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Hello everyone and welcome to the fourteenth lecture of this course, Fracture Fatigue and
Failure of Materials. And in this lecture also we will go ahead and discuss some more on the

concepts of plane stress fracture toughness through J integral.
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Concepts Covered

* Concept of J-Integral |

* Physical Significance of J,; |

* Determination of J .




So, the following concepts will be covered in this lecture, we will be discussing a little more
on the J integral and how it can be determined. And particularly most importantly the physical
significance of J integral method and the critical value of J that is required for fracture, so what
does that actually mean. And we will also look into the ways by which we can determine this

critical value of J that leads to plane stress fracture toughness values.
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So, let us start from where we left in the last class, we have discussed about the way by which
J integral can be used to determine the fracture toughness. It actually signifies the energy at the
vicinity of the crack. So, the J integral method is used to determine this energy scenario at the
vicinity of crack tip and in the very simple way, for any contour of any shape, we can find out
a relation which exists at the different points of the contour this is what it is going to maintain

that] = j (w dy — T % ds), and this is integrated for the entire contour, this equation is valid
r

for any particular point and this is integrated for the entire contour so that we can get the energy

of this contour as J.

Now, each of this term should be explained in more details and we have already seen that X, y
are nothing but the coordinates which are normal to the crack front in along the direction of y,
x load should be added and x is the direction for the crack growth. And ds is the increment
along the contour part. Now, T is very important factor here T is the stress or the traction vector
at a point on the path. And so, let me also write it down here as basically signifies the traction

vector at a point on path in this case sit down.



U on the other hand is the displacement vector again this is valid at any particular point. So, u
is this displacement vector at any point on the path and this is supposed to change from point
to point. On the other hand, if we are talking about the W part here, which represents the strain
energy density or it is actually in more simple words it is the strain energy per unit volume, but
it again varies from point to point. So, this is also a point function that varies from point to
point so that we can determine this relation at any particular point and if we are integrating this

for the entire contour, we are supposed to get the energy for the entire path.

So, let us expand these individual terms for the first one, let’s say we do this for W and W is
representing the change in the stress with the change in the strain. So, W can be expanded in

the following way for one to coordinate path, let’s say we can do this as f:n o1, degg +
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So, these two are actually equivalent and that makes us the overall W by simply expanding this
as, [ 0y1 degy + 2 f:” o12de; + [, 055 dey, , that s the overall strain energy density at

any particular point.

So, the second term itself, if we are expanding this, this should be like T %ds + T2 %ds.

So, that represents including the traction at any point as well as the displacement at any point
and how that can be used to determine this factor here. If we also need to expand the T vector
here itself, so, T is the traction vector can be also written as T; is related to the sigma value at

that point and the coordinate.

So, that makes T1 = g;,n1 + g;,n2 and T2 = g,,n1 + g,,n2. SO, we can expand all these factors
all these parameters and we can have this relation for any particular point over the entire path
and we can integrate this to get the overall energy. Now, this is all the mathematical expression
for the J integral term and this is valid for any kind of energy or any other situation that we
want it to correlate with. But, when we are talking about the crack situation, we should explain

it on the basis of the presence of a crack and the region in the front of the crack.
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So, let us see how it looks like. So, this is what is a crack tip and this is the contour in front of
the crack ahead of the crack. So, this is the y and the x directions. So, for each of the segments,
so, there are a few segments in this contour there are actually two contours that we can see. It
is starting from the point A here, so, this is represented by contour I'1 and then it is coming to
the point C which is the free surface of the edge of the crack and it is moving along C D. So,
this is one segment and then it is moving along the contour I"z and finally, F and A and coming

back to the starting point. So, that makes it four different contours all by itself.

So, the overall J is related to the contour of I'1 plus it is in moving from C to D. So, like this
and then the contour of I"2 and finally, J for the contour F and A. So, we need to fit this relation
for all the different segments. So, for each of this we should let me write it here, the relation as

J is given for any kind of contour. So, let’s say this could be I'y or I'> or a C D or F A for any

of this the same relation should be valid which is given by J (w dy — T, %ds)
r

Now, for contour taul and tau2 we have seen that how individual of this can be expanded and
we can find out the overall relation and the overall values. For the case of C D and F A, these
are the two segments which are standing on the free surface of the crack weight. So, there it
gets very interesting and we can once again expand this as the following. So, J of C D or even

J of let me write a J of F A, this should be given by this relation once again. So,

jr(wdy— Ti%ds).



Now, for the case of the C D or F A, for that matter actually there is no growth along the y
direction. So, dy essentially is 0, the crack is going along this one, when it does, but dy at any
case will be always 0, so that makes the first part. Anyway the product of W and this dy
whatever finite value of W is having it is still getting a value of 0. On the other hand, if we are
talking about the second term, here also we are seeing this T, this traction vector acting

perpendicular to this point.

Now, this is also zero for a free surface. And this C D or F A are the free surfaces of the crack,
so that makes it also 0. And again, the product for even displacement it might be having it still
gives a product of zero and overall we are getting that Jcp or Jra are equivalent to 0. So, these
are the individual thing we have made. So, this gets equivalent to zero and this also gets

equivalent to zero, but overall the entire energy is still given by this four segment.

And most interestingly, there is another fact that we have to consider that the J integral for any
closed contour always comes to zero. So, the summation of this is anyway going to come as
zero. So, which makes J as a total the integral for this entire pathisJ=J i + Jcp + J r2 + Jra
as explained here, this total summation comes to zero. And then out of this we have also seen

that how Jcp gets to zero and Jra gets to zero.

So, that makes actually J r1 + J r2 equals to zero or in other words, we can see that J of taul
equals to -J r2, which means that even if we are considering it in this direction, or that one that
is independent of the path and the magnitude of this I'1 and I'> for the J integral part is the same,
the magnitude of this free surface are any way coming to zero and the magnitude for the
contours whichever path are we following are the same. So, which makes it a path independent
term. So, J integral is a path independent it does not matter which path we are considering and
at the vicinity of the crack tip near to the crack tip, this is the energy scenario that we can find

out based on this relation.
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Jis the energy available at the crack tip per unit crack extension - crack driving force
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Physical significance: J is defined as the pseudopotential energy between
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two identically loaded bodies with slightly different crack lengths, Aa

Ref: RW. Herzberg, RP. Viaci, 1 L. Herzber Sth ed. Joh Wiley & Sous. I, 1982
Keishan Kumar Chaw 208,

Now, this still comes as a bit of mathematics here and so, that we can use this relation to find
out the number, but what does it actually mean physically what is the physical significance of
J integral. To understand that, we again have to go back to what we have understood when we
talked about the G term the strain energy release rate. So, J integral is also a very similar
concept and it represents the of course, the energy which is available at the crack tip per unit

crack extension.

So, as the crack is extending per unit time, how much energy is available at the crack tip which
acts as the driving force for the crack tip growth. So, it is considered as the pseudopotential

energy difference between two identically loaded bodies with slightly different crack length.

So, if one body is having a crack length of a. Let us say we are talking about a component a
capital A which is having crack length a and a component B which is having a crack length of
a+ 0a, whatever is the difference in the pseudopotential energy between these two components
that is given by J or in other words, the same component if the crack grows fromato a + A a,
how much energy will be released the strain energy that is being released that is considered as

J. So, this definition wise also it sounds very familiar to what we have seen for the case of G.

So, this is shown here initially there is a crack length of a and then it is growing by a
infinitesimally small amount da, of course, it is schematically shown and not on scale. But if
such is the case, then how much of the energy that is being released that is termed as J and
there can be two ways to obtain that either we can consider that the volume is constant. So,

here both of these curves here signifies the load versus displacement curve.



And in one case, so, this is the load and this V signifies the displacement. So, typical load
versus displacement curve that we get if we are applying a tensile stresses on any kind of
component. The symbol of this displacement sometimes are also used as A or e or |, so just to
be familiar with that all of these symbols actually represent a displacement. Now, what is
important here to notice is that either when the crack is growing, if we are talking about a
situation when the displacement is constant, it is being controlled it is a constant value then
there is a drop in the load that we are seeing. So, this could be one of the cases and the energy

change is represented by this hatched space here.

So, initially, it has a crack length of a and this is what the graph looks like and again this being
a elastic-plastic material apart from the elastic part, there is also some amount of plastic
deformation here that is noticeable. On the other hand, once the crack grows to a + A a, there
is a drop in the load and this is the load-displacement curve for the second part when we have
a + A a crack length. And once again here also we are seeing the elastic and the plastic part

very prominently.

The energy that is being released is given by this hatched area here and this is equivalent to J
times the total area. So, this capital A here signifies the change in the area. And on the other
hand, there could be the other scenario when we have P equals to constant, so that means that
we are applying a constant load in that case, since the load will be constant there will be an

enhancement in the V, because of the second case when we have a + A a crack length.

So, the first case is when we have crack length of a, second case is when we have crack length
of a plus delta a. In one case we require volume of Vo and in the second and the load of Po and
on the other hand, if we are controlling the load the load is supposed to be Po here also, but the
volume is increasing by a term let’s say Vo+ A V. On the other hand, in this case, the load is

being released to let’s say Po - A P.

And we can determine this area and the difference in the area for this condition of a and a plus
del a delta a that can be determined and that is physically that is what is signifies the change in
the energy that is being released as the crack is growing. So, that signifies the J integral. Apart

from the mathematical term, this is the physically what is happening.
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Ref: Meyers Marc, and Krishan Kumar Chawla. Mechanical behavior of materials. Cambridge university press, 2008,

And since, we have talked about this graph, and we have talked about the definition, just for a
while, we should look back to where we have first learned about this and where we have first
discussed about the concept of G. So, G is again nothing but the strain energy release rate,
which signifies the energy or the elastic energy or the potential energy the stored energy that
is being released per unit growth of the crack or potential or elastic energy that is being released

as the crack grows. So, this is the one that we have determined for the case of elastic condition.

So, in this case, you can see that the loading and the unloading curve follows the same path.
So, that is what is a brittle failure or that is what is an elastic condition where the stress and the
strain or the load and the displacement they are related by some particular constant relation and
at any particular displacement in this case, we can figure out the corresponding stress, it does

not change if we are talking about the loading part or the unloading part.

So, this is just to draw the analogy between J and the G. So, this is for the elastic part we are
seeing that as we are looking for the situation when we have a crack of length a for condition
one and for condition two in this case, we have a + da or a + A a, whichever way we can see
that there is a drop in the load by A P @ P and there is an enhancement in the elongation by de.
Similar, to what we have seen in the last slide and we can determine how much is the value of
this G.
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Now, coming to that, we then again it kinds of reminds us to the fact that means that up to for
the elastic part at least, this J and G can be correlated. So, this is essentially the same thing that
we are talking about, at least up to the elastic part, up to the plastic part something else is
happening, and that we can explain. So, for the elastic part, actually, J is nothing but the same
thing the change in the potential energy per unit or per crack length. So, that is given by J and

for elastic condition, this is exactly the same that we have seen for the case of G.

So, essentially, J for the elastic part is same as that of G and G we have also seen that how G
and K are related as per the Erwin’s modification. We have seen that K= vEG, which gives us
G = K?/E, typically for the plane strain, but since we are talking about the plane stress condition
here, we are using this term E prime and that includes actually the 1- p? term, where p is the

poisons ratio. So, E’ is given by E by this factors here, 1- p2.

Again, for some cases, we also use the symbol of u for the case of poisons ratio. So, this is just
for the sake of understanding that which symbols are being used, but essentially it means that
E is being changed by this factor here 1- p2. For the case of metallic materials, this p value is
around 0.33 for metallic system or 0.3 and for any other system usually the poisons ratio is, has
to be known or we can find that out from the standard references. So, that is what we are seeing

for the elastic part.
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On the other hand, when we are talking about the plastic part, we still need to consider the area
under the curve and for that case, let’s say in case when a specimen is being subjected to pure
bending something like this, we can obtain the plastic part also and the area under the plastic

curve is determined as A which is the area under the plastic part of the load displacement curve.

And typically, the J value for the plastic part is given by a relation eta A by B and small b.
Now, capital B here is the specimen thickness and we can find out the specimen thickness right
before the test, we can measure that out and small b here is the broken ligament part, which is
the area in front of the crack tip. So, that signifies the length of W which is the width of the
specimen and a which is the crack length of the specimen. So, W is the width of specimen and

a is the crack length.

So, whatever the specimen is whether it is a compact tension specimen or a bent specimen,
whatever the area head of the crack tip or the length ahead of the crack tip is what is important.
So, you see, this is the total width of the component and this is the a, crack length. So, in that
case, this part here, which is dictated by the total width minus the crack length W - a, so, that

is term as the broken ligament length.

So, this is B equals to W - a that is equivalent to the broken ligament length, because this is the
section, this is the area, this is the region, where the plastic deformation is happening, this part
is not of much significance when we were talking about the plane strain condition, but for the
plane stress condition, this is where the plastic deformation is happening, and we want to figure

out that whatever mechanism is happening and whatever this length which is of interest, so,



that makes it place on this relation for J plastic which is given by eta A by B b. So, we will
discuss some more about this J integral and how this can be determined in practice in the next

lecture.
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J-integral method of measuring fracture toughness is applicable for linear and non-linear elastic material as well as
those exhibiting elastic-plastic behavior at the crack tip.

] J- signifies the pseudopotential energy difference achieved with the growth of crack by unit length

Jc Is equivalent to the critical energy required for fracture in a material undergoing significant plastic
deformation.

| ), consists of both the elastic and plastic component

I Elastic component of J,. is equivalent to the G, value for a brittle material.

Plastic component of J . is related to the area under the plastic part of the load-displacement
curve along with the thickness and broken ligament length.

So, concluding this lecture comes the J integral method for measuring fracture toughness is
applicable for linear as well as nonlinear elastic material that means, which undergoes elastic-
plastic behavior at the crack tip and for that kind of material J of that kind of behavior J integral
is the ideal one. It essentially signifies the pseudopotential energy difference achieved with the
growth of the crack by unit length. So, as the crack grows whatever is a change in the strain

energy or the potential energy that is what is termed as the J.

And Jic is equivalent to the critical energy that is required at the point of fracture that is
considered as the critical value of J integral and 1 again stands for the mode 1 here. So, that
signifies the Jic for the plane stress fracture toughness. And it has we have seen that it has both
the elastic and the plastic component, the elastic component is similar or equivalent to the Gic
that we have seen earlier. And the plastic part is related to the area under the load displacement
curve along with the thickness inversely proportional to the thickness as well as the broken

ligament length.
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* R.W. Hertzberg, R.P. Vinci, J.L. Hertzberg, Deformation and Fracture Mechanics of
Engineering Materials, Sth ed., John Wiley & Sons, Inc, 1982

* Meyers Marc, and Krishan Kumar Chawla. Mechanical behavior of materials. Cambridge
university press, 2008,

+ Elements of Fracture Mechanics by Prashant Kumar, Tata McGraw Hill Publication.

* https://commons.wikimedia.org/wiki/File:SingleEdgeNotchBending svg

+ S.K. Kudari, K.G. Kodancha, 3D stress intensity factor and T-stresses (T11 and T33)
formulations for a compact tension specimen, Frat. Ed Integrita Strutt. 11 (2017) 216-225

So, following are some of the references that has been used for this lecture and thank you very

much.



