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Hello welcome to the 30-th class in our course physics of materials. In the last class we 

looked at the reciprocal space, we looked at diffraction as it is described in the reciprocal 

space. We had already described in real space, we looked at it is description in reciprocal 

space, and we also looked at what is actually happening as you convert something some 

real space to the reciprocal space. So, this a process that we looked at, in particular I 

emphasize the fact that ultimately we just have materials which are in real life objects 

that we are able to handle and see, and they have crystal structures and lattices which are 

in real space, the space that we are accustomed to. 

It is only because that there is some convenience in terms of analysis, that we start 

looking at other ways of representing this information. And the reciprocal lattice manner 

of representing this information is extremely useful in that context, because with respect 

to diffraction there are several specific details. That are better described in the context of 

the reciprocal space. So that is the context in which we have discussed it, that is the 

context in which the subject exists so to speak. In also in this context I showed you that 

know you may have a real space material that may consist, that may have a simple cubic 

lattice or you may have something that is FCC or BCC body centered cubic in real space.  

If you represent this same information in reciprocal space, in some cases structure will 

change in reciprocal space. The material structure is not changing, it is only its 

representation in reciprocal space that is different from what it is in real space. If it is a 

simple cubic material the representation in reciprocal space also happens to be simple 

cubic, only the dimension of the side of the cube is different. It is one by the dimension 

of the one by the length of the cube in real space. But what is laid out as a simple cube in 

real space continues to be laid out in a cubical in a cube kind of a layout in the reciprocal 

space. So, there is no change in that sense, if you take something that is phase centered 



cubic and you represent in a reciprocal space, its representation in reciprocal space has 

the same layout as that of a body centered cubic structure. 

 So, something that is so, a material that is in real space having a phase centered cubic 

structure, will end up being represented in reciprocal space with a layout of points that 

that look exactly like a body centered cubic structure. And the inverse is also true. If you 

start with a body centered cubic structure you with in real space and you represent it in 

reciprocal space, the layout of the same of the points will now look like a phase center 

cubic structure. So, this is representation and it is important to understand that there is 

there can be some changes we you make this presentation, because we will use the 

reciprocal space notation. So, we should keep in mind that some changes occurred in its 

representation or the very fact that we are representing in reciprocal space has created 

some changes in the way the information might look. 

So, when we interpreted we should keep this in mind, we should we should always keep 

that in mind and appropriately use this interpretation. So, this is just some information 

regarding what we have discussed. As we proceed forward I also think it is important 

that we should step back for a moment, and understand the purpose of what we are doing 

right now. Our ultimate purpose is to understand the interaction of electrons with the 

periodic structure of the material, because that is a detail that we have not incorporated 

into our model so far. So, that is the primary purpose of our discussion whatever we have 

built up and till now in the last two three classes where we have looked at reciprocal 

space, the creation of reciprocal space, the properties of the reciprocal space, how 

materials can be represented in reciprocal space, how diffraction can be represented in 

reciprocal space all of these are tools that will enable us to serve this one purpose which 

is to understand the interaction of electrons with the periodic structure.  

So, we are headed only in that direction these are tools that we are building because we 

will need all these tools to understand that interaction. And continuing in the same 

context in today class we will look at some specific terms and specific construction. So, 

to speak which are all again tools that we that are necessary for us to understand the 

interaction and then in a in a class also we will start looking at the interaction. So, that is 

the direction in which we head off. So, please keep that in mind when you look at the 

some of the topics that we are discussing, because I have taken by themselves they may 



look like a bit independent topics which are disconnected, but they are not they are all 

add up to something that we are going to discuss. So, that is what it is. 
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So, we looked at this now today we will introduce a concept we will introduce a few 

concepts couple of different concepts and two or three terms we will look at. The first is 

something called a Wigner Seitz cell. Wigner Seitz cell its defined as follows, it is the 

region in space that is closest to a given lattice point than to any other lattice point. So, 

this is the definition it simply says. So, this is again something to do with the structure. 

So, this is something associated with the structure of the material as you can see it says it 

is the region in space. That is closest to a given lattice point than to any other lattice 

point. So, this just the definition. So, what does this mean? 

We can actually do this in one dimensions in one dimension two dimensions or three 

dimensions. So, real solid object could to be in three dimensions for our representation 

we will start off with 1 d and 2 d representations, later we will look at structure in our 

next class we look at 3 d structures. So, basically what it says is, you have a set of lattice 

points I will just arbitrarily draw some lattice points. So, set of 9 lattice 3 by 3 have put 

laid them out our intension is to lay it out in a square fashion. So, it is just a we will 

assume that these are all exactly the same distance in every direction in those lattice 

directions. So, we have this two dimensional lattice. So, it is 2 d this plane and this plane 

basically. So, this direction and this direction is what is incorporated. 



So, now we will look at this central point just for an example the same will hold true for 

any of the other points. So, this is the for the central point we would like to identify the 

region in space in this case its two dimensional space. So, it is a two dimension space we 

would like to identify this region in this two dimensional space, that is closest to this 

point than is to any of these other points. So, that is that is what the definition says if you 

identify that region that region is called the Wigner Seitz cell about this lattice point. So, 

that is the definition. How do we do this? There is a very straight forward way of doing 

this, What we will do is? we will take this lattice point we will connect it to all its 

neighbors, just a and we will have some guideline connecting it some dotted lines 

connecting it to all its nearest neighbors. So, let us just do that we will do that all its 

neighbors we will just do that. 

 So, I have used dotted lines and connected the central point here to all of these points 

around it. This is to just help us identify the region. So, we have just started with this 

step. Now, let me take its nearest neighbor, one of its nearest neighbors we will take this 

point here it is it is one of its the nearest neighbors. What is the region in space that is the 

closer to this point than it is to this point? That is the first question we will ask, how do 

we find out that region? We will just take this line we will draw a perpendicular bisector 

to this line, if you draw a perpendicular bisector to this line whatever is on this side of 

that line is closer to this point than it is to this point. It is as straight forward as that. So, 

we will just draw that we will do that you will take the midpoint of it whatever is the 

midpoint and draw a perpendicular bisector. 

So, if you draw a perpendicular bisector to the line joining this point the point that we are 

interested in to its nearest neighbor we find that anything to the ah from our perspective 

to our of this line is closer to this point, than to this point. And anything to the left of the 

line from our perspective is closer to this point than it is to that point. So, with respect to 

this point we have already identified the region that is closer to this lattice point than it is 

to this lattice point simply by drawing the perpendicular bisector. Now, we can do the 

same exercise for each of these points around it. So, now we will take the point that is up 

here the perpendicular bisector is somewhere it has go through that point.  

So, it will look like that something like that similarly a perpendicular bisector will be 

somewhere there. So, it will pass through that location it will look like that and again 

between. So, we have I have now drawn the perpendicular bisector for the line joining 



these two points and I have drawn the perpendicular bisector for the line joining these 

two points. So, then I can draw one more for the line joining these two points, if you 

have drawn it nice and square if you do this properly nice and square this is sort of what 

you will see. So, with respect to its immediate 4 closest neighbors, the 4 closest 

neighbors that we have there we have already seen that this line indicates the region 

below this line is closer to this point than it is to this point. The region on this side of this 

line closer to this point than to this point region, above this line is closer to this point 

than it is to this point. And similarly the region on the left of this line is closer to this 

point than to that point. So, this region defined by the square is now closer to this central 

point than it is to its immediate four neighbors close four closest neighbors. 

We can extend that argument we can even look at its next nearest neighbors just to see if 

anything else is happening, if you have drawn it nice and square what you will find is the 

perpendicular bisector of the line joining this central point will look something like this, 

and if you continue that exercise for this and this you will get lines that look like this. So, 

you will find that. In fact, those lines which are perpendicular bisectors to the points to 

the lines joining these points which are diagonally positioned here we will also. In fact, 

just pass through those vertices. So, they do not remove any region from what we have 

just identified in this particular case, if you have drawn it as a nice a straight square that 

which like what it is shown here. 

So, therefore, this region that we see here, this region consists of in this two dimensional 

sense consists of all the points in space that are closest to this point than they are to any 

other points. So, in terms of lattice points closest to this lattice point than they are to any 

other lattice point. So, therefore this is now the Wigner Seitz cell about this lattice point. 

So, this is so that is all that is to it is a straight forward the definition is now fairly 

straight forward now you understand what the definition is with respect to the definition 

this is the diagram this is the Wigner Seitz cell about this point. 

Clearly if you extend this three dimensions you will now have a point, just the way you 

had this neighbor here, you will have a point at similar distance in front of the plane of 

the board and you will have a point at similar distance behind the plane of the board. 

And the please understand this is the two dimensional representation here. So, this looks 

like lines if this were a three dimensional representation these would be planes, this 

would be a perpendicularly bisector plane. So, this would be a perpendicular bisector a 



plane that would be perpendicular to this board. Similarly, this would be a perpendicular 

bisector a plane that is perpendicular to this board these would all be planes that are 

perpendicular to this board. 

Now, the lattice point in front will be sitting in front here, and a perpendicular bisector 

will go like that. Similarly, a perpendicular bisector will exist which will bisect the line 

joining this point and the lattice point directly behind it in into the plane of the board 

and. So, you will have now a plane behind the plane of the board a plane front of the 

plane of the board and these planes here, and since they are all squarely laid out the 

dimensions will be the same what you get is a cube. What you are seeing as a square in 

two dimensions will become a cube in three dimensions. So, in a if you have a square 

lattice or a cubic cube lattice Wigner Seitz cell will be a cube. So, this is the basically 

definition of a Wigner Seitz cell. I must also point out that in general see a square lattice 

is a very particular case if you if it is square it is a very particular case if it is a rectangle 

its little less particular, but still we are putting a some restriction. In general you can have 

a set of points which are arranged like this.  
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So, if you now have this set of points and you look at the perpendicular bisectors again 

we will do the same exercise. Now, that you understand the concept we can do it 

relatively quickly we join the central point to all its immediate neighbors, and we draw 

the perpendicular bisector of each. So, perpendicular bisector of this would look 



something like that, perpendicular bisector of this would look something like that, It is 

not exact in middle would look like that perpendicular bisector of this line would look 

something like that perpendicular bisector of this like that, and similarly perpendicular 

bisector of this is somewhere here would look something like that. So, by looking at the 

immediate neighbors and you will the other ones do not really impact you this is kind of 

faraway.  

So, its line will be somewhere there perpendicular bisector will be somewhere there 

which is not really of immediate use for us similarly this perpendicular bisector is 

somewhere here. If you look at it or if you draw to scale you may find some variations, 

but the point is you will find a region bounded by six sides. So, in general when you are 

not really looking at either a rectangular lattice or a square lattice, the Wigner Seitz cell 

about that point is going to be a six sided figure in two dimensions when you plot it in 

two dimensions. So, in for a two dimension two dimensional lattice, the most general 

case is a six sided figure as the Wigner Seitz cell about any lattice point. 

Now this is whatever we say about this lattice point same is going to be true for the other 

lattice points. So, in a sense the boundary of the Wigner Seitz cell will become the 

boundary of the Wigner Seitz cell of the next cell. So, for this for of the next lattice 

point. So, this is going to be true for all the lattice points because of symmetry and. So, it 

is in general it is going to be a six sided figure if it is a rectangle it will become a four 

sided figure which look rectangular and if it is a square, it will square lattice it will 

become a four sided which is a square. 

So, those are special cases. So, in general this is what a Wigner Seitz cell is now. So, I 

have already. So, now we have understood. So, this is just a definition. So, this is just a 

definition you understand what the definition means and you also understand how you 

can create the cell, or how you identify the cell because it is simply a region in space 

right you only have to identify what is this region. And this is the rules based on which 

we will identify that region you simply connect the point you are interested in with all its 

neighbors. Draw perpendicular bisectors to it and then whatever shows up as the inner 

most region from all this perpendicular bisectors inner most region is the is now the 

region that is closest to that point than to any other and that then becomes the Wigner 

Seitz cell of that particular lattice. 



So, that it is all there is we have done in 2 d. So, that it is easier to see same thing is true 

in 3 d, except the perpendicular bisectors will lines will be planes in sort of lines that is 

all it is. So, if you have the right kind of software you can take any lattice and you can do 

these perpendicular bisectors you can create and you can see it and you can rotate it 

around. So, we will see something on 3 d a little later, but for now this is in 2 d 2 

dimensional lattice descriptions. So, now, we have seen this first description called 

Wigner Seitz cell.  
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Now, we will define another term which is called a Brillouin zone a brillouin zone is we 

will define two terms actually a brillouin zone and we will define something called a 

bragg plane. So, first we will define something called the first brillouin zone the brillouin 

zone actually can be can be called as we will find that you know whatever it is we once 

we describe, what a brillouin zone is we can we will find that it can be a there are further 

qualifications to it we can call it the first brillouin zone second brillouin zone third 

brillouin zone and so on. 

So, we are there is further qualification we can provide to the brillouin zone. So, right 

now I will describe what is the first brillouin zone only. After understanding what is the 

first brillouin zone we will define, what is a Bragg plane? And we will the n the use that 

definition to help us define second brillouin zone third brillouin zone and so on. So, that 

is what we want the brillouin zone. The first brillouin zone is the Wigner Seitz cell about 



a lattice point in reciprocal space. So, now in this definition itself we are pulling together 

some of the concepts we have discussed in the last class and we are currently discussing. 

So, this a new term we have introduced brillouin zone, we are going to look at what it 

what it means. And we have we are defining the first Brillouin zone as the Wigner Seitz 

cell which we just now we just now discussed what a Wigner Seitz cell is. This is going 

to be a Wigner Seitz cell about a lattice point. So, that part a Wigner Seitz cell about a 

lattice point is something that you are now clear about because we just discussed it. So, 

this part of the definition your already clear about Wigner Seitz cell about a lattice point, 

any lattice I give you understand the concept of how you come up with a Wigner Seitz 

cell about that lattice point that is a very straight right process. 

So, the first brillouin zone is the Wigner Seitz cell about a lattice point. So, that part is 

clear. Except that the further qualification we are adding is that it is a lattice point in 

reciprocal space. So, now this is a concept we learnt yesterday independently yesterday 

in the the last two classes rather in the last two classes, we have learnt this concept 

independently reciprocal space. We understood how real space ah relates to reciprocal 

space and such. So, reciprocal space we independently defined and we have understood. 

So, reciprocal space consists of reciprocal lattice points. So, we can fill reciprocal space 

with reciprocal lattice points, for a given reciprocal lattice point you can find the wigner 

seitz cell as a second activity. So, this independently you know how to get to reciprocal 

space, you know that in real space if we have a 1 a 2 and a 3, you know how you can go 

from a 1 a 2 a 3 in real space to b 1 b 2 and b 3 in reciprocal space. 

So, given a material in real space, which is what your real life is about a material in real 

space you know its crystal structure. Therefore, you know the lattice it is ah based on. 

So, for that lattice you know how to independently create the reciprocal lattice of it, 

because we know the relationship between a 1 a 2 a 3 and b 1 b 2 b 3 we already did that 

for simple cubic FCC and BCC same procedure. You follow regardless of the lattice and 

you come up with the reciprocal lattice. So, given a real lattice you know how to get to a 

reciprocal lattice. So, therefore, you know the this step and regardless of the lattice you 

know how to construct a Wigner Seitz cell. 

So, if do a Wigner Seitz cell about a reciprocal lattice point that a structure that you 

obtain or the structure that you identify the region that you identify is called the first 



brillouin zone. So, we just did diagrams for a layout of a square layout of points. So, we 

did a diagram here for a square layout of points. So, we just did this diagram. Now if this 

set of lattice points per lattice points in reciprocal space, when I drew this lattice points, I 

did not say anything about we did not have any restriction, that it has to be a real space 

set of lattice points or reciprocal set of space set of lattice points. That restriction we 

have not placed on the system supposing this were a set of lattice points in reciprocal 

space, then this region that we have identified which is the Wigner Seitz cell about a 

lattice point in reciprocal space would then now become the brillouin zone the first 

brillouin zone. 

So, therefore, you see that you know a diagram that we have drawn simply if we have 

called this reciprocal lattice points this is brillouin zone that is all it is. So, the brillouin 

zone term is if since you may be encountering these terms for the very first time a 

Wigner Seitz cell and a brillouin zone. It is not something that we typically discuss in 

high school physics, but this is all they mean. I mean they are ah constructs or structures 

that we can imagine in space, which we can which we can associate with real space or 

reciprocal space. And based on what we are doing we would call it either just a Wigner 

Seitz cell or if it were specific to reciprocal space and reciprocal lattice it would get 

called the first brillouin zone. 

So, this is all the definition is. So, now you understand a few of the concepts and how 

they are connecting lattice Wigner Seitz cell and brillouin zone. In fact, real lattice 

reciprocal lattice Wigner Seitz and brillouin zone these are four concepts we have now 

linked them up. So, what we have done now we will come back here. So, this is the first 

brillouin zone. Based on what we just did we have already been able to understand what 

is the first brillouin zone, we will now add one more definition called a bragg plane. once 

we add that definition we can find out what are the other brillouin zones that we have 

available to us. 

So, a Bragg plane is the perpendicular bisector to the line joining the origin of reciprocal 

space to any reciprocal lattice point. So, the Bragg plane is now is again a definition we 

are defining it as the perpendicular bisector to the line joining the origin of reciprocal 

space to any reciprocal lattice point. So, this is a definition. So, let us understand what 

this means when you define a reciprocal space for sake of convenience we will designate 

one point as the origin of reciprocal space. So, that is by convenience we just define one 



point. Since it is since all of these lattices are based on symmetry if you define a 

particular point as the origin it is not going make a big difference, you can chose an one 

of the adjacent points in principle the symmetry would still remain the same. 

So, we can select it by our convenience we select the point as the origin by our 

convenience we can connect that origin to any other lattice point. I mean it is just an I 

mean imaginary connection when I say connect we can we can always draw straight 

lines between that lattice point and any other lattice point that is available and reciprocal 

space. So, that we can always do. So, any such line that we draw we can also imagine a 

perpendicular bisector to that line right. So, there is nothing these just two imaginary 

things you have two points you can always draw a line connecting those two points you 

can always draw a perpendicular bisector to that line connecting the two points. 

The fact that it is in real space or reciprocal space is irrelevant you can always do this in 

this particular case we happen to be doing it in reciprocal space that is all. In reciprocal 

space you look at all the lattice points you take the origin and you keep connecting it to 

the any lattice point that you wish. And you draw a perpendicular bisector to that line 

that perpendicular bisector is referred to as a Bragg plane. This is a bit confusing because 

in diffraction we talk of a planes and we talk of Bragg law of diffraction and so on. So, 

Bragg equation and such and. So, the term Bragg plane can slightly to be confusing the 

first time you ah encounter it, but this is all it is if you look at this definition and you 

implement this definition. So, it’s a straight forward definition I mean it helps you 

straight forwardly identify what are the Bragg planes. 

 So, now, we understand what a Bragg plane is. So, we can immediately see you are 

probably already able to see now how this relates to the brillouin zone and Wigner Seitz 

cell. Wigner Seitz cell was simply something that we did in any space we did not really 

specify that it was real space or reciprocal space or any such thing. In the reciprocal 

space we were able to say that we have designated the brillouin zone as the Wigner Seitz 

the first brillouin zone as the Wigner Seitz cell about a lattice point in reciprocal space. 

So, that is how we have defined it, now think about it carefully what do we have if you 

have you know a set of points. So, we did this 3 by 3, 3 by 3 set of points and we found 

that you know if you just draw the perpendicular bisectors we will end up getting this 

square region which is then your brillouin zone. The first brillouin zone we will assume 



this now these are now reciprocal lattice points, what have we done? We have drawn 

perpendicular bisectors to the lines joining this point to its neighbors. 

If you designate this point as the origin of reciprocal space and that is as I said your 

convenience, you can always designate this as the origin of your reciprocal lattice 

reciprocal space, if you designate this as the origin of your reciprocal space then these 

lines which are perpendicularly bisecting the lines joining this origin to its neighbors. If 

you draw it correctly it will all go through those points there you would not have this 

region there. So, these are lines that that originally when we define a Wigner Seitz cell 

we simply said that this is a line that perpendicularly bisects the line joining a point and 

its immediate neighbor, this is not drawn exactly to scale if you draw it the scale you will 

get it much better than what I have drawn here. 

Now, we have said that if you do this in reciprocal space this line which is the 

perpendicular bisector of the line joining the origin to this lattice point is called a Bragg 

plane. So, that is all it is the perpendicular bisector to the line joining the origin of 

reciprocal space to any reciprocal lattice point. So, this line here this solid line here is a 

Bragg plane, this solid line here is a Bragg plane, this solid this Bragg plane bisects the 

line joining this point, this the origin and this reciprocal lattice point. This Bragg plane 

bisects the line joining this origin and this reciprocal lattice point, this Bragg plane 

bisects the line joining the origin to this reciprocal lattice line and so on. 

So, we have a 1 Bragg plane here 2 Bragg planes 3 Bragg planes 4 Bragg planes this is a 

Bragg plane this is a Bragg plane, this is a Bragg plane, this is a Bragg plane. So, they 

are all simply lines and. In fact, these are lines in two dimensions and we I all say always 

said that that you know if you draw this in three dimension this will be a plane. So, that 

is where the name Bragg plane comes. So, of course, the Bragg the name the name Bragg 

being incorporated here suggest that somewhere intuitively suggest to us that you know 

this person has being to diffraction. So, possibly there is some link to diffraction in this 

there is a link we will get to that in a little while possible in our next class. In fact, we 

will get to it. Now lets us not worry about the link to diffraction we simply say that these 

are Bragg planes. So, these are all Bragg planes by the definition of what a Bragg plane 

is. 
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So, now we see much more elaborately, we have real space, real lattice we can convert it 

or represent it in reciprocal space. So, it will become reciprocal lattice. So, this is your 

original material. So, it will have a real lattice we can represent it in reciprocal space as a 

reciprocal lattice, if you represent it in reciprocal space you can draw Wigner Seitz cell. 

We will say we can use Bragg planes, identify Bragg planes we can identify Bragg 

planes, if you identify those Bragg planes the region that you will identify is the first 

brillouin zone. And this is now Wigner Seitz cell in reciprocal space. So, this is how the 

concepts that we have discussed today tie up to each other. 

So, we have real lattice that can be represented in as a reciprocal lattice in the reciprocal 

lattice. We can identify Bragg planes which are perpendicular bisectors of lines joining 

the origin of the reciprocal space to any of those lattice points. If you do that the inner 

most region that you will find is the Wigner Seitz cell about that reciprocal lattice point, 

and that Wigner Seitz cell about that reciprocal lattice point is called the first brillouin 

zone. So, this is the definition this is how they all connect up latter we will see the link to 

diffraction. Now, we have just done it for we have now I simply identified the first 

brillouin zone, but this concept is a little more general, what is general about it?  

Is that if you start at the at the origin of reciprocal space which you have designated by 

your choice if you go away from the origin at some point you will you will touch the first 

Bragg plane the nearest Bragg plane to that origin right as long as you do not cross that 



Bragg plane in any direction the region that you identify is called the first brillouin zone. 

I am merely restating what we have done. So, what have we done here we come here we 

look at the center this is the center this is the origin of the reciprocal space, if you move 

away from this origin as long as you do not cross this Bragg plane, as long as you do not 

cross any Bragg plane, as long as your within this region. When your within this region 

no matter where you go you will not cross a Bragg plane these are all the Bragg plane. 

These are all Bragg planes around it as long as you stay within a region where you do not 

cross even a single Bragg plane that region is now called the first brillouin zone. So, we 

are simply restating the definition of the brillouin zone in a slightly different way. 

So, the first brillouin zone is the region in space that you can reach from the origin of the 

reciprocal space without crossing a single Bragg plane. So, that is simply the definition 

of the first brillouin zone. So, you can therefore, now guess what might be the definition 

of the second brillouin zone? The second brillouin zone is the region in space that you 

will reach by crossing only one Bragg plane no more. So, you start from here you if you 

continue forward you will cross one Bragg plane, then you get into the second brillouin 

zone, but you should not cross the second Bragg plane see this is another Bragg plane 

that is here these are all Bragg planes. 

So, therefore, this region here, this region here and this region here are all regions 

belonging to the second brillouin zone. So, now, you see how we are generalizing the 

definition. The definition for the brillouin zone started off by saying that it is simply the 

Wigner Seitz cell about the reciprocal lattice point, then we said look Wigner Seitz cell 

the boundaries of the Wigner Seitz cell are Bragg planes. And therefore, you can have 

several Bragg planes that we can identify. And Now, therefore, we have to restate the 

definition for a brillouin zone because we can identify additional regions which have 

which have which are in concept similar, but have something some different about them. 

And now we rechanged I mean we restated the definition by saying the brillouin zone is 

that region which you can the first brillouin is the region that you can access from the 

center lattice point the origin of reciprocal space without crossing a single Bragg plane. 

The second brillouin zone is the region that you will access after you have crossed the 

second Bragg plane, but you do not cross the second Bragg plane. So, that is how you go. 

So, first brillouin zone. So, second brillouin zone you to access the second brillouin zone 



you do not cross you cross one Bragg plane, but you make sure that you do not cross the 

second Bragg plane. 

Similarly, we will continue. So, I have just put down a one more and then we will 

generalize third brillouin zone. It is the region in the reciprocal space that you can access 

by making sure that you cross two Bragg planes, but do not cross third Bragg plane in 

given direction, we will actually make a two dimensional representation it will become 

very clear to you. So, therefore, in the most general sense your nth brillouin zone will 

imply that you have crossed n minus one Bragg planes, for the first one 0 Bragg planes 

second 1 Bragg plane third one two Bragg planes and so on. You will cross n minus one 

Bragg planes, but no more not more than that but not the nth. 

In other words it is a region between the n minus one th Bragg plane and the nth Bragg 

plane right except that you can do this in all directions. So, you can start from the origin 

and just head off in any direction that you wish in that direction you cross n minus one 

planes, but you do not cross the nth plane you just cross keep crossing planes you keep 

counting them as you cross them you do not cross the n minus you cross the n minus one 

th plane, but you do not across the nth plane that region between the n minus one th 

plane and the nth plane in that direction belongs to the nth brillouin zone. 

We will find that we are going to draw that in a moment for a for a two dimensional 

structure we will find the you know the progressively the brillouin zones will consist of 

smaller and smaller pieces of space which are distributed around. So, initially we are 

able to identify a square which is fully connected the entire square that we draw with 

that. We drew was fully connected all the regions were connected to each other 

subsequently we will find that they are smaller and smaller pieces which are spread out 

across space, but because of symmetry. In fact, if you pull if you add all those regions 

together the total area that you will get will be the as a square the origin of square. 

So, the second brillouin zone also if you pull all the regions that you identify as a second 

brillouin zone you put them together you will you will get the get a shape that is the 

same as the square if you do the third one you will again get a square fourth one you get 

a square and so on. But they will become more and more smaller and smaller pieces you 

just have to assemble them together you will back the square. So, the in that sense the 



symmetry will remain the same we will now look at a very general case and that will 

convey all this definition to you very clearly. 

Now, we will extend our understanding of how we indicate Bragg plane and brillouin 

zone in a two dimensional system. So, to do this what we will do is we will look at a set 

of points which will be a 5 by 5 matrix of points which will be a point which are laid out 

in a square fashion. So, and those points with respect to those points we will see if we 

can identify all the Bragg planes and also the brillouin zones.  

(Refer Slide Time: 42:39) 
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So, to do that lets put down this 5 by 5 points see you can follow this exercise with me 

and. So, as we do it you can you can yourself see for how this kind of a diagram comes 

about. So, we will go about it step by step. So, that you will be in a position to see how it 

happens. So, first thing we have to do is we will take this central point this central point 

here and with respect to that central point lets first see if we have a good understanding 

of what are its nearest neighbors. So, this is your central point. So, with respect to this 

the first nearest neighbors are these 4.123 and 4. So, they are these four points here are 

the first nearest neighbors. So, I suggest you put down this grid on a piece of paper. So, 

you can also see how this is happening. So, the first four neighbors are here these are the 

nearest neighbors. 



So, this is the first set of neighbor if you want to look for the second set of neighbors, 

you look out here you will find the second set of neighbors these are the neighbors that 

are not the closest, but the next closest set of neighbors. So, 1 2 3 and 4. So, these four 

then become the next set of neighbors the third closest neighbors will be these points. So, 

these will be the points that are the third closest neighbors with relative to the central 

point. So, if you choose another point in the lattice you would again identify similarly the 

neighbor and then the fourth points would be all of these fourth closest points would be 

these with respect to this. So, with respect to this these would be the fourth closest 

points. 

So, if I just look at this in this direction this is the closest neighbor second closest 

neighbor third closest neighbor fourth closest neighbor that is how it is. So, if you just 

see here closest neighbor second closest neighbor third closest neighbor fourth closest 

neighbor. So, that is how it is. So, with respect to each of these neighbors we will we will 

draw the lines that are that perpendicularly bisect the line joining the center point to 

those neighbors alright. So, that is what we will do and we will do this for this entire 

figure. So, we will start with this point closest neighbors as I said are these four. So, 

perpendicular bisectors will be lines that run like that. So, we will put those lines now. 

So, we have now got the lines that perpendicularly bisect the lines that would the 

imaginary lines that would join this central point to its immediate four neighbors. So, 

first set of neighbors have been taken care off now let us look at the second set of 

neighbors which are these. So, first is here this is the second closest neighbor. So, the 

line joining the central point to the second closest neighbor is here and its perpendicular 

bisector will be something like this. And because this is a square grid of points the 

perpendicular bisector actually goes through these points. If it were not a square grid you 

may you may not necessarily having going through those point, but since it is a square 

grid we are able to do this. 

So, let us just draw these perpendicular bisectors they look like this. So, at each of these 

points there is a lattice point a valid lattice point is out here available there. So, this is 

what we have got. So, we took care of the first neighbor or rather we have attended to the 

identification of the Bragg plane with respect to the first neighbor we have done that with 

respect to the second closest neighbor third closest neighbor as I said is here. So, this the 

third closest neighbor with respect to the central point. So, this is actually two lattices 



spacing away. So, therefore, the perpendicular bisector of the line joining them will 

actually go through the first lattice spacing the closest lattice spacing which is here. 

So, those lines w ill look like this and the same thing we will draw in all four directions. 

So, it will look like this. So, there we have taken now taken care of the first the second 

and the third nearest neighbors. So, that is a they have all been attended to. So, let us 

now identify the fourth nearest neighbor which we already did, but now on this figure 

now that we have drawn some lines let us just highlight the fourth nearest neighbor 

again. So, this would be one this is another one this is the third one. So, now I have now 

highlighted all the lattice points which are the fourth nearest neighbor neighbors to this 

particular lattice point we have already done that before. So, I have just highlighted it 

here. So, if you see the line joining this point the central point to the fourth nearest 

neighbor would sort of go through this point here. And the perpendicular bisector will 

sort of look like this right this is the line imaginary line that would connect these two 

points going down. This way and the perpendicular bisector would be something like 

this. So, this is how the perpendicular bisector looks to the line joining this central point 

and this point here. 

And similarly between here and here you will have a line which sort of looks like this 

and its perpendicular bisector would like this. So, this is how you will get these 

perpendicular bisectors right. So, we will do the same thing now in all four directions if 

the by symmetry it look essentially exactly the same. So, this would be one 

perpendicular bisector and this will be another perpendicular bisector. Similarly, this will 

be a perpendicular bisector and this will be a perpendicular bisector and you will have 

one more here and one more here. 

So, now we have done the perpendicular bisector. So, we have eight perpendicular 

bisectors here with respect to these eight points which are the fourth nearest neighbors to 

this center point. So, we have done this process. So, now, having come this far we have. 

So, essentially what have we done we have put down the set of points which are lattice 

points and let us say that this is in reciprocal space. So, these are reciprocal lattice points 

with and with respect to a central point we located all its nearest neighbors one after the 

other and do the perpendicular bisectors to those lines joining the central point to those 

points. 



So, those lines are now Bragg plane. So, in everything that we drawn here is a Bragg 

plane all these lines here is are Bragg plane now with respect to our definition for a 

brillouin zone if you start from the central point and you do not cross any Bragg plane 

you are in the first brillouin zone if you cross one Bragg plane and you do not cross 

anymore you are in the second brillouin zone if you cross two Bragg planes and not 

anymore then you are the third brillouin zone. So, that is what we have. 

So, if you do not cross any Bragg plane you are in this region. So, this is the first 

brillouin zone if you cross one Bragg plane, but you do not cross the second one. So, this 

is the second one here if you do not cross it. So, you cross one Bragg plane you do not 

cross the second one you stay within this region this is the second brillouin zone. So, 

similarly you will find locations around here which are all which all meet that criteria or 

criterion. So, these are all second brillouin zones the third brillouin zone is reached by 

crossing two Bragg planes, but you should not cross the third Bragg plane. So, you 

should that will put you in a region like this. So, this is the third brillouin zone. 

Similarly, this is also this also qualifies as the third brillouin zone third brillouin zone. 

So, you see several regions now qualify as the third brillouin zone. So, the point you 

have to keep in mind is that therefore, when you build make this kind of a diagram the 

brillouin zone of the same order. So, the third brillouin zone for example, does not have 

to be a continuous does not have to be at one single location it is now spread out its sort 

of fragmented and spread out across the diagram. In fact, as you get to higher and higher 

brillouin zones they get more and more fragmented typically and gets spread out more 

into that diagram. 

So, that is how you will see. So, if you cross now three Bragg planes one two and three, 

but you do not cross the fourth Bragg plane that will put you in the fourth brillouin zone. 

So, these are all fourth brillouin zone regions four and four please note there are other 

regions which would also qualify as fourth brillouin zone I have not marked this as the 

fourth one because I have not done it all over the diagram I have just left it unmark, but 

in within the context of our diagram only the first second and third brillouin zone are 

completely present within this diagram. 

So, they are not the rest of them are not completely present within this diagram the rest 

of them you would have to draw much of this diagram you have to draw this across 



several points to locate all the regions that qualify as the fourth zone all the regions that 

qualify as the fifth zone and all the regions that qualify as the sixth zone within this 

context of this diagram we can still find out what are the regions that are the fourth fifth 

and sixth region. So, fourth I have identified fifth would be these small regions here 

because you would have crossed four Bragg planes, but not the fifth one. 

So, these are all five is a very small regions. So, you just have to note down that they are 

the region and if you cross 5 Bragg planes and you do not cross the 6 Bragg plane that 

would put you here this is the sixth brillouin zone sixth brillouin zone and the sixth 

brillouin zone. So, you see even within the context of this figure we have been able to 

identify this is a simple figure a simple lattice. So, to speak square lattice for which the 

reciprocal lattice was also a square lattice and just simply using our definition and 

incorporating our definitions into this diagram we have been able to identify the first 

second third fourth and fifth and sixth brillouin zone and except as I mentioned the 

fourth fifth and sixth are not complete you have to look for more of them more pieces of 

them. 

If you were to extend this to three dimensions the as you can imagine this figure will 

start getting more and more complicated. So, but the concept is exactly the same you 

locate the central point you connect it to all its neighbors identify perpendicular bisectors 

and the perpendicular bisectors here are lines in three dimensions they would be planes 

and once you do that you will find some region in the middle which is which you can 

access without crossing any plane that would be the first brillouin zone then you would 

cross one plane and not the second plane that would be the second brillouin zone and so 

on. 

So, that is how we build up this brillouin zones. So, in today’s class we have actually 

seen what is Wigner Seitz cell we defined it we drew it we looked at what are Bragg 

planes and we also looked at what are brillouin zone and we have seen how brillouin 

zones are put together how you can identify the first brillouin zone the second brillouin 

zone third brillouin zone and so on. So, ww realize that you know that there are set of 

there are range of brillouin zones that we need to be able to identify the system. 

In our subsequent classes we will see what this is for a three dimensional structure we 

will look at it for the three dimensional structures. So, that you can understand how it 



looks for a three dimensional structure then we will also see what this means with respect 

to diffraction because that is something that we have learnt independently we will 

connect it to what we have drawn here and finally, we will try and understand if you take 

this all this information together what does it mean with respect to the energy values that 

are allowed for electrons in the system and the energy values that are forbidden for the 

electrons in the system. 

That information comes when you pull all of these together the brillouin zones which 

come from the periodic structure of the material, and the wave information which comes 

from the electrons that are available in the material all of these have to be put together. 

Then you get this information on bands allowed bands and band caps. So, all of that we 

will see in our upcoming classes with this we will halt for today. Thank You. 

 


