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Features of the Fermi-Dirac Distribution Function 
 

Hello and welcome to this the 19 th lecture in this physics of materials course that we are 

going through. In the last couple of classes we have derived the Fermi-Dirac statistics we 

have look at the basis for which we why we needed to drive it and then we went hide and 

looked at the derivation Fermi-Dirac statistical distribution. So, what we will do in this 

class is we have arrived at the expression for the Fermi-Dirac statistical distribution. So, 

what we will do in the classes to look at that expression that we have arrived at and try to 

understand what are the implications of that expression, what does that expression imply, 

what is sort of taken into account there, what are some feature of that expression that we 

can later look out for. 

And also get an understanding of how it relates to everything else that we have looked at 

earlier on. And in what ways we have come up with some additional aspects that we are 

capturing here which perhaps we have not capture earlier on. So, this is the general 

outlook of what we will examine through this class. So, we will begin by rewriting this 

Fermi-Dirac expression and then we will start our discussion from there. 



(Refer Slide Time: 01:40) 

 

So, we designate the Fermi-Dirac statistical distribution by using the letter f so, f of E i 

equivalent is given by 1 by 1 plus e power E i minus E f by k B T so, this is the 

expression that we have come up with. So, to put it inverse, this is the probability of 

occupancy of a state at energy level E i and it is being given by this expression, we have 

1 in the numerator and 1 plus e power this E i is energy level that were looking at. So, 

therefore, as you evaluate this expression, the value of E i can change, for every energy 

level if going from zero energy to let us say, some very high energy level. 

For every energy level that you can select here to check for its probability of occupancy 

that energy level that show up here E i. Then we have minus E f, E subscript f which at 

the moment we have not really discussed in any grade detail except to say that based on 

how we can derived it, this value of E f is a constant for that the system. It is going to 

vary from system to system based on what we are looking at, that for a given system this 

is a constant, this E f is a constant which we can utilize that point in time. So, in this E i 

minus E f, E f is a constant, E i is something that we can change for all calculation 

purposes. k B here in the denominator is the Boltzmann constant so, by definition it is a 

constant so, that is nothing that that is nothing that we can do it is a constant that. 

And T is the absolute temperature so, in other words and that of course, is a variable so 

to speak, in the sense that when we evaluate this expression, we will do show at a 

specific temperature. So, in other words we will specify the temperature and for that 



specific temperature we can evaluate this expression for a variety of energy levels. Then 

you can change the temperature and I am say; let say we are starting at absolute 0, at 

absolute 0 we can evaluate this expression or as the temperature tense to absolute 0 we 

can evaluate this expression. 

And then we will have something that we will see is behaviour of this expression. then 

we can raise the temperature and at higher temperature, we can again evaluate this 

expression and see how the behaviour as mention. So, this is the general what should I 

say, the general way this expression works out in terms of what is it that we can change 

and what is it that remains constant. And therefore, in what contacts we can actually 

evaluate this expression and expect to see some data corresponding to that expression. 

So, so, this is the Fermi-Dirac distribution function. 

(No Audio From: 04:31 to 04:44) So, this is the; and it of course, credited to two people 

and have contributed towards coming up this function. So, I will just briefly we will also 

now we will make a plot of let say as the temperature tense towards absolute zero, we 

will make a plot of this function for variety of energy level. 

(Refer Slide Time: 05:07) 

 

So, on the y axis we have f of E so, at different energy levels. And this is the energy (No 

Audio From: 05:15 to 05:22) so, on the x axis we have energy, a variety of energy levels 

that we can look at. On the y axis we have that function Fermi-Dirac distribution 

function for that for each corresponding value energy that we are going to look at. I 



mentioned in this expression that there is a constant which is; which we have not really 

looked at in great details so far, but this constant is some energy value. Some particular 

energy value is what this constant and it remain fixed for this system. 

So, in this plot we will just mark up one location of energy and I have just arbitrarily 

marked it up here, it is just schematic of what we are going to get. So, I will just 

arbitrarily mark a location on the x axis and say that for some for hypothetical system 

that we are examining that happens to be the constant value of energy that corresponds 

this constant here E f so, I will mark that appear as E f. So, we have mark this constant E 

f here, all the other energy values are available for us I mean these are the energy values 

available for us to do something and look at this expression. 

Now, I clearly given that there is a certain value for E f, there are values for energy that 

are less than E f and then there are values of energy greater than E f and of course, there 

is a value of energy equal to E f. So, E as we look at, the energy value that we look up 

here can take all of those values. So, at or at least you can evaluate this function, this 

function can be evaluate for energy values that are less than E f, equal to E f and greater 

than E f. So, this entire range of energy values we can evaluate, fine. So, what we will do 

is, we will look at this expression see what is work out to as you evaluated for different 

values of energy. 

And we are specifically looking at a situation where this temperature is tending to zero. 

So, we are looking at situation where the temperature is very nearly absolute zero of in 

our scale of temperature, fine. So, when you had E minus E f and energy so, we will start 

from or; from the original forward so, for all these values of energy before you reach E f, 

E is less than E f. So therefore, if you write E minus E f that is a negative quantity, it is a 

negative quantity divided by k B T where T is tending towards 0. So therefore, this 

quantity here so, e power E i minus E f by k B T tense towards 0 as tense towards 0 or 

yeah tense towards 0 when E less than E f and T tense to 0. 

E less than E f means, this is a negative quantity, negative quantity divided by a value 

that is approaching 0 would mean, this is tending towards negative infinity. So, negative 

infinity means e power negative infinity will make it tend towards 0. So, E minus E f by 

k B T will tending towards negative infinity when E is less than E f and T tense to 0 and 

therefore, this quantity is e power minus infinity is tending towards e power minus 



infinity. So, that is 1 by e power infinity which is 0. So, therefore, this quantity tending 

towards 0, then E is less than E f and therefore and when T is tending towards 0. So, 

under this conditions, this is tending towards 0 so, in your expression here, this is tending 

towards 0. So, in this expression this term tense towards 0 as long as the energy value E i 

is less than E f and temperature is tending towards 0. 

So, in the limiting case when temperature is absolute 0, we will say that this is negative 

infinity and therefore, I am sorry this exponential term up here with 1 is tending towards 

negative infinity therefore; this entire term here is tending towards 0. Therefore, the 

value of this function evaluates to 1, because this whole term tense; become 0. So, if you 

look at, if I just draw a line here a dotted line corresponding to the value of E f and on 

the y axis I have 0, I have let us say 0.5 and 1. So, when E is less than E f, f of E is equal 

to 1 at T equal to absolute 0. 

So, at for; and this is going to be true for all energy values regardless of energy value that 

you pick here, as long as the energy value is less than E f, this description that I have just 

given you will whole true. That it is going to become minus infinity and therefore this 

term going become 0, therefore this going to become 1. So, for all values of energy less 

than E f, the value of this function going to be 1 when temperature is absolute 0. So, 

therefore, this function will show behaviour, it puts like this till E equal to E f. So, till the 

temperature; I am sorry till energy level E f is attain, you are going to have this function 

evaluate to 1 for all energy values less than E equal to E f at temperature being equal to 

absolute 0. 

So, now we will look at energy values which are greater than E f. So, greater than E f 

you have energy values that are greater than the value of E f which means the numerator 

here now positive, divided by a value that is 0. So, therefore, this value of here tense to 

plus infinity and therefore, this is tense to plus infinity therefore, this whole function 

tense to 0. So, e power E i minus E f by k B T tense to plus infinity. 

(No Audio From: 11:39 to 11:56) 

We have seen these two cases here. So this is it is tending to 0 when E is less than E f 

and tense to plus infinity when E is greater than E f and when it is 0 the function 

evaluates to 1, when it becomes infinity the functions evaluate to 0. So therefore, for all 

energy values greater than E equal to E f, the functions simply coincide to x axis and at E 



equal to E f we sort of have discontinuous change going from here to here. So, the 

function in fact shows your behaviour so, this is at T equal to we just mark the 

temperature here. (No Audio From: 12:37 to 12:44) So, at T equal to 0 Kelvin, we have 

seen this behaviour. 

We see that the function is simply 1 till E equals E f it drops to 0 at E equal to E f or 

changes from 1 to 0 when you are at E equal to E f and then remains 0 beyond this value 

of E f. So, this is the behaviour of the Fermi-Dirac distribution function. Now, in fact if 

you evaluate this for variety of different temperatures, you will feel; you will find that 

we have now evaluated it for T equal to 0 Kelvin. We can evaluate this same function for 

variety of different temperatures, what you will see is that as the temperature increases, 

you will see a behaviour that looks like this. 

(No Audio From: 13:28 to 13:54) 

So, this is some temperature T 1 greater than I call this T 0 which is 0 Kelvin greater 

than T 0 and this is some temperature T 2 which is greater than T 1 so, as we get higher 

and higher temperatures, you see change in this function. Basically in this distribution 

what it shows you is that it is equal to 1 up to some energy level, after that it begins to 

drop from 1 and gradually drops to 0. Whereas at 0 Kelvin it abruptly drops to 0, the 

transformation from 1 to 0 is more gradual if you go to higher and higher temperature so, 

that is the behaviour that you see for this transformation as change the temperature. So, 

this is how you see this Fermi-Dirac distribution function and the way in which it 

behaves. 

Now, let us get an understanding of this E f, because it is constant I just mentioned to as 

a constant and we will see what it represents. We need to keep in mind that when we 

looked at the Fermi-Dirac distribution when we started at whole expression on Fermi-

Dirac distribution, we basically said that we are now looking at situation where first of 

all at you have specific energy levels and each of those energy levels there is a fixed 

number of states. So, that was a constraint which had not been in our discussion before a 

prior to when we started Fermi-Dirac distribution process so, are the function discussion 

of the Fermi-Dirac function. Before we started this process we never placed any 

restriction on the number of states available at on energy level. 



Once; one of the fundamental aspects of the whole discussion regarding the Fermi-Dirac 

distribution function was this idea that at a given energy level we do not have infinite 

states, we have a finite number of states. And therefore, the distribution process has to 

some in some manner keep track of for accommodate these number of states. More 

specifically we also said that poly exclusion principle applies and therefore, not only we 

have finite set of states, we also have a limit on the number of particles we can place on 

those states. Even prior to our discussion on the Fermi-Dirac distribution function, we 

might have considered a case where number of states was finite, but there was no 

restriction on the number of particle we could place on those states. 

So, even if you had one states, you could place million particles on that states. Whereas, 

now we have this discussion has progress to appoint where we are saying the situation 

where considering or examining is one where we have a finite number of states at given 

energy level and we have this restriction we can only put a finite number of particles on 

those number of states subject to the policy exclusion principle so. In fact, if the state is 

has all the details in its all the quantum numbers specified for the E f for each state you 

can. In fact, put maximum number 1 particles for that state. So, we have those 

restrictions shown in to our discussion we entire distribution the derivation had this a 

very fundamental idea and which we solve in the last couple of classes. 

So, what it means that if you actually arrange the energy levels and in realistic situation 

were we are saying that particles in generally the nature tense towards energy levels that 

it can attain. If you arrange the energy levels in increasing order of energy and you take a 

set of particles when you try to fill up this energy level, what will happened is that, we 

will first fill up the lowest set of energy level. So, let us let us consider this discussion to 

be occurring at 0 Kelvin which corresponds to this straight line curve; straight line that 

have drawn here; set of straight lines that have drawn here. So, it comes up to E equal to 

E f drops again goes to 0; space at 0. So, at 0 Kelvin you take all the energy levels that 

are available in the system, the lowest energy level and subsequently increasing higher 

number of energy levels. 

And you start filling up the particles subject to the constraints that are prevalent in the 

Fermi-Dirac distribution function which is that finite number of particles should go on 

the states and not more than 1 particle per state. So, when you do this; obviously, since 

you have a finite set of states, if once it starts filling up one particle per state when you 



fill up all the states you have done, you cannot even though make a lot of additional 

particles available with you. You cannot add anymore particles from the lowest energy 

level. So, E 0 if you say as the lowest energy level, let say hypothetically it has 50 states 

and we put place the restriction that you can put only one particle per state. 

Now, once you put 50 particles at E 0, you are even if you have million particles still left 

that you are; that are available in the system that you can done place at energy level, you 

do not have the option of placing any more of those particles in those 50 states. Once 

those you 50 states are fill your force go to the next higher energy level please remember 

this is a 0 Kelvin. Conventionally, we say at 0 Kelvin every think at lowest energy level 

possible, that entire system is in it is ground state and we have had a tendency to think 

the ground state means energy level possible. Immediately our discussion shows as that 

the moment we assume that the system is following Fermi-Dirac statistics, the moment 

we say that the system consist of particles that are Fermions which are following Fermi-

Dirac statistics. 

We are immediately face the situation that the ground state does not imply that all the 

particles that sitting at the lowest possible energy level in the system. What immediately 

happens is that, there is a finite number of states they get fill first, then you go to the next 

higher energy level E 1 that will also have a certain finite number of energy states, they 

also get filled up. You go to E 2, you filled at state E 2, go to E 3 filled up state E 3 and 

continue upwards in energy level. So, you keep filling, you go the next higher and next 

higher energy levels and fill all the state available at those energy levels. Steadily you fill 

those states and you go higher and higher and higher energy levels, this is at absolute 

itself. 

So, we have not; we do not have the option of trying to take all the particles and placing 

them at E 0, simply because they are Fermions and they will themselves not permit you 

to do so. So therefore, you are cannot fix the molarity 0, you are force to use higher and 

higher temperature even though temperature is absolute 0. So, when you do this, you also 

recognize that in our typical system let say in the kind of system that we are talking of 

which is set of free electrons present in a solid. The number of electrons we may have is 

a large number, it may be some 10 power 23 electrons or whatever, where if you looking 

at 10 power 28 electrons per unit volume per metre cube or ((.)) number. It is a large 



number that is true, but it is not infinite, it is also finite number so, it is a large, but finite 

number. 

So, when you do this process of filling up states steadily from a lowest energy level and 

proceeding to have a higher and higher energy levels. You will eventually reach one 

energy level which we are; which will just for the moment designate as E n some as we 

start from E 0, E1, E 2, E 3, E 4 we reach some higher energy level E n E subscript n 

where the last set of particles are available in the system, fill the state that are available 

in that system at E n. At energy level E n also there is a finite number of states, the last 

set of particles that you have available in the system, last set of Fermions we have 

available in the system fill that set of states. Once you have filled those set of states you 

have now run out of particles. 

So, the system may have capability to go to even higher energy levels after E n, E n plus 

1, E n plus 2, E n plus 3 energy levels may become available; may be available, may be 

present in the system may be defined for system, but you have now run out of particles. 

So, therefore, all the energy levels above E n will now remain empty. So, you have seen 

that if you take a set of Fermions and we start filling up energy levels, we will go from E 

0 up to some number E n energy level E n where you now run out of all particles. So, 

initially we started E 0 you run out of states, you go to E 1 you run out of states, you go 

to E 2 run out of states continue this process till you reach E n where as you run out of 

states you also run out of particles, one important is you run out of particles. 

So, any energy level above E n, there are no particles available to fill those states so, they 

all remain empty. So, this highest energy level that you fill which I have now described 

to you as E subscript n that highest energy level that you fill at temperature being equal 

to absolute 0 at temperature that highest energy level is now this value E f. So, E n which 

used general descriptive number so, that you can just follow this series that we did E 0, E 

1, E 2, E 3, E 4 that is actually this value E f. So, up to the energy level E f, all particles; 

all the states that are available to you get filled, completely filled at 0 Kelvin. Please 

remember, this is at 0 Kelvin this discussion; this description I am giving you at is at 0 

Kelvin. 

So, at 0 Kelvin up to the energy level E f, the states get steadily filled therefore, since all 

of those states are completely filled the probability of occupancy of state is 1. Because if 



you have 50 states and you have 50 particles sitting in those states with the rule, that can 

be only one particle per state. It means that you have guaranteeing that every state is 

completely filled that is the meaning in saying that you have 50 states and have 50 

particles and and the that is only way you can be consistent with that description that 

have 50 states 50 particles and you are permitting only one particles therefore, every 

state has to have one particle. Therefore, if you looking at the number of particles by 

number of states, you have 50 by 50 which is n i by s i and therefore, that is equal to 1. 

So, you have 50 particles 50 states all of them occupied, probability of occupancy is 1. 

So therefore, at the lowest energy level that you can go, whatever is the number of states 

you have you have that many number of particles therefore, probability of occupancy is 

1. You go the next so, if you mark up here E 0, E 1, E 2, E 3, E 4 and so on, for every 

one of them you go to E 1 if the situation is exactly the same. You have a certain number 

of states, you have exactly that many number of particles and therefore, probability of 

occupancy is 1. E 2 it is a same thing, E 3 it is a same thing, you continue all the way up 

to E f, up to that whatever is the number of states available at those energy levels they 

are all completely full. 

At E f we sort of have a discontinuous change going from 1 to 0 you know it abruptly 

changes from 1 to 0 and then from there on states of 0. So, at E f you have used at the 

first time you actually run out of particles, you have certain number of states certainly 

run out of particles you fill those so, last energy level that you fill is then therefore, this E 

f. Above E f, you have states available in the system which can; which may be defined 

for a system that there are no further particles available to fill those states. Therefore, 

whatever be the number of states let say there are 38 states and this giving us some 

arbitrary number let say that number 38 states possible above this energy level at the first 

energy level that is available above this E f. 

Since there are 0 particles fill those 38 states if probability of occupancy is 0 so, 

therefore the probability abruptly drops from value of 1 to value of 0 at temperature 

being equal to 0 Kelvin. So therefore, this is a very clear is very clearly visible how this 

function actually results in this distribution then temperature is equal to 0 Kelvin. And 

there also able to see the meaning of this value E f this E subscript f is the highest energy 

level that is occupied in a collection of Fermions at 0 Kelvin, this E subscript f is called 

the Fermi energy. 



(Refer Slide Time: 26:04) 

 

So, E subscript f is refer to as the Fermi energy, Fermi energy is defined there are 

actually two definitions for it, the first definition is at 0 Kelvin. At 0 Kelvin, it is the 

highest energies level that is occupied, the highest energy level that is occupied at 0 

Kelvin is defined as the Fermi energy. So; see, even though we need to keep this in 

mind, one of the things we need to understand about couple more aspect of more 

distribution like to point out. The first is that since we have a finite number of states, we 

are forced used energy levels above the lowest energy level available in the system so, 

that is point number 1. 

At the same time, still nature would like to occupy the lowest energy configuration that, 

that is possible. Therefore, it tries to keep filling all the states as much as possible at the 

lowest energy level that it is possible to fill. So, only when you reach E f and we first run 

out of particles, all the particles occupy only up to E f, they do not occupy any energy 

level above E f at 0 Kelvin. So, in the ground state of set of Fermions you find this kind 

of distribution, ground states being state of lowest energy that is possible to attained for 

that set of Fermions and the; and therefore at 0 Kelvin. 

In the ground state we find this distribution that continuously it occupies all the states 

available to it till the; till it runs out of state and runs out of particles and therefore, 

actually runs out of particles more specifically. And then, it occupies as many states as 

particles and then finally runs out of particles and that energy value is Fermi energy 



value. So, the Fermi energy is therefore, defined as the highest energy level that is 

occupied in the ground state therefore, the highest energy level that is occupied when T 

is equal to absolute 0. So, the highest energy level that is occupied in a set of Fermions 

as the temperature is absolute 0 is then described as the Fermi energy level. 

So, therefore, if you take set of electrons and you say that electrons in a solid I am going 

to behave like Fermions, you will find that this is true, you will find that they are going 

to have a set of energy levels available to them. And at absolute 0 they will fill all of the 

states of up to a certain high value of energy relatively high value of energy and that 

point you run out of electrons and that will then become the Fermi energy level. 

Incidentally, for a typical metal this is of the order of 2.5 electron volts so, of that order 

you are looking at values. 

(Refer Slide Time: 28:36) 

 

So, we will look at that little later, but that is the kind of number that we are looking at 

so, that is the first thing. The other aspect I want to alert you to now which we will 

discuss little later in greater detail, but I will simply alert alert you to this aspect right 

now is that, is not that this is function f of E is the probability of occupancy. It is not; it 

in fact does not tell you anything about a number of states available at that energy level 

these are two different pieces of information. Even in the description that I give you so 

far, I kept mentioning that may be there are 50 states at some energy level and all the 50 

states are full, the next energy level may have some other number of states and so on. 



The point you remember is that as you change the energy level, the number of states that 

exist in the system may be different. This diagram gives you if you are not careful, it 

gives you the misleading information or misleading idea that perhaps the number of 

states is the same at all the energy levels, that is, not the case. Because this is got this is 

not this function does not talk say anything about the number of states, it nearly tells you 

about the probability of occupancy of those states. More specifically, let us as realistic 

system might have I mean hypothetical system may have say 50 states at E 0, may have 

75 states at E 1, may have 110 states at E 2, may have 150 states at E 3 and so on. 

So, the number of states available at E 0, E 1, E 2, E 3, E 4 etcetera need not be the same 

and are typically not the same. In fact, in general system it is not going to be the same, 

those numbers are not going to be the same there is a certain pattern for those numbers, 

there is a certain function which tells us what those numbers are which will look at later. 

So, this plot here thus not tell you any information about the number of states available 

in the system at any given energy level, it only tells you probability of occupancy of 

those states. What is the difference? It simply says, I just said here example let say that E 

0 has 50 states, probability of occupancy is 1, it means there are 50 states and all 50 state 

are full that is all it says. 

The next energy level E 1 may have 70 states, again probability of occupancy is 1, that 

means 70 particles are on those states and therefore, those states are full. The next one 

may have 100, 100 states available to you, next energy level all 100 are full, because 

probability of occupancy is 1. So, you have 50, 70 and 100 particles continuously filling 

those 50, 70 and 100 states that are available to you. So, probability of occupancy is 1 

that is the meaning of this function, it does not tell you anything about number of states. 

If there are 5 states and probability of occupancy is 1 it means there are 5 particles there, 

if there are 1500 states and probability of occupancy is 1 there are 1500 particles there. 

So, at every energy level, there is an additional piece of information not captured on this 

plot which is the number of states available to you at that energy level, that is an 

information there is not been captured here. So, that is an information we will add on 

later and that is the more complete picture of what is there in the solid, this is only the 

probability of occupancy. So, you need to know the probability of occupancy and the 

number of states at that energy level to taken together that tells you the actual 

distribution of electrons in that system. So that is; so, the full information is not yet here 



so, that is something we should be allowed to, this is simply the probability of 

occupancy. 

So, when you continue in this form, we know there are 50 states and 70 states and 100 

states 1500 states whatever, you may eventually reach a point there are I am just point 

taking some arbitrary value of energy just above E f. And let say there are 3000 states 

available at energy level just above E f, E f plus 1 whatever, if we spoke of E 0, E 1, E 2, 

E n, E n is E f E n plus 1. So, the first energy level above Fermi energy level let say 

hypothetically that there are 3500 states, probability of occupancy 0 it means there are 0 

particles sitting in those 3500 states. All those 3500 states are empty fine that is 

information so, that is how the actual distribution in the system is going to be. 

So, the number of states available at each energy level is a separate piece of information 

which we have not incorporated in to this plot, you only incorporated regardless of the 

number of states available at that energy level, what is the probability of occupancy of 

those states? Is it 50 percent? Is it 100 percent? Is it 90 percent? That is the information 

that is available here. We will do the complete picture little later, because we need to do 

some more calculations to get them, but this is the very important piece of the overall 

picture so, that is by we are focussed on it. So, this is what it is. 

So, we are look very carefully at what happens at 0 Kelvin. At higher temperature what 

you see is that, you see that certain number of states very closed to the Fermi energy 

level, the probability of occupancy at decreases from 1 all right. And certain number of 

states which are at energy level above E f actually have a probability of occupancy 

greater than 0 compare to the what you see at the 0 Kelvin. So, if you actually make a 

plot of these slightly higher temperatures and then you do this look at E 1; E minus E f 

and then you do this calculation. When; obviously, when E is very small, this will still 

follow the same kind of behaviour that we described as E gets very closed to E f on 

either side of E f, it shows you slightly different behaviour, because this T is not exactly 

0 T is actually finitely above 0 Kelvin. 

And then so, this is very small number, but it is a nonzero number so, when you have a 

small number here and you have a small number here, this is not going to evaluate to 

either plus infinity or minus infinity. So, you are going to have some finite numbers 

there, because you are going to have some finite numbers here, this is also going to have 



numbers between 0 and 1 that is how this function going to change. And as the 

temperature changes to little higher and higher values that effect of that range of energy 

values over which we see this gradual transformation from 1 to 0 is going to increase. 

So, you see that at small temperature just above T 0, you see that the energy values over 

which this goes from 0 to 1 is actually here so, this energy to this energy. So, in this 

range, the values are going from 1 to 0 for example here. 

If we go to the slightly higher temperature, it goes from 1 to 0 this range of energy values 

so, in this slightly larger range values the transformation goes from 1 to 0. So, what it 

means is that, if you compare with respect to E f at values of energy which are less than 

E f you have a probability of occupancy that is little less than 1. And at values of energy 

greater than E f, you have probability of occupancy greater than 0. So, this is the kind of 

distribution that you see for coming out of the Fermi-Dirac statistics as a function of 

temperature now. So, as a function of we have seen as a function of energy, these 

different curve for function of different temperature so, that is what we are seeing. 

Again, even in these additional cases that I spoke of which is at T 1 and T 2, this picture 

is not telling you anything about the number of states. I will just arbitrarily state that you 

know let say this is let say this is 0.8. So, all it says that, at this energy level the 

probability of occupancy is 0.8. So, if there are 100 states available at that energy level 

there are 80 particles sitting those 100 states, that is basically all the information that is 

captured in this plot. So, now, I said that at temperature equal to 0 Kelvin, the highest 

energy levels state that is occupied is the Fermi energy level. 
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So, Fermi energy we will define. 

(No Audio From: 36:29 to 36:55) 

If the highest occupied energy level at 0 Kelvin and at the same time or the other 

description at temperature greater than 0 Kelvin at any temperature greater than 0 Kelvin 

then energy is equal to E f, E equals E f. If we look at this plot here when T is not equal 

to 0 and E equals E f, if E equals E f this E minus E f is going to be 0. E minus E f is 0 

divided by nonzero quantity so, that is still 0. So, e power 0 is 1 therefore, this f of E will 

evaluate to half so, 1 by 1 plus 1, this term will become 1. E equals E f this becomes 0 

so, this whole thing remain 0, therefore this term becomes 1. So, this f of E will become 

1 by 1 plus 1 which is 1 by 2 so, it is half. 

So, at any temperature greater than 0 Kelvin, the f of E will equal half when E equals E f 

so, these are the two definitions for the Fermi energy. Fermi energy can be defined at 0 

Kelvin as the highest occupied energy level at 0 Kelvin; it can be also defined for any 

other temperature as the energy level where the probability of occupancy is half. So, in 

fact, I have sort of deliberately drawn it that way without highlighting it so far, now we 

will highlight it. If you take we have written f of E as 0, 0.5, 1 those are three points are 

highlighted I just put in the 0.8 here. 
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So, if you just draw this 0.5 line at all temperatures greater than 0 Kelvin, you will find 

that as the change as the probability of occupancy changes it will go through 0.5, it go 

through 0.5 when E equal to E f. So, at T 1 also it goes through 0.5 when E equal to E f, 

at T 2 also it goes through 0.5 when E equals E f as you go through all the energy levels 

available in the system. So, this is the manner in which this process is occurring so, that 

is how the Fermi Dirac distribution is present within this its manufacturing itself that you 

have all this energy levels as you change the energy level you have this behaviour. 

The Fermi energy is simply the highest energy level that is available in the system at 0 

Kelvin and it is the energy level where the probability of occupancy is 0.5 at any other 

higher temperature so, that is the thing. And also as I mentioned again I will once again 

mentioned that this diagram does not tell you anything about the number of states 

available in the system. Now, which is the other piece of information that we will look at 

later, what I also want you to understand from this picture is that when you have a set of 

Fermions and you fill them up. The kind of physical analogy that you can think of is very 

simply that you have some kind of container in which you are filling items of some 

category. 

Let us just say you have a container and you putting sand in it or water in it whatever 

sand or water whatever it is that putting you pouring into it. The container has only finite 

space at lowest energy or the lowest height that you have in the container. So, as you 



pour water or sand into it, it fills up from bottom and moves upwards till you reach the 

top of; till you run out of sand or water. Assuming that the container is a very large long 

container which in which we can put how much ever which is larger than the amount of 

sand or water that you have. So, we start pouring it in, it will start filling up the bottom 

and moving upwards, then eventually you run out of sand or water. 

Therefore, there is a highest height and therefore highest energy level for this sand or 

water that you pour inside that container, this is the exactly to the system that we are 

looking at. We have energy states available in the system from lower energy state to 

higher and higher energy states; we start pouring electrons so to speak to in a descriptive 

sense pouring electrons into those states. They start filling up from lowest energy level 

that is available to higher and higher energy levels eventually you run out of electrons. 

So, there is a certain number of the certain highest energy level states that is available to 

you and upon till that state the all the possible upon till that energy level all the possible 

states that are available are completely full are completely full. 

And therefore, the probability of occupancy is one above that energy level for above that 

height as long as the system is undisturbed in stationary, you do not have any further 

states that are occupied and therefore the probability of occupancy is 0. So, that energy 

that I described you captures this information that I have just shown to you as the Fermi-

Dirac distribution. The information that is not captured in this picture which I kept 

talking of in terms of the number of states how to speak is to if look at the analogy that I 

just described of some container in which filling this water or sand, the information that 

is not captured that in the shape of that container. 
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So, I could have a container that looks like this, I could also have a container looks like a 

part. (No audio from: 42:22 to 42:28)In this container the number of, the width of this 

container is constant. So, to in terms of my energy if I am pouring sand or water into this, 

the amount of sand that is held at the lowest energy level is the same amount of sand that 

is held of next higher energy level or next highest height, the next highest height and so 

on. The amount of sand that I am holding that all these heights is exactly same. So, I am 

tried to run out of sand somewhere here in this case right. 

So, the number of sand particles if the sand particles were all very uniform and the way 

they were sitting are uniform, if all that with true. The amount of sand that I could hold 

in this lowest height would be the same, as the amount of sand would hold at any other 

arbiter height above it, at that given height, at given location. That is not true in the 

container. This container has different shapes, it is still filling up container the logic 

behind filling up the container is still the same, whatever initially I am pour some sand 

into it or water into it. If there is only so much sand, it will just fill up lowest available 

height in that container and you will just fill later and it is still there. 

So, again the probability of occupancy of the locations below that height is 1, because 

the sand is sitting fully filled up to that point, above it there is no sand available it is all 

0. But you can fill more and more sand let say, I will take same amount of sand fill it up, 

it may come up to this height in this container. Sand or water, whatever it is that you 



have filled here, will now come up to this height in this container. So therefore, the 

probability of occupancy this container is full up to this point. So, whatever space is 

available is all occupied by the sand or water. So, there is no empty states, we assume 

that sand sand particles are able to pack themselves up very well, there is no gape 

between them this a hypothetical case. 

So, may be liquid is better analogy we can more easily visualize no space being there 

between the liquid molecules, at is from our perception of the liquid. So, we adjust filling 

up all those location. So, it is fully occupied fully filled in position below this highest 

height level and fully empty above this height level and this highest energy. So, there is a 

corresponding highest height here or energy level that we can talk off. So, the Fermi 

energy that we described is the; is the analogues behaviour in a set of Fermions or 

electrons, which are trying to fill instead of container, that energy states available in that 

system. In that kind of situation this is exactly what is happening. So, you fill up all the 

energy level up to this point. 

And in simply we talking of the f of E distribution all it says is that f of E is 1, up to this 

point and it 0 beyond it, if you want look at the energy. Similarly, f of E is 1 up to this 

point, it is 0 above this. So, in both these cases, the general idea is still the same that the 

probability of occupancy is 1 up to certain point, and the probability of occupancy drops 

to 0 above that certain point. What significantly defers, even though the number of let us 

assume, I put this same amount of water in both these containers. What is significantly 

different about these two pictures is that since the shape is different for these two 

containers. 

And therefore, the number of states so, to speak or the number of location in which you 

can place water at the lowest energy level is only so much here, for as it is much higher 

in this other container here. Since, these two have different shapes, the amount of water 

or amount of sand that you can fill at given energy level or given height is very different 

in two cases. Therefore, even though the probability of occupancy is the same at some 

height level. So, same height level I take here, with respect to the ground position. 

So, if I take the same height level, in both cases the probability of occupancy is 1, in 

given the height levels that I have chosen, probability of occupancy is 1. That the shape 

of these two containers is different therefore, the actual occupancy which consists of the 



probability of occupancy, plus the number of states that is available inside this system. 

That actual occupancy is different, for these two states. So, that is very different piece of 

information. 

So, and therefore, where it fills up, where it runs out of particles is very different for this 

condition. So therefore, keep in mind that the shape of the container is also very useful, 

is very important piece of the information that we need. And in with respect to the 

system that we are talking of, that is the number of states available at each energy level. 

That is very important piece of information that we have not included in the discussion. 

So, that is something that we will get to later. 

But still the definition for Fermi energy is something that is, that we are now clear about. 

It is the highest energy state that is occupied at temperature being equal to 0 Kelvin and 

at any other temperature it is the energy state where it is value of energy at which the 

probability of occupancy is 0.5. So, these these are the two definition that go with the 

Fermi-energy and and something that will become familiar with. The Fermi energy is of 

important, because it represents the highest energy level available in the system, which is 

occupied by electrons at 0 Kelvin or probability being half at any higher temperature. 

And therefore, in some ways is the energy is the energy value around which those 

electrons are now available to interact with higher energy levels. 

So, so for example, we will see in our next class, we will discuss in little greater detail. 

As you raise the temperature as you raise the temperature, you see that only it still 

remains probability of occupancy it still remains closed to one or very closed to one. All 

the way to some energy level, that is closed to the Fermi-energy level. Only at energy 

values which are very closed to Fermi-energy level, you start seen probability of 

occupancy the drops from 1, for values below E equal to E f and goes up from 0 for 

values above of energy above E equal to E f. 
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So in fact, when you raise the temperature, it is energy values which are closed to E f 

that sort of participate in the process of the change change in temperature. And that is the 

very important information that we will look at. Not all energy levels seem to participate 

in the process of the gain and temperature, temperature of system as gone up from T 0 of 

0 Kelvin to some other temperature T 1, which is greater than 0 Kelvin. So, the 

temperature of the system is gone up, but if we look at this figure, the way I have drawn 

this figure, which is consistent with this function here. 

So, if you take this function and you plot it up in any software that you that you are 

comfortable with, you will find this is true, this is kind of picture that I am drawn is 

essentially correct. So, what we find is only energy values which are closure to the Fermi 

energy level, seen to be participating in the process of change in temperature. The greater 

the change in temperature, more the number of energy states on either side of E f which 

seen in to participate in process. 

So, that is the very important piece of information, more specifically there are large 

number of states which are away from a value of E equal E f, which do not in any 

manner any significant manner participate in this process of change in temperature. So, 

they all the energy values which are below this for example, at this at T equal to T 2, the 

probability of occupancy is still 1. And as long as probability of occupancy is still 1, they 

are not actually participating in this change in temperature. So, they are largely oblivious 



to the change in temperature change in temperature for the entire system. So, that is how 

this behaviour is so, most of these energy values are not participating in it. 

Similarly, here it is at all values below this energy level, are not participating in change 

in to it. So, for set of Fermions that is very important characteristics of a set of Fermions. 

The set of Fermions, collection of Fermions, if you have and which is what we are 

talking of as the collection of electrons present in the solid and if you take that collection 

of Fermions. Given the characteristics of Fermions they come up with they are following 

all that things that we have just described here and therefore, this diagram. And 

therefore, this diagram represents what behaviour they are demonstrating to us. 

And when you have such a diagram, it is telling as those Fermions show all this kind of 

behaviour, that not all of them participate in a energy change process, only some of them 

participating. So, so this is Fermi-Dirac statistical distribution, we have derived it last 

couple of classes, today we have looked at various features of the Fermi-Dirac statistical 

distribution. We have looked at Fermi energy, we have looked at plot of Fermi-Dirac 

distribution, we have try to see what that plot implies as a function of temperature, what 

the plot implies as a function of energy, what is the significance of the highest energy 

level that is occupied. 

We have designated that as Fermi energy, we have briefly considered what is said that I 

mean, we have designated something as Fermi energy so what. I mean, why I said of any 

significant, we said that we know it is the border line between what is already fully full 

and what is empty. And therefore, that represents the border over which across which all 

the transaction are occurring so, to speak. So therefore, therefore, it is of some 

significance, we will discuss in the next class what is the; although I have described to 

you here in this plot that what is happening across that Fermi energy level as you change 

temperature. 

What is the implication of it, we will see in our next class, but that is the characteristic of 

it. So all the major features of the Fermi-Dirac distribution, we have looked at and we 

have examined. I have also highlighted to you the information that is not available in this 

Fermi-Dirac distribution, which is the actually the actual number of states at each of 

those energy levels, which is corresponding to the shape of the container, if you are 



looking at an analogy of pouring water into it container or sand into a container. So, this 

then is the summering of what we have discuss this class. 

Next class we will take up, we will we have done all this discussion, because we want to 

make in an improvement to the Drude model. And hence came up and decided and look 

at Drude-Sommerfeld model which came up as the next improvement on the Drude 

model. Which use the Fermi-Dirac distribution and therefore, we have looked at this. So, 

in the next class we will look we will directly compare the Maxwell Boltzmann 

distribution, which was used by the Drude model with the Fermi-Dirac distribution 

which has been used by the Sommerfeld model. And in this comparison we will 

understand in what way Sommerfeld model has actually improved on the Drude model. 

And from there, we will look at further possibilities of improvement in the other features 

of the system. So, that will halt for today. Thank you.; 


