers. So, we are actually simply going to multiply this by
this by a constant alpha, this by a constant beta and add it to this equation up here. So,
that is what is going to be there and there all equal to 0. So, that is sum is also going to
be 0. So, that each of them is 0. So, it does not matter what you multiply it with it is

going to remain 0 and we are going to add it to this.

Only thing is by convention if because the result works out more convenient to interpret
instead of simply adding to this equation we add it to we add these 2 to minus of this
equation and that is only a convention simply to make the interpretation easier and in a
sense it makes again no difference because its anyway its equal to 0. So, whether you put
a minus sign front of it or plus sign front of it makes no difference. So, we will add a

minus sign here and then we will add these terms together.
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So, or when we do this would when we do what | just said when we are multiplying by 2
constants and adding them this is what we will get, summation over i. We will write the
first term down this same way minus will put a bracket here minus lone niplussibyni
is bracket covers everything including the n i plus alpha epsilon i I am sorry plus alpha
plus beta epsilon i del n i equals 0. So, we had 3 terms we had sum of epsilon i del n i

equals 0 we have multiplied that by beta and brought it here.

We had as some of del n i equals 0 we have multiplied that by alpha and brought it here
and | kept the original equation. So, it is equation 1 plus alpha time’s equation 2 plus
beta time’s equation 3 which is what we have done. So, that is equal to 0 and as we
discussed before the point is we have a bunch of energy levels, we have a bunch of states
of those energy levels and when you maximize it regardless of what changes you are
making in those states adding a little, subtracting a little the sum should always be 0. In
other words this sum has be to 0 regardless of the values of these n i because you can
keep making minor changes here and there still it should be a 0. So, independent in other
words we have to make it independent of these del n i and the only way you can do that .
So, therefore, the only way you can guarantee that the sum is O regardless of where you
are adding, what you are adding, what minor changes you have making how the only
way you can guarantee that this is 0 is to say that every individual term here within this

bracket has to become | mean this whatever is within the bracket should always be 0.



Only when you do that you will you will be able to guarantee that this sum is equal to 0.
So, therefore, we say lone of this is the term within the bracket as long as you guarantee
that this term is O regardless of which energy level you are looking at i, e i you are
looking at you can guarantee that this sum remains O otherwise there is it is difficult to
guarantee because you have all sorts of various values of del n i and then it will become
difficult to get. This is only way you can guarantee it 0. So, now, we have this expression
we will rearrange it marginally. So, basically it says that lone of thisisni plussibyni.
So, we this is we can simply write it as 1 plus s i by n i and we will move that other 2
terms on the other side. So, therefore, that is why this minus sign is now suddenly
disappeared, is alpha plus beta epsilon i and marginally and therefore, once you
simplified it further 1 plus s i by n i equals e power alpha plus beta epsilon i and this
implies s i by n i equals e power alpha plus beta epsilon i minus 1.

We started off by saying we want to know the probability of occupancy of a state at
energy level e i that is simply the inverse of this. We want n i by s i, we have now got s i
by n i. So, that is what we want. So, we wants actually n i by s i. So, ni by s i is simply
the inverse of this it is 1 by e power alpha plus beta epsilon i minus 1. So, this equation
that you get here ni by s iis 1 by e power alpha plus beta epsilon i minus 1 this equation

that we have got here.

This is the Bose Einstein distribution and we designated also by f which subscripts b e,
this tells you for every given energy level what is a probability of occupancy of a state at
that energy level. So, this is what it is. Again this can be ah this alpha and beta can be
interpreted as in terms of the chemical potentials of the system and so on. So, that is not
something we are immediately interested in, but this is the form of the equation that we
get. This is the Bose Einstein statistical distribution. So, when you look at phonons, you
look at photons, you look at cooper pairs they as long as they are to the extent that they
are you know they are bosons, they are classified as bosons they are following the Bose

Einstein statistical distribution which is here.
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So, through this course through this course we have actually looked at 3 statistical
distributions. One was the Maxwell Boltzmann distribution and that basically was that
we got we could write it as P equals, P of E equals some P naught E to the power minus
E i by Kp T if you just write it in the denominator it will be E power E i by K p T. So,
this is the Maxwell Boltzmann distribution. This applies to classical particles, we also
got the Fermi Dirac distribution. This works for fermions. So, electrons would classify as
fermions. There we got f of E is or f of E is 1 by 1 plus E power E minus E fby Kp T.
So, this is where Fermi energy and so on we have there.

So, this is what we got and now we have got the Bose Einstein distribution. So, f of. So,
will call this f f d Fermi Dirac and this is Bose Einstein and that we have simply called as
1 by 1 sorry E power alpha plus beta epsilon i minus 1. So, this is a essentially a plus 1
and this is a minus 1.

So, so these are the three distributions that we have got and | mean if you did not know,
only when you plot this up you realize that they are very different and or when you
realize the kinds of assumption that have gone it to them they look very different. Some
wave similarity is there in terms of how they layout, but they are big difference in how
they behave in actual behavior and In fact, in a sense this is the Maxwell Boltzmann
distribution is considered the extreme approximation of these two. So, under the right

kind of conditions these kinds of particles would actually reduce to looking like classical



particles under the right kind of conditions, but in general these are separate sets of
particles. So, they are very distinctly different in how they behave, how they are
distributed across energy and therefore, what you can expect from a system consisting of
particles of any one kind when they are subject to certain experimental conditions.

Now, we have spoken about the Bose Einstein distribution because we have already
encountered 3 bosons in our discussion and there are some peculiarities of it about of this
bosons which is what we will familiarizes ourselves with the. As | mentioned the Bose
Einstein distribution since it consist of a it is addressing a set of particles that are
displaying quantum mechanical behavior, but are exempt from the Pauli exclusion
principle there is no limit to the number of particles you can place in a given state. So, it
turns out that given this basic idea if you actually go to very low temperatures you can
expect that all the particles will keep going to lower and lower levels of energy and in

fact, can condense to a single state.

(Refer Slide Time: 41:40)

So, can condense to a single state. This kind of situation where all the particles in the
system actually settle down to a single state at very low temperatures is called Bose
Einstein condensate. So, this is called a Bose Einstein condensate. So, as you go to very
low temperatures the particles will settle down to a single state and that is called a Bose
Einstein condensate. Now, the beauty of the Bose there are several things that have very

nice and interesting about the Bose Einstein condensate, the first and | would say the



most startling thing about it is this was predicted in 1925. So, when the Bose Einstein
statistics statistical distribution was put | mean written down and introduced to the world
at that point this the possibility that such a thing could occur because of the fact that this
it is allowed in that system that was propounded by Bose Einstein, Bose and Einstein.

So, this is called the Bose Einstein condensate. It was predicted in 1925.

For a very long time after that experimental facilities where not available to enable
people to investigate the those bosons at those very low temperatures. People were
unable to investigate these bosons at extremely low temperatures to see whether or not
such a condensate forms. So, this was predicted in 1925, only 70 years later in 1995, 70
years after the prediction was made that is such a such a state of matter could exist, it is
considered as a new state of matter 70 years after it was predicted that such a state of
matter could exist. In 1995 in a collection of rubidium atoms it was shown that when you
go to very low temperatures, when you talk of very low temperatures please remember
this is not | mean already talking of 2, 3 Kelvin is very low temperatures, but where they
are in this kind of an experiment they are talking in terms of 10 power minus 7 Kelvin,
extremely close to absolute 0.

It is a huge experimental achievement to even get a experimental set up where you can
reach this temperature. So, this kind it is not a simple thing to reach this kind of a
temperature. So, phenomenal piece of work to reach this kind of a temperature and in
1995 a group, | mean scientist where able to actually accomplish this temperature with
and subject rubidium atoms to this kind of a temperature. When they did that they were
able to get create this condensate. So, they created this Bose Einstein condensate for a set
of rubidium atoms. For doing this in 1995 the 3 people involved who were Cornell,
Wieman and Ketterle. Cornell, Wieman and Ketterle they got their Nobel prize in 2001
they got a Nobel prize for accomplishing this in 2001 for something that they did they
managed do in 1925.

So, till 1995 70 years after this state of matter was predicted nobody was able to
accomplish this, with a lot of difficulty they managed to reach this kind of a temperature
this group | mean this these scientist and they were able to show in 1995 that this
condensate actually exists, that it can actually be formed and for that they got the Nobel
prize. The point is that. In fact, if you look at it for example, that there |1 would like to
point out couple of things here 1 is just a matter of historical interest and sort of



reflection of how sometimes things work in science. Bose Einstein predicted this in
1925, 70 years later somebody managed to actually show it, for doing this they got a
Nobel prize, but strangely enough Bose who was involved in all this and who was very
instrumental in this, it was this original idea strangely enough he never got a Nobel prize
for the for his work. So, Satyendranath Bose somehow missed getting a Nobel prize, but
people who later proved his prediction to be correct actually got a Nobel prize. So, that is

1 of these strange things about science and just wants to point that out.

The other thing is actually when you look at this kind of a temperature, | think it is
important to understand what this represents. So, if you see we spoke about black body
radiation, right at the beginning of a course and through the course we have touched
upon it on a few occasions. Black body radiation, if you look at the universe around you
people have done experiments and | mentioned this earlier where you can looked at the
background radiation in the universe. Based on the background radiation in the universe
you can say what is the current temperature of the universe. The current temperature of
the universe is of the order of 2.7 Kelvin. So, 2.7 Kelvin is the background temperature
of the universe. The current understanding of the universe is that it is started off at a very

high temperature and then it has been cooling steadily.

The big bang theory that we talk of effectively implies this kind of a situation with
respect to temperature, extremely high temperatures were there in the first nano seconds
after the universe was formed and ever since it has been cooling and what you have this
background temperature that we are talking of is the current background temperature of
the universe. So, that that is in another words this is how cool the universe has become,
anything else in the universe is only hotter than this. Nothing in the universe in the sense
in the sense of naturally occurring parts of the universe whatever is occurred naturally in
the universe over time has been cooling steadily and this is the temperature that we have

in the background.

So, whenever you are doing some experiment in the lab, if you manage to reach a
temperature lower than this in your experiment, if you go to a temperature lower than
this which you will be doing artificially you are doing using some compressors, you are
using some pumps, you are using something else, you are using much more sophisticated
equipment were used here, they used all sorts of different means to slow down atoms
because the energy of the atom is effectively its temperature. So, they used very



interesting methods to slow down the atoms and get them and effectively lower their
temperature. So, whenever you do this complicated thing you are doing it artificially,
you are imposing it on the system, you have sort of forcing the system to undergo all
those things. So, whenever you draw below this temperature in a sense you are dealing

with a situation that does not naturally exist anywhere else in the universe.

That is a remarkable statement to make to say that in my lab | have an experimental
situation which is not naturally occurring anywhere else in the universe that too we can
say with confidence is whenever you are doing this kind of thing. If you are going to
higher temperatures and higher pressures invariably there is you will find something in
the universe which is having that kind of a temperature or pressure, but to get it to below
this point you are already talking of something that does not naturally exist anywhere. |
mean what it to the extent that if it exist anywhere else chances are, that means, there is
intelligence life elsewhere which is managing to do this the same kind of experiment.
The fact that you are actually able to accomplishing this in the lab means you have done
something that nature has not accomplished of its own accord in the universe and this is
just 2.7 Kelvin.

We are talking in here of 10 power minus 7 Kelvin which is remarkably lower than this
and as | mentioned you know in material science and metallurgy and so on. We talk of
temperatures say from say minus 100 degree ¢ to few 1000 degree c that is a range of
temperatures that we routinely access, we do not think too big about it, we just routinely
access that scale of temperatures, but if you draw from about minus 100 degree c to
minus 273 degrees ¢ which is what this 0 Kelvin is. So, that is that looks that is only
about 173 degrees centigrade or of the order of say you can even go to a narrower
window of the order of say 100 Kelvin, liquid nitrogen will get it about 77 Kelvin. So,

from there if you want to drop down it starts getting more and more difficult.

So, liquid helium will get you liquid hydrogen, liquid helium will all get you into that 10
Kelvin or there about. So, from there to drop down to 0 Kelvin the last 10 degrees starts
getting to be very difficult, it is not easy to get you down the last 10 degrees. Suddenly,
as you start dropping in to the last few degrees it is it is remarkable piece of work to get
to that kind of temperature. That is the reason it took 70 years to go from whatever was
predicted to actually demonstrate it in the lab. Simply, not being able to cool a system to
that temperature that was the experimental difficulty. So, you talk of you know highly



sophisticated experiments and what not, this is highly sophisticated in experiment, but

what were they doing?

They were simply lowering the temperature, that is the basic that is the fundamental
thing that they were doing. They were of course, lot of other things that they were doing
but that is the fundamental thing that they were doing, lowering the temperature. So,
lowering the temperature it itself a very phenomena likes experimental accomplishment.
So, in this process they were able to show the Bose Einstein condensate. So, to sum up
today what we have seen is a we have looked at a bosons in much greater detail, we have
looked at the conditions that are relevant to the particles that are classified as bosons. We
have looked and we have used those conditions and looked at the distribution across
energy levels, that the bosons will demonstrate and so, we have therefore, worked our
way through the Bose Einstein statistical distribution and we see we have also briefly
seen how it looks with respect to Fermi Dirac statistics and Maxwell Boltzmann statistics
and we have also looked at this phenomenal and very interesting scientific feed of some

prediction that was made in 1925 and then experimentally proven 70 years later in 1995.

So, with that we will halt today. This sort of covers our discussion on the bosons and its
sort of relates to all the other things that we have discussed in the last few classes. So, we
will some we will halt here today at this stage and we will pick it up in the next class as

we look at a just a few more interesting points before we wind up this course. Thank you.



