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Lecture No. # 22 

Confinement and Quantization: Part 1 
 

Hello, welcome to this the 22 class in the physics of materials course. In the last class we 

examine the idea that you know when an electrons goes through a solid, it is not really 

reasonable to accept or belief that it has no interaction with what is present within the 

solid or that the interaction is featureless; that in other words the potential across the 

entire solid is exactly flat and uniform. What we realized is that the ionic cores represent 

locations, where the energy of electrons goes down very significantly, because the 

opposite charges are attracting. And therefore, there is a certain feature, certain shape to 

the potential was a position curve, that that is reasonable to expect with in a solid. 

(Refer Slide Time: 01:10) 

 

So, what we drew last class, we found that if you had the ionic cores; those are the 

position of ionic cores. (No audio from: 01:19 to 01:26) Then, we found that the 

potential was position is more in detail manner look something like this. 



(No audio from: 01:35 to 01:51) 

So, the potential versus position curve looks something like this, in a more; so this is 

position and this is potential. So, the curve looks more like this and it is much more 

reasonable to actually believe that the electron experiences something like this as it goes 

through the solid. We also finished off our class by saying that this is perhaps a little too 

detailed for us to utilize and to some degree may not, it may not be necessary to capture 

this picture in exactly this level of detail to utilize it in our understanding of the 

experience that the electron has. So, we made an approximation to this picture and so we 

finished off last class with that approximation. The approximation looks like this. 

(Refer Slide Time: 02:47) 

 

The same positions are still utilized and some 0 level is set for the energy. And, we said 

that when you come from infinity, you see 0 potential; then it there is a potential drop. 

(No Audio From: 03:05 to 03:35) 

And, so the electron actually can be approximated to be experiencing this kind of a 

potential versus position distribution inside the material. So, where in, the basic idea that 

once you get close to the material there is drop in potential is captured by this potential 

drop here. There as you get close the ionic core, there is much more significant drop in 

potential; in a region very close to the ionic core. So, those two are the important features 

of this diagram and so those two features have been captured this, in this approximation. 



And, but otherwise it is been simplified in the sense that these have been made into 

square steps; so that we have some idea of what is that width or at least we can do 

something about, we can try to work with the kind of information that this diagram 

provides. 

So, this is what we have done as an approximation to what what is actually present in a 

solid and it is a reasonable approximation. The other aspects of this diagram, this is of 

course a 1 dimensional case that I have taken. You could in principle draw a diagram 

which captures a basically the same information that I have shown here in two 

dimensions or three dimensions; the diagrams may look complicated, but the basic 

information they are providing is essentially what you are seeing in this diagram. So, 

since the information is here and most of the interaction kind of circumstances are also 

captured in this diagram, it is sufficient that we confined ourselves to this diagram and 

do our calculations with respect to this. And, the results that we will get, well in principle 

(( )) for the solid in its more complicated three-dimensional assign, alright. So, therefore, 

this is an adequate enough picture for us and we will work with this picture. 

Now, additional features that this diagram is capturing, is the fact that when we use these 

terms saying a free electron and I mentioned last class as we finished off that a free 

electron is one as strictly as something that you call a free electron. A strict definition for 

it is that it is an electron that has escaped to the solid. In other words it is an electron that 

no longer has any interaction with the solid; it is just gone from the solid. And, nearest 

that we can think of in an experimental sense is say a photo electron; so you have some 

light falling on it. So, you will see photo photo electric effect and electron leaves the 

solid. So, at that point it has been ejected from the solid; so, it is no longer is part to the 

solid. 

At that point position wise, it is actually passed this location; so, it is passed this this 

point. So, it is no longer interacting with any of the features in the solid; it is out of the 

solid. So, that is the nearly, that is the truly free electron; it has left the solid. That would 

be true also here, anything pass that position is also out of the solid; it is no longer in the 

solid, fine. So, then we are also talking of; so that is really a truly free electron. So, 

therefore, in our previous discussion that we have had, that when we have spoken of free 

electron gas and I also kept using this term so called free electron gas. The reason I kept 

saying so called, so called so many times is simply because originally that was thought 



of as the electrons which were running inside the solid were thought of as free electrons. 

So, originally the picture was that ionic cores where there, each ionic core had released 

one electron or whatever is the natural valence of that metal. And, those collective bunch 

of electrons are running around through the solid and they were being tabbed or called as 

the free electrons. 

But we just now recognize that only when an electron truly leaves the solid, thus it 

become a truly free electron. So, therefore, calling electrons which are present within a 

solid as free electron is a is a bit misleading; there are not really free, they are not free to 

go where ever they wish. They are free to go where ever they wish within the confines of 

that solid. So, there is a limit within wish they have to stay and therefore, they are not 

truly free; so, and so they have not really left the solid. So, therefore, we recognized now 

that those electrons have to be treated somewhat differently; they are not or at least they 

cannot be termed the same way. So, those are the electrons that are actually struck within 

this potential well; this potential well slightly shallow potential well which extreme 

throughout the solid, represents the potential well corresponding to the idea that electrons 

are within a solid. 

So, it represents the boundaries of the solid; this potential well represents the boundaries 

of the solid or it represents distance around around those ionic cores, around that 

collection of ionic cores that now represents the extend of a solid. If you are passed that 

point, you you say that the those ionic cores no longer are interacting with that electron. 

So, if you have passed the point, you are out of the solid; if you are within the that range 

then you are at least, the electrons are at least partially being impacted by those ionic 

cores that are present there. So, to the extent that they are even partially being impacted 

by those ionic cores present there; they are now within the solid, within the extend of the 

solid. 

So, electrons that we have previously been talking off which are those electrons released 

by the ionic cores, but are running within the confines of the solid are actually saying 

within the potential well. So, in this diagram we have to recognize that; that is what this 

potential; the first shallow step that we see here is exactly that. It is that idea and that 

concept, that the electrons which are now within this region, within this starting from 

here up to here. They are electrons which are, but are within this potential, within this 

shallow potential well. So, this is the term well is used simply because it is deep; it is 



going deep inside this material. So, in terms of depth, I mean it is not deep within the 

material, in potential sense it is it is a depth. So, therefore, the term well is used in 

keeping with some physical temperature. 

But the basic idea being it if electrons are within the shallow potential region and 

therefore, struck within this solid, they are now refer to as nearly free electrons. They are 

not truly free electrons; they are simply nearly free electrons; so, the electrons that are 

here are nearly free electrons. 

(Refer Slide Time: 09:51) 

 

So, nearly free electrons are confined to stay within the solid due to the presence of this 

small potential well; so, that is what nearly free electron is. Then, we have electrons, all 

the remaining electrons in the solid; I mentioned we have always discussed so for that we 

have only the ionic cores or the atoms to begin with, have released one electron each. 

And, therefore, now there is an electron running around through the solid plus the 

remaining electrons stay along with that ionic core or the atomic core, the core of the 

atom which now is now ionic because it is positively charged; so, we call it an ionic core. 

So, all the remaining electrons are now still stuck with that original location of that atom. 

So, in other words when I mark these out as the location of those crystal lattice so to 

speak and therefore, there is an atom at each of those location, assuming that is the 

crystal structure that we have, we are discussing. 



Then, all the electrons remaining, whatever the electrons; if there are 50 electrons, then 

49 of those electrons are stuck to this, struck to that that general location. Only one 

electron is left to run free across this solid, for every ionic core that is present. So, those 

49 electrons, all the remaining electron of that atom are actually struck to this much 

much deeper potential well. And, therefore, they are also struck to this narrow region in 

space. 

(Refer Slide Time: 11:22) 

 

So, these are called bound electrons. (No Audio From: 11:25 to 11:35). So, bound 

electrons stay within a very small confined, small region along on either side of that 

location of that ionic core. And, they are sort of struck to that ionic core; they are not free 

to run even the extent of the solid. So, this so ionic core is 1 Armstrong across let say or 

even less; say 0.8 Armstrong across or whatever some such small dimensional. So, 49 

electrons, if we assume an arbitrary number like 50 electrons in that pair atom, 49 

electron are struck within that 1 Armstrong of that location. That 1 remaining electron is 

struck to the remaining is left to run across the solid; so, that is the difference, fine. So, 

that is the in terms of a dimensional skill that is the difference. 

So, a bound electrons stays within that region that we would normally call as ion or an 

ionic core or an atom and so that is they are struck to this deep potential well. The nearly 

free electrons are struck to the extent of the solid, they are free to run across the entire 

solid, they are struck to the extent of the solid and the truly free electrons have left the 



solid, fine. This is these are the three definitions that we are using. So, that is the first 

thing we need to recognize. The second thing I will also point out something that I just 

mentioned, but I will elaborate on it. This size scale here of this order of 1 Armstrong; 

so, if the potential well we are talking of that Armstrong scale. So, that is the very very 

small dimension 10 power minus 10 meter. 

The length of the solid, the extend of the solid is something that is huge, relatively 

speaking; you can have a block of metal that is 1 meter long. So, 1 meter would be a 

distance that is this large roughly, that is pretty large distance fine. So, when we talk of a 

nearly free electron it is it is free to run this distance of the order of 1 meter, in a straight 

line it is of the order of 1 meter distance. It may take any other convoluted path, but its 

straight line distance displacement that it could have is 1 meter; that is the distance that it 

can travel. So, that is 1 meter. So, we can talk of this distance being 1 meter or you know 

half a meter or a millimetre or a centimetre; it is in that size scale, 10 power minus 1 to 

10 power minus 2 meter is the kind of size scale depending on the object that you are 

talking of it is a wire or any such thing. So, that is the thing, you could have very long 

wires also; so, we could have several meters long. 

Whereas, this bound electron is confined to a size scale of the order of 10 power minus 

10 meters; so, it is an Armstrong. So, that is a massive difference in orders of magnitude 

in the confinement level; we call this idea confinement, that is that the electron or 

whatever is the species that we are talking off in this case an electron, it has to stay 

within certain region. So, it has to stay within a certain region because of the conditions 

that it is experiencing; this idea that an electron has to stay within a certain region is 

called confinement. So, that that basic it is it is it is just straight forward description, it is 

a confinement; the electron is confined to stay within that region. 

A bound electron is confined to stay within about an Armstrong of that location. A 

nearly free electron is confined to stay within a meter of that material, just to give an 

order of magnitude (( )). A free electron, a truly free electron is really free, it can there is 

no bounds on it; it is not confined, it is free to run across the entire universe, so to speak. 

So, that is the way we look at the description; so, that is the other information we have. 

Now, the third thing that I also want to highlight here when we while we still have this 

picture, before we proceed forward; is that in all this time we have done calculation. First 

we started out with (( )) model of and we called those electrons as so called free 



electrons, did some calculation; that did work out completely acceptable to us. So, we 

changed this statistical distribution from Maxwell-Boltzmann statistics to Fermi-Dirac 

statistics and read it the calculations, we came with some term such as Fermi energy and 

we came up with a new distribution. 

Now, this is the also an energy versus position curve. So, we have energy here in this y 

axis, we have position on the x axis; this is what we have put down here. So, potential 

energy I have put here, but basically it is a energy, energy versus a position; this is what 

we have here. So, in this diagram, the first thing I want you to understand is that, I would 

like to highlight what it is that we have been doing the calculations for? So, our 

calculations were not for those, this arbitrary example I have take of 50 electrons being 

atomic number being 50, our calculation was not with respect to these 49 electrons that 

are struck in this deep potential well. We were not bothered about this 49 electron which 

were the bound electrons. So, our calculation did not really look into this, this picture we 

did not bother about. 

Why we did not bother about it? Because in principle for the properties that we are 

interested in, those are not the electrons which appear to be contributing, in any 

significant way to those properties; so, that that is reason why we did not look at it at that 

point in time. There are other phenomena for which these are these electrons also make a 

difference. So, there therefore you would have to look at that which we which we have 

not done so far; so, that was not of relevant to us. So, we did not really bother about 

these 49 electrons that were here (( )). On our calculations were with respect to that 1 one 

sorry 1 electron per a ionic core, which contributed to this electron so called electron 

cloud which was running across the extend of the solid. So, therefore, all our calculations 

where only with respect to this nearly free electrons. 

All the calculations we did so far and whatever analysis we try to do, whatever results we 

try to get, whatever prediction we try to make; there only with respect to behaviour of 

these free electrons, nearly free electrons; that is the thing that we need to, I would like to 

emphasize here. We did not read bother about the bound electrons, but they are their; it is 

not that they are not there, they are definitely their within that solid, but we did not really 

bother about that. That was not because they did not really seem to impact the property 

we were interested in. We focussed our attention on these nearly free electrons, we called 

them so called free electrons etcetera and then but we did our analysis only with respect 



to nearly free electrons. So, whatever parameters we came up with and whatever analysis 

we did was with respect to this, alright. 

So, what did we come up with? We came up with something called Fermi-energy. We 

said that you take the energy levels, from the lowest energy levels upwards and you start 

filling them up. You will reach a certain high energy level at which point in time you 

will run out of those nearly free electrons; let us keep calling them nearly free electron 

now, because that is what they are at this point. So, we will run out of this nearly free 

electrons, that highest energy level is then called the Fermi energy level. So, now with 

respect to this picture, so this is the energy and that is the direction in which it is 

increasing. 

The way this picture is drawn is based on the convention that when an electron is very 

far from solid, it is potential energy is 0 with respect to that solid. So, when it has no 

interaction, it is 0 and because it also oppositely charged with respect to those ionic cores 

that are present there. So, therefore, its potential energy 0, as you bring it closer and 

closer to that solid, its potential energy becomes more and more negative; it is or in other 

words it is decreasing in an energy, alright. So, in terms of our convention here this 

potential energy would then correspond to 0 because you are going further and further 

away from the solid; these are all negative potential energy. So, this is 0; in this energy 

scale, right. And, this is decreasing energy, alternately this is increasing energy, but it is 

increasing from a negative value all the way up to 0. 

So, in this picture when when we say that you know we are talking of energy levels of 

the nearly free electrons and we are starting from the lowest energy level possible and 

filling them up. What we are basically saying is, in this range of energy; first of all we 

recognize that this is the range of energy that we are talking about and in this range of 

energy we are talking; we are saying that from their lowest energy possible we are filling 

the electrons up. So, we are definitely going up in an energy level. So, we are adding 

energy, as we fill the electron up in the various available energy levels, we are definitely 

going up in an energy level. 

However, with respect to with respect to with with respect to this what shall I say 

coordinate system that coordinate axes that we have used here and with respect to this 

concept that far away from the solid, the potential energy is 0. These are all still negative 



energy levels, negative in energy. So, that is something that I just want to highlight so 

that you are at least aware of how that because when you do the calculation it may not 

appear that way. But when we try to put the information together in a single picture, we 

have to be sure of where each one comes with respect to the other. So, we have to know 

the relative positions of all these energies. 

Therefore, we need to pay attention to this detail; that in the normal convention of how 

these things are done, the energy of an electron far away from the ions is set at 0. And, 

therefore, all the other energies that were drawing on this picture are negative; that is 

number 1. Number 2, the nearly free electron are struck to energy values which are in 

this range with respect to this picture. This range is also still consisting of negative 

values on d with respect to the convention that faraway is 0. But within these negative 

values, you start at much lower energy levels here and you start filling it up, filling up all 

the energy levels and it then and some energy level you run out of you run out of 

electrons. 

So, we will assume that this is the energy level at which we run out of electrons, run out 

of the nearly free electrons. This is this has been attained by first taking all the states are 

available to us, filling them up one by one one by one and then we finally, run out of all 

the nearly free electrons, when you reach energy level, alright. So, therefore, this energy 

value is now what we described in our previous calculation as the Fermi energy level; so, 

which we which we edited as E subscript f. So, this position here is E subscript f; so, this 

is the Fermi energy. So, the calculations that we did previously refer to this set of 

electrons which are the nearly free electrons. In that calculations we came up with 

something called Fermi energy, that Fermi energy in this picture will show up something 

like this. 

So, that is how the information that we have, the concept that we did we have discussed 

some of our earlier classes relate to the concept that we have discussed in the last class 

and where discussing now. So, that is how they relate; so, this is the Fermi energy. In this 

also having come this far it is of interest to put in one more piece of information, before 

we proceed; which is simply that when we talk of say the photo electric effect. We talk 

of something called a work function; that is the amount of energy that is required to pull 

an electron half of that solid, that is the work function. Now, in this picture the work 

function is now the amount of energy required to pull the highest energy level; the 



electron containing the highest energy. So, in other words, in the solid whichever is the 

highest energy electron, what is the energy required for you to pull it out of the solid. 

The highest energy level electron is sitting at Fermi energy, right and to get it out of the 

solid, to make it escape from the solid you have to get it up to 0; in this scheme of thing 

this is 0 energy, this top most level is 0 energy. So, you have to get it to 0 at that point in 

time you can legitimately say that the electron has escape the solid. So, therefore, this 

difference here; that difference that difference is the work function. So, from this here is 

the work function which is typically designated or denoted by phi. So, this is the Fermi 

energy and that difference in energy between the Fermi energy and this 0, that we are 

setting for this scale; then is the work function. 

So, so this is how several of concept that we have discussed with respect to quantum 

mechanics, with respect to Fermi Dirac statistics and with respect to what a solid is, how 

the electrons in the solid are, how the ionic cores are, what is the impact of all of this on 

this picture and so on. This is how all of them come together and this is how they relate 

to each other. So, therefore, this is the picture that is useful to have in mind and it is 

useful to understand, what is the significant of all of this information, alright. So, now, 

temporarily we will conclude this particular discussion; we will now proceed to another 

discussion. Wherein we will start using these features, we understand how this picture 

came about; we will use this picture now to see what is it that we can predict about the 

material, so we will start using this picture. 

So, to do that we will actually, we will do it in two steps. First we will look at electrons 

that are truly free; in other words electrons that have escape the solid. So, that is what we 

now mean by saying truly free electrons; they are free electrons, they have escaped the 

solid. Then, we will look at electrons which are trap in a potential well. So, such as 

electrons which are trapped in this shallow potential well here or the electrons are 

trapped between deep potential well; so, both of these we will look at. So, we have to 

look at in fact 3 cases effectively, but actually strictly only two cases; either it is out of 

the material where it is completely free or it is in a potential well. 

And, we will make some classification on how deep the potential well (( )) surprise in a 

bit, but that will assist us in our calculations. But these are the two that we look at, free 

electrons and bound electrons; regardless of whether they are totally bound or they are 



just nearly free or whatever. They are deep bound in some potential well; so that is what 

we will differentiate between. Now, to look at the behaviour of those electrons, these free 

electrons and bound electrons or free electrons and nearly free electrons, look at their 

behaviour, to differentiate between their behaviour we have to actually utilize all the 

quantum mechanical principles, alright; so, which we will do. But before we do that, we 

will first do it, we will look at this this concept in this picture from much more simpler 

approach, a much more simpler approach, a much simpler approach which will still give 

us essentially the same result. 

So, what what we will do is we first look at this in a much simpler approach and then we 

will use all the quantum mechanical much, a more rigorous quantum mechanical 

approach; both of them will give us the same results. Therefore, it is acceptable to us, but 

by starting with simpler approach you will get a better feel for what it is that we have 

done, alright; so, that is what we will do. Now, the what we are trying to do? At the end 

of it we are trying to look at the behaviour of the electrons, we would like to see what 

they can do, what they cannot do and understand with with and that is with respect to the 

conditions that they are facing; may be the potential well they are facing etcetera. 

So, with respect to the conditions we want to know what can the electron do, what the 

electron cannot do; that is the basic question that we are trying to answer. So, to do that 

we would like to see what is the behaviour of the electron; so, we will look at it. So, 

quantum mechanical description says that we have a wave particle duality which is 

something that we already look at, we discussed. So, we can look at electrons as 

particles, we can also look at it look at electrons as waves. So, for the moment we will 

look at it as waves and then see what it is that we can obtain from this picture. 
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Also, we wrote the De Broglie, De Broglie wave length as of of of particle having 

momentum p as p lambda equals h; so, this is the De Broglie equation. We can rearrange 

this marginally, we will have implies p equals h by lambda and for convention sake 

impact we tend to use h by 2 pi. So, we can write this as h by 2 pi and also this as 2 pi by 

lambda. For convention sake this is done, we will see that that convention later, but 

basically, it conventionally this is the way this is done; this h by 2 pi is also designated as 

h bar. So, if you see books you will suddenly see a, sometimes you will see h bar being 

used, sometimes you will see h being used; this is how they relate, h by 2 pi is the same 

is what is called h bar. 

So, h bar is (( )) this is and this quantity here lambda 2 pi by lambda, it has the 

dimensions of 1 by length because lambda is in denominator, lambda is wave length; so, 

lambda is in the denominator. So, here p is momentum, h is Planck’s constant, lambda is 

wavelength and lambda is in the denominator. So, this quantity here has the dimension of 

1 by wavelength and is actually referred to as a wave vector. So, this is referred to as 

wave vector and there is designated as k. So, this is how they relate, when you talk of k 

your actually it is the inverses of wavelength and it is a wave vector in the sense it is 

talking of it is just not just the length of the wavelength, it is also direction of wave; so, 

therefore, that is an important quantity. 



So, when you write h bar k, it is same as writing h by lambda, because simply we divided 

by 2 pi, multiplied by 2 pi; so we have made no difference to this equation, this is 

divided by 2 pi, this is being designated as h bar, that is being designated as k. So, h by 

lambda is nothing but h bar k; so, that is the thing that we need to understand. In much of 

our analysis we will tend to keep using h bar and k. So, this is it is important to at least 

be alert to the fact that these are (( )) straight forward the associated with the quantities 

we are already accustomed to. So, p is this and we also say that you know we also write 

p is mass times velocity; energy is half m v square, right. 

So, these are the conventional definitions for momentum p, linear momentum p is mass 

times its velocity and energy is half m v square. So, if you therefore if you relate, if you 

try to relate energy and momentum, it is simply energy is m square v square by 2 m, 

right. If you do this you will get the half, you can multiply; essentially all I have done is I 

multiplied numerator and denominator by m. So, m square v square by 2 m is what this 

equation is and the numerator is now p square; because p is m v. So, therefore, v equals p 

square by 2 m. So, this is this is just a general relationship between energy momentum 

and if you see p as h bar k, this is h bar square k square by 2 m. This is just a relationship 

between energy and momentum or energy and wave vector, momentum and wave vector, 

all this relationships are there; as necessary we will utilize them. So, now we need not, 

we just need to be aware that this is this is the way we need to look at it. 

Our immediate, actually our immediate concern or our immediate task is in fact to 

understand for electrons that are present with in a solid and to the various circumstances 

that they are present within a solid or under the various circumstances that they can exist. 

What restriction are there on the wave lengths that they can adopt? So, that is the piece 

of information that we should find out; what are the restriction of the wavelengths that 

they can adopt. At this time it may seem like, I mean somewhat detail piece of 

information that we are looking for, but later as we utilize that information we will see 

why why it is of used to us. 

So, that we will see little later because it basically says, what is the energy levels that are 

allowed for the electron. We have always said that you know energy values, that we said 

that there are energy levels E 0, E 1, E 2, E 3, E 4 and so on and that is how we fill those 

electrons, right. We took the electrons, the nearly free electrons and fill them across 

those energy levels. Now, the point is we did that sort of in an arbitrary way; we assumed 



at E 0, E 1, E 2, E 3 etcetera existed with the solid. We have not really looked at how 

they may exist or why they exist, right; we have just assumed that they exist. So, why 

should they be E 0, E 1, E 2, E 3; why cannot it be continuous energy values? So, that is 

an important piece of information that we need to understand. 

First of all why is it that it energy cannot be continuous and or is or at least we are saying 

that in our system it is not continuous; we just assumed it is not continuous. We would 

like to see why it should not be continuous; that is number 1. And, when it is not 

continuous what are the values of energy that are that are those values. So, far we simply 

said E 0, E 1; what is E 0? What is E 1? What is E 2, that is not something that we have 

discussed. But they are very important features of all the calculations we have done. So, 

our task at the moment is to actually explore that region of our discussion and then 

utilize those results as we see if it, in the subsequent discussion. 

So, in other words when we would like, when I say what is that value of E 0, what is the 

value of E 1 etcetera, I would like to know and E is related to the wave vector here in this 

manner. The h bar is a constant because it is a Planck’s constant, mass of the electron is a 

constant; so, that is also constant. So, really when you say E has specific values, E 0, E 1, 

E 2, E 3 etcetera, when you say that E has specific values all we are saying is in this 

relationship the allowed values for the wave vector. Therefore, the allowed values for the 

wave length of the electron are also only specific values, right. Because h bar is a 

constant, 2 m is constant; therefore, this has only specific allowed values, this parameter 

can also only has specific allowed values and this parameter is the wave vector which is 

one by wavelength. 

Therefore, wavelength has only specific values, allowed specific values. So, we want to 

understand, why this is the case? Why is it that electrons in a solid appear to have only 

certain allowed wavelengths and then they are not allowed to have whatever the 

wavelength they wish. So, the that is the question we wish to answer and as I said strictly 

speaking, the way to answer that question is really look at the quantum mechanical 

behaviour in the quantum mechanical approach and then see what is the answer. And, we 

will do that, but we will take a much easier approach to answer that question and then 

take the quantum mechanical approach to answer that question. 
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So, let us look at this way, we are aware of waves on a string. So, I just say that we have 

an wall here and we have some string. So, this is a string, that is now attached to a wall at 

one location and it is sort of lying loose, loosely lying there, alright. So, now in this 

situation so this is wall, this is some string. When you have a string that is tied to a wall 

at one location and the other location is free to hanger on. What are the question that we 

need to answer is, what are the wavelengths that can be supported by this string? So, 

what are the wavelengths that can be supported by this string? In this particular situation 

where one side of the string is tied, the other side of the string is free to hang as wherever 

it wishes. Now, in this situation since this end of a string is free, the answer is; it can 

support any wavelength or any and all wavelengths. 

(No Audio From: 35:52 to 36:08) 

In this case, why do I say that? Because this end is free whatever wavelength is say; 

supposing I say wavelength is very large wavelength, this string will take this part of that 

wavelength. If it is a very very very short wavelength this string will take this and we 

will assume this are all sinusoidal waves. So, it can be a small wavelength, a very tiny 

wavelength or a very large wavelength. Because this end of the string is free, it can 

support that wavelength; there is no problem. It will illustrate what ever part of 

wavelength that it can with respect to this length and it take that wavelength. It is (( )) 



wavelength it will take that; which means string sort of ends here and it is part of that 

very very very large wavelength that is there, alright. 

So, a string that is tied only on one end can support any wavelength that you decide or it 

can take a shape that is consistent with any wavelength. There is no restriction on the 

wavelength that it can support, absolutely none; it is free to do whatever it wishes. You 

can take extremely tiny wavelength also it will do it, very very large wavelength also it 

will do it. Because there is no restriction on the string; especially on one end, it is free to 

do whatever it wishes. So, that is a very important statement we can make about a string 

that is in this format 

(Refer Slide Time: 37:37) 

 

Now, we will take another string. (No Audio From: 37:36 to 37:48) So, now let say that 

it is now tied between two, it is basically tiled two locations on two walls. So, wall here, 

wall here and this is a string, (No Audio From: 38:02 to 38:09) alright. Now, we ask 

ourselves exactly same question, what are the wavelengths that this string can support? 

So, that is the question that we wish to answer, what are the wavelengths that this can 

support? What we will find is that because the two ends are tied, in other words when 

you talk of a wave. 
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When we talk of a wave, we first of all we have some origin or about which this wave is 

being drawn. So, it has to start somewhere, if it is sinusoidal wave it has to reach a 

maximum, it has to come back to 0, it has go to a negative maximum, comeback to 0; 

that is the way we have to look at sinusoidal wave. So, we say it is amplitude and this is 

the with respect to time let say; time or distance, we will say distance or position, fine. 

So, it has to go to a maximum, comeback to 0, go to a negative maximum, comeback to 

0. Now, when you say that two locations are fixed. So, and they have fixed like this, they 

are fixed at the same height. 

(Refer Slide Time: 39:24) 

 



For example, let say, so they are fixed, which means that no matter what you do, this 

position has to be at 0 displacement with respect to this axis. So, the displacement of this 

position is 0; it cannot move from this position, it is struck here. Similarly, the 

displacement of this position with respect to the horizontal axis is 0; it cannot move from 

there, so it is struck there, right. So, this wave, this string can only adopt shapes, where in 

one end still remains at 0 and the other end also still remains at 0. So, if you if you place 

this constraint, the largest wavelength that it can support is one; where half the wave is 

what this difference represent. 

In other words, as you can see here half the wave, at half the wave this is at 0, this is at 0. 

So, except that is on the positive direction this is an the negative direction. So, half the 

wave will correspond to this length, which is this length here and therefore, this string 

can support in principle wave wave length which will correspond to double this length. It 

can be part of a wave, it is part of a wave; it is, it can maintain the shape consistent with 

a wave where wave length is twice what this length is, that is all, that is the largest 

wavelength it can support. Below this also it can support various wavelengths; however, 

it cannot support all wavelengths below it, because you are always placing the restriction 

that these two ends have to be at 0. So, at x equal to 0, the value of this wave should be 

0; at x equal to whatever this distance is a let say, I call this a. 

If a is the distance between the two walls, at x equal to 0 this distance displacement has 

to be 0; at x equal to a, this distance displacement or this value of this wave has to be 0. 

So, those two have always got to be true. So, therefore, what will happen you can only, if 

you look at this those two restrictions what it means is you can have a wave that look 

like this or you can a wave that looks the next smallest wave that you can hold, will be 1 

where it will look like this. So, in other word a can either by lambda by 2, in which case 

this is the lambda; a can either be lambda by 2 or it can be lambda, in other words 2 

lambda by 2 or 3 lambda by 2, 3 lambda by 2 or 4 lambda by 2 etcetera. It can only be n 

lambda by 2. So, therefore, n lambda by 2 equals a; these are the only values of lambda 

that are allowed. 

So, I have just done some calculation, let us understand significance of the calculation. 

The calculation says that is you tie a string on two ends, you are now faced with a 

situation where the wave shapes that the string can demonstrate are once where the two 

ends are fixed. The only waves those two ends can be fixed are when they are at one is at 



0, the other one is either at lambda by 2 or at 2 lambda by 2 or at 3 lambda by 2 etcetera. 

It has to be some integral lambda by 2; at lambda by 2 it reaches 0, right. Since, it is at 

since it reaches 0 at lambda by 2, only at subsequent if you add on half a wavelength, 

half a wavelength, half a wavelength etcetera; only then you will keep coming back to 

that 0 position at the other end, given that one end is fixed. 

So, but you still have only a total length of a. So, when I, so when I am adding up 

lambda by 2 the total length has still got to be a. You cannot so, you can in other words 

the wavelengths can getting smaller and smaller and smaller, such that as you go through 

a entire wave at some lambda by 2, you arrive back at this point. You start with simply 

lambda by 2 arriving back at this point, this is lambda by 2 plus lambda by 2. So, now 2 

lambda by 2 you arrive back at this point or you can do 3 lambda by 2 which will bring 

you bring back to this point, 4 lambda by 2 you will come back to this point and so on. 

So, you can keep on doing this such that the total number of half wavelengths that are 

present within this region is some integral value; some integer value, some 24 lambda by 

2, 36 lambda by 2, whatever. So, some integer value of lambda by 2 is what this the set 

of constraints permits on this string. So, we will look at the, we will now put this 

information down. 
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So, we will come back here we have a free string, implies no restriction on lambda that 

can be supported, right. For a free string there has there are no restriction on the value of 



lambda that can be supported; that is what our diagram showed us. So, that there is no 

restriction on the value of lambda it can support, any value of lambda that can be taken. 

String fixed at two ends, in our case a free string also (( )) or fixed only at one end. (No 

Audio From: 44:55 to 45:04) A free string or fixed or something that is fixed only at one 

end, no restriction on the value of lambda that can be supported. A string that is fixed at 

both ends, a string that is fixed at both ends we find that first of all, not all values of 

lambda are supported. (No Audio From: 45:29 to 45:38) That itself is a very important 

piece of information. 

The fact that not all values of lambda can be supported; right there this situation is 

different from this situation. In the top here any value of lambda can be supported, first 

thing we find out is that when you when you tied on both ends of the string, not all 

values of lambda can be supported. So, that is the very first piece of information that you 

find. Over and above this information we also realize that we are able to find out the 

condition for the lambda for it to be supported by the string only; so, that is number 1. 

So, number 2, only values of lambda such that, n lambda by 2 equals a which is the 

distance within which the string is confined can be supported. 

So, we see immediately we understand that there is a difference in the two cases that we 

have just looked at. So, this is, put it down here because you are going to relate this 

information here; that is the reason why have put it down along with this information. 

We realize that not all values of wavelength can be supported and we realize that it is not 

just that more specifically only by n lambda by 2 is equal to a which is that distance 

within that range is confined; only those values of lambda corresponding to this can be 

supported. So, you can write this other way; therefore, lambda equals 2 a by n, those are 

the values of lambda that are permitted. So, that is the restriction that we have now 

recognized in this situation. 

Now, if we look at our equation here, we have energy and we have wave vector k which 

is simply 2 pi by lambda. So, so we already have a relations given that there is a wave 

given that there is a wave, we have a relationship between the energy of that wave and 

the wave length of that wave; we have that relationship. So, that is an independent 

relationship, it simply says that this is the wavelength, this is the energy; that is all it 

says. What we are trying to look at is that given our system, we find that we have a 

certain set of possibilities. We have a possibility were string is free or at least we tied 



only at one end; which means it can adopt any value of wavelength. So, there are no 

restrictions on the value of wavelength for this string. 

If you now take that information and imply it on this equation, where E equals h bar 

square k square by 2 m. The consequent is that we find that, since there is no restriction 

on the value of lambda, that any value of lambda can be accepted or sustained by that 

string; there is no value, there is no restriction on the value of k which is simply 2 pi by 

lambda, alright. So, since there is no restriction on the value of k which is 2 pi by lambda 

therefore, there is no restriction on the value of energy. Because in other words 

continuous values of energy can all be demonstrated by that system. So, the in a for a 

case of a string that is tied only on one end, all values of lambda are allowed. Therefore, 

all values of k which is equal to 2 pi by lambda are allowed; therefore, all values of 

energy which are directly which is directly related to k by this equation, E equal to h bar 

square k square by 2 m, all values of energy are permitted. There is no restriction on the 

value of energy, that can be demonstrated by a system which is string which is tied only 

at one end. 
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So, that is that is the significant of discussion that we have had E equals h bar square k 

square by 2 m. So, in our first case of a string that is tied only at one end, all values of k 

are permitted; therefore, all values of energy are permitted. Therefore, if you make a plot 

or if you list all the values of energy that can be shown by a string tied at only one end, 



you will find that all the points are continuous; I mean there is no gap, any it is just a 

continuous set of energy values. There is no, you do not have to jump between energy 

values; it is all continuous, all energy values are permitted by the system. 

On the other hand, when you look at a string that is tied at both ends, a string that is tied 

at both ends we find that, immediately we find that not all values of lambda are permitted 

in that system. Because that is that system cannot consistently show you all those values 

of lambda, subject to these two constraints. Only specific values of wavelength are 

permitted, which is related to the distance with in which that string is confined. So, if a is 

that distance within which that string is confined, the values of lambda that are permitted 

are such that n lambda by 2 equals a for n is any integer 1, 2, 3, 4, 5, 6; all the integers 

you can use. So, only values of lambda that are permitted are 2 a by n, if you just 

rearrange this. 

So therefore, those are specific values, those are not continuous values. So, when I say 2 

a by n you cannot have 2.1 a by n, you cannot have; you cannot have 2.1 a by n. You can 

only have 2 a by n and those n values can be 1, 2, 3, 4 that is all you can have. So, so 

therefore, you cannot have yeah so you cannot have 2 a by n, I mean you cannot have 2 a 

by 1.1 n that you cannot have, right; so, all those things you cannot have. n has to be an 

integer; so, that is the bottom line, n has to be an integer. So, only specific values of 

wavelength are allowed and so, you can make the table you can make the table of the 

specific values of wavelength that are allowed. What would be those wavelengths? It 

will be 2 a by n equals 1; so 2 a, 2 a by 2, 2 a by 3, 2 a by 4, 2 a by 5 and so on and a is 

some fixed value, a is some distance. It could be 1 meter, it could be half a meter, it 

could be 1 centimetre, it could be an Armstrong, whatever it is, but it is the fixed value. 

So, it is a fixed value and it has the units of length. So, within which that string has been 

confined. 

So, now that is the fixed value; so, the only values of lambda that are allowed are two 

times that length divided by an integer. So, 2 a by 1, 2 a by 2, 2 a by 3 such are those 

values that are now permitted in the system. And, those are discrete values; so, you can 

actually write a table of those values. For each of those values you will have a certain 

energy given by this equation. So, for every value of wavelength that is permitted, you 

can write 2 pi by lambda; therefore, there is a specific k that is permitted, k vector, wave 

vector that is permitted; therefore, there is a very specific value of energy that is 



permitted. The next value of energy that was permitted will not necessary be adjacent to 

this energy level, you have to find out the next value of lambda in your table. 

So, first value is 2 a by 1; so therefore, it is simply 2 a, for that you have a energy value. 

The next value of that half wavelength is permitted is 2 a by 2. So, for which you will 

have a another energy value; in between there is no energy value that is permitted. You 

have the first energy level, the next energy level, in between there is no energy level that 

is permitted. The same thing will happen happen next, again go to 2 a by 3, you will have 

a particular value of energy. Once again between what you got for 2 a by 2 and 2 a by 3, 

in between no energy values are permitted. 

So, the important idea that we have to take from this class, the very important idea that 

we have taken from this class is that in our analogy of string that is being tied to location. 

In other words, a string that is confined, the confinement of the string causes a situation 

that all energy values cannot now be demonstrated by that system; only discrete energy 

values can be demonstrated by that system. In other words, the most important idea that 

we will we have to take from this class is that confinement leads to quantization. 

(Refer Slide Time: 53:57) 

 

So, we will write that down, we will write it here. 

(No Audio From: 53:54 to 54:12) 



The idea that is only specific energy values are permitted is what this quantization is all 

about. That you have a certain energy value; if you leave it, the next energy value is a is 

a some distinct step away from it. It is not immediately next to it, it is some distinct step 

away based on the allowed wave, next allowed wavelength. So, that idea is quantization; 

you have one value, then another value, then another value and so on. Those are discrete 

values and this is quantization; that has come about only because you have confined the 

string, to stay between those two locations, tied between those two locations. Because it 

is confined, this is this is occurred; when it is not confined, you have continuous values, 

you do not have quantization. So, that is the difference between free string and a string 

that is tied in two locations. 

So, confinement leads to quantization. So, this is the most important idea that we have 

for this class which we have discussed. We will halt here, in the next class we will 

actually look as I said we have done this with a simplified analogy of a string. We will 

actually do it in the in a more puristic quantum mechanical way. We will look at the 

quantum mechanical approach of handling, exactly the same problem and see whether 

that result that comes out of it actually is similar to, we will find that is in fact identical 

to this special that we have obtained here. And therefore, this picture that we have used 

is actually useful for us because it is giving us result, that is sense reasonable with 

respect to what we have looking at. So, we will halt here, we will look at we have 

concluded that confinement leads to quantization; we will explore this idea little bit more 

in the next class and then take it forward from there. Thank you. 


