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Hello everyone and welcome to the fourteenth lecture of this course, Fracture Fatigue and 

Failure of Materials. And in this lecture also we will go ahead and discuss some more on the 

concepts of plane stress fracture toughness through J integral. 
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So, the following concepts will be covered in this lecture, we will be discussing a little more 

on the J integral and how it can be determined. And particularly most importantly the physical 

significance of J integral method and the critical value of J that is required for fracture, so what 

does that actually mean. And we will also look into the ways by which we can determine this 

critical value of J that leads to plane stress fracture toughness values. 

(Refer Slide Time: 1:17) 

 

So, let us start from where we left in the last class, we have discussed about the way by which 

J integral can be used to determine the fracture toughness. It actually signifies the energy at the 

vicinity of the crack. So, the J integral method is used to determine this energy scenario at the 

vicinity of crack tip and in the very simple way, for any contour of any shape, we can find out 

a relation which exists at the different points of the contour this is what it is going to maintain 

that J = ∫ (w ⅆy − Ti
∂ui

∂x
ⅆs)

Γ

, and this is integrated for the entire contour, this equation is valid 

for any particular point and this is integrated for the entire contour so that we can get the energy 

of this contour as J. 

Now, each of this term should be explained in more details and we have already seen that x, y 

are nothing but the coordinates which are normal to the crack front in along the direction of y, 

x load should be added and x is the direction for the crack growth. And ds is the increment 

along the contour part. Now, T is very important factor here T is the stress or the traction vector 

at a point on the path. And so, let me also write it down here as basically signifies the traction 

vector at a point on path in this case sit down. 



U on the other hand is the displacement vector again this is valid at any particular point. So, u 

is this displacement vector at any point on the path and this is supposed to change from point  

to point. On the other hand, if we are talking about the W part here, which represents the strain 

energy density or it is actually in more simple words it is the strain energy per unit volume, but 

it again varies from point to point. So, this is also a point function that varies from point to 

point so that we can determine this relation at any particular point and if we are integrating this 

for the entire contour, we are supposed to get the energy for the entire path. 

So, let us expand these individual terms for the first one, let’s say we do this for W and W is 

representing the change in the stress with the change in the strain. So, W can be expanded in 

the following way for one to coordinate path, let’s say we can do this as ∫ 𝜎11 ⅆ𝜀11 +
ε11

0

 ∫ 𝜎12 ⅆ𝜀12
ε12

0
+ ∫ 𝜎21 ⅆ𝜀21

ε21

0
+  ∫ 𝜎22 ⅆ𝜀22

ε22

0
 

So, these two are actually equivalent and that makes us the overall W by simply expanding this 

as, ∫ 𝜎11 ⅆ𝜀11 
ε11

0
+ 2 ∫ 𝜎12 ⅆ𝜀12 +  ∫ 𝜎22 ⅆ𝜀22

ε22

0
 

ε12

0
, that is the overall strain energy density at 

any particular point. 

So, the second term itself, if we are expanding this, this should be like T1 
∂u1

∂x
ⅆs + T2 

∂u2

∂x
ⅆs. 

So, that represents including the traction at any point as well as the displacement at any point 

and how that can be used to determine this factor here. If we also need to expand the T vector 

here itself, so, T is the traction vector can be also written as Ti is related to the sigma value at 

that point and the coordinate. 

So, that makes T1 = 𝜎11n1 + 𝜎12n2 and T2 = 𝜎21n1 + 𝜎22n2. So, we can expand all these factors 

all these parameters and we can have this relation for any particular point over the entire path 

and we can integrate this to get the overall energy. Now, this is all the mathematical expression 

for the J integral term and this is valid for any kind of energy or any other situation that we 

want it to correlate with. But, when we are talking about the crack situation, we should explain 

it on the basis of the presence of a crack and the region in the front of the crack. 
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So, let us see how it looks like. So, this is what is a crack tip and this is the contour in front of 

the crack ahead of the crack. So, this is the y and the x directions. So, for each of the segments, 

so, there are a few segments in this contour there are actually two contours that we can see. It 

is starting from the point A here, so, this is represented by contour Γ1 and then it is coming to 

the point C which is the free surface of the edge of the crack and it is moving along C D. So, 

this is one segment and then it is moving along the contour  Γ2 and finally, F and A and coming 

back to the starting point. So, that makes it four different contours all by itself. 

So, the overall J is related to the contour of Γ1 plus it is in moving from C to D. So, like this 

and then the contour of Γ2 and finally, J for the contour F and A. So, we need to fit this relation 

for all the different segments. So, for each of this we should let me write it here, the relation as 

J is given for any kind of contour. So, let’s say this could be Γ1 or Γ2 or a C D or F A for any 

of this the same relation should be valid which is given by ∫ (w ⅆy − Ti
∂ui

∂x
ⅆs)

Γ

 

Now, for contour tau1 and tau2 we have seen that how individual of this can be expanded and 

we can find out the overall relation and the overall values. For the case of C D and F A, these 

are the two segments which are standing on the free surface of the crack weight. So, there it 

gets very interesting and we can once again expand this as the following. So, J of C D or even 

J of let me write a J of F A, this should be given by this relation once again. So, 

∫ (w ⅆy − Ti
∂ui

∂x
ⅆs)

Γ

.  



Now, for the case of the C D or F A, for that matter actually there is no growth along the y 

direction. So, dy essentially is 0, the crack is going along this one, when it does, but dy at any 

case will be always 0, so that makes the first part. Anyway the product of W and this dy 

whatever finite value of W is having it is still getting a value of 0. On the other hand, if we are 

talking about the second term, here also we are seeing this T, this traction vector acting 

perpendicular to this point. 

Now, this is also zero for a free surface. And this C D or F A are the free surfaces of the crack, 

so that makes it also 0. And again, the product for even displacement it might be having it still 

gives a product of zero and overall we are getting that JCD or JFA are equivalent to 0. So, these 

are the individual thing we have made. So, this gets equivalent to zero and this also gets 

equivalent to zero, but overall the entire energy is still given by this four segment. 

And most interestingly, there is another fact that we have to consider that the J integral for any 

closed contour always comes to zero. So, the summation of this is anyway going to come as 

zero. So, which makes J as a total the integral for this entire path is J = J Γ1 + JCD + J Γ2 + JFA 

as explained here, this total summation comes to zero. And then out of this we have also seen 

that how JCD gets to zero and JFA gets to zero. 

So, that makes actually J Γ1 + J Γ2 equals to zero or in other words, we can see that J of tau1 

equals to -J Γ2, which means that even if we are considering it in this direction, or that one that 

is independent of the path and the magnitude of this Γ1 and Γ2 for the J integral part is the same, 

the magnitude of this free surface are any way coming to zero and the magnitude for the 

contours whichever path are we following are the same. So, which makes it a path independent 

term. So, J integral is a path independent it does not matter which path we are considering and 

at the vicinity of the crack tip near to the crack tip, this is the energy scenario that we can find 

out based on this relation. 
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Now, this still comes as a bit of mathematics here and so, that we can use this relation to find 

out the number, but what does it actually mean physically what is the physical significance of 

J integral. To understand that, we again have to go back to what we have understood when we 

talked about the G term the strain energy release rate. So, J integral is also a very similar 

concept and it represents the of course, the energy which is available at the crack tip per unit 

crack extension. 

So, as the crack is extending per unit time, how much energy is available at the crack tip which 

acts as the driving force for the crack tip growth. So, it is considered as the pseudopotential 

energy difference between two identically loaded bodies with slightly different crack length.  

So, if one body is having a crack length of a. Let us say we are talking about a component a 

capital A which is having crack length a and a component B which is having a crack length of 

a +  ∂a, whatever is the difference in the pseudopotential energy between these two components 

that is given by J or in other words, the same component if the crack grows from a to a + Δ a, 

how much energy will be released the strain energy that is being released that is considered as 

J. So, this definition wise also it sounds very familiar to what we have seen for the case of G. 

So, this is shown here initially there is a crack length of a and then it is growing by a 

infinitesimally small amount da, of course, it is schematically shown and not on scale. But if 

such is the case, then how much of the energy that is being released that is termed as J and 

there can be two ways to obtain that either we can consider that the volume is constant. So, 

here both of these curves here signifies the load versus displacement curve. 



And in one case, so, this is the load and this V signifies the displacement. So, typical load 

versus displacement curve that we get if we are applying a tensile stresses on any kind of 

component. The symbol of this displacement sometimes are also used as Δ  or e or l, so just to 

be familiar with that all of these symbols actually represent a displacement. Now, what is 

important here to notice is that either when the crack is growing, if we are talking about a 

situation when the displacement is constant, it is being controlled it is a constant value then 

there is a drop in the load that we are seeing. So, this could be one of the cases and the energy 

change is represented by this hatched space here. 

So, initially, it has a crack length of a and this is what the graph looks like and again this being 

a elastic-plastic material apart from the elastic part, there is also some amount of plastic 

deformation here that is noticeable. On the other hand, once the crack grows to a + Δ a, there 

is a drop in the load and this is the load-displacement curve for the second part when we have 

a + Δ a crack length. And once again here also we are seeing the elastic and the plastic part 

very prominently. 

The energy that is being released is given by this hatched area here and this is equivalent to J 

times the total area. So, this capital A here signifies the change in the area. And on the other 

hand, there could be the other scenario when we have P equals to constant, so that means that 

we are applying a constant load in that case, since the load will be constant there will be an 

enhancement in the V, because of the second case when we have a + Δ a crack length. 

So, the first case is when we have crack length of a, second case is when we have crack length 

of a plus delta a. In one case we require volume of V0 and in the second and the load of P0 and 

on the other hand, if we are controlling the load the load is supposed to be P0 here also, but the 

volume is increasing by a term let’s say V0 + Δ V. On the other hand, in this case, the load is 

being released to let’s say P0 - Δ P. 

And we can determine this area and the difference in the area for this condition of a and a plus 

del a delta a that can be determined and that is physically that is what is signifies the change in 

the energy that is being released as the crack is growing. So, that signifies the J integral. Apart 

from the mathematical term, this is the physically what is happening. 
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And since, we have talked about this graph, and we have talked about the definition, just for a 

while, we should look back to where we have first learned about this and where we have first 

discussed about the concept of G. So, G is again nothing but the strain energy release rate, 

which signifies the energy or the elastic energy or the potential energy the stored energy that 

is being released per unit growth of the crack or potential or elastic energy that is being released 

as the crack grows. So, this is the one that we have determined for the case of elastic condition. 

So, in this case, you can see that the loading and the unloading curve follows the same path. 

So, that is what is a brittle failure or that is what is an elastic condition where the stress and the 

strain or the load and the displacement they are related by some particular constant relation and 

at any particular displacement in this case, we can figure out the corresponding stress, it does 

not change if we are talking about the loading part or the unloading part. 

So, this is just to draw the analogy between J and the G. So, this is for the elastic part we are 

seeing that as we are looking for the situation when we have a crack of length a for condition 

one and for condition two in this case, we have a + ∂a or a + Δ a, whichever way we can see 

that there is a drop in the load by Δ P ∂ P and there is an enhancement in the elongation by ∂e. 

Similar, to what we have seen in the last slide and we can determine how much is the value of 

this G. 
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Now, coming to that, we then again it kinds of reminds us to the fact that means that up to for 

the elastic part at least, this J and G can be correlated. So, this is essentially the same thing that 

we are talking about, at least up to the elastic part, up to the plastic part something else is 

happening, and that we can explain. So, for the elastic part, actually, J is nothing but the same 

thing the change in the potential energy per unit or per crack length. So, that is given by J and 

for elastic condition, this is exactly the same that we have seen for the case of G. 

So, essentially, J for the elastic part is same as that of G and G we have also seen that how G 

and K are related as per the Erwin’s modification. We have seen that K= √EG, which gives us 

G = K2/E , typically for the plane strain, but since we are talking about the plane stress condition 

here, we are using this term E prime and that includes actually the 1- µ2 term, where µ is the 

poisons ratio. So, E’ is given by E by this factors here, 1- µ2. 

Again, for some cases, we also use the symbol of µ for the case of poisons ratio. So, this is just 

for the sake of understanding that which symbols are being used, but essentially it means that 

E is being changed by this factor here 1- µ2. For the case of metallic materials, this µ value is 

around 0.33 for metallic system or 0.3 and for any other system usually the poisons ratio is, has 

to be known or we can find that out from the standard references. So, that is what we are seeing 

for the elastic part. 
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On the other hand, when we are talking about the plastic part, we still need to consider the area 

under the curve and for that case, let’s say in case when a specimen is being subjected to pure 

bending something like this, we can obtain the plastic part also and the area under the plastic 

curve is determined as A which is the area under the plastic part of the load displacement curve. 

And typically, the J value for the plastic part is given by a relation eta A by B and small b. 

Now, capital B here is the specimen thickness and we can find out the specimen thickness right 

before the test, we can measure that out and small b here is the broken ligament part, which is 

the area in front of the crack tip. So, that signifies the length of W which is the width of the 

specimen and a which is the crack length of the specimen. So, W is the width of specimen and 

a is the crack length. 

So, whatever the specimen is whether it is a compact tension specimen or a bent specimen, 

whatever the area head of the crack tip or the length ahead of the crack tip is what is important. 

So, you see, this is the total width of the component and this is the a, crack length. So, in that 

case, this part here, which is dictated by the total width minus the crack length W - a, so, that 

is term as the broken ligament length. 

So, this is B equals to W - a that is equivalent to the broken ligament length, because this is the 

section, this is the area, this is the region, where the plastic deformation is happening, this part 

is not of much significance when we were talking about the plane strain condition, but for the 

plane stress condition, this is where the plastic deformation is happening, and we want to figure 

out that whatever mechanism is happening and whatever this length which is of interest, so, 



that makes it place on this relation for J plastic which is given by eta A by B b. So, we will 

discuss some more about this J integral and how this can be determined in practice in the next 

lecture. 
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So, concluding this lecture comes the J integral method for measuring fracture toughness is 

applicable for linear as well as nonlinear elastic material that means, which undergoes elastic-

plastic behavior at the crack tip and for that kind of material J of that kind of behavior J integral 

is the ideal one. It essentially signifies the pseudopotential energy difference achieved with the 

growth of the crack by unit length. So, as the crack grows whatever is a change in the strain 

energy or the potential energy that is what is termed as the J. 

And JIC is equivalent to the critical energy that is required at the point of fracture that is 

considered as the critical value of J integral and 1 again stands for the mode 1 here. So, that 

signifies the JIC for the plane stress fracture toughness. And it has we have seen that it has both 

the elastic and the plastic component, the elastic component is similar or equivalent to the GIC 

that we have seen earlier. And the plastic part is related to the area under the load displacement 

curve along with the thickness inversely proportional to the thickness as well as the broken 

ligament length. 
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So, following are some of the references that has been used for this lecture and thank you very 

much. 

 


