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Welcome everyone to this NPTEL Online Certification Course on Techniques of Materials

Characterization. So, we are beginning with module 11. We are almost close to the end and

we are discussing with X-ray diffraction, we will be continuing with X-ray diffraction for this

module and the next module which is the last one. And we were in the last module onward,

we were discussing about intensity of diffracted beam and we will continue with that.

At least for this module, we will be discussing about the intensity of diffracted beam.

(Refer Slide Time: 01:00)

So, what we will be discussing now, is basically, in the last module, we started discussing

about intensity and there we have seen the importance of arrangement of atoms in

determining that what diffracted beam even after diffraction even after Bragg’s Law is

satisfied, whether we will be getting any intensity from that after diffraction or not. That is

somehow related to the atomic arrangement within the unit cell are within a crystalline

material.



So, we started from there and then we try to derive some kind of expression which will be

expressing this relationship between the structure of an atom or arrangement of atoms in a

crystalline materials with the diffracted beam the intensity of the diffracted beam that is

coming out of the crystalline material. So, in that way we started and what we find out is that

we have to start from very basic.

How the X-ray is interacting with an electrons, individual electrons in an atom. First we have

to start from there. And we discuss there and we find out 2 different types of interactions.

One is the Thompson Effect, one is the Compton Effect. And we just considered Thompson

effect because that is what is important for calculation of diffractive intensity ultimately.

But Compton modified radiation was also important we discussed about that. That how it

modifies the background and so on. And from there, after the electron what we considered is

the intensity of the diffracted beam coming out of a individual atom. So, how the different

electron? So, individual atoms that contains different types of lots of different electrons.

And how we can superimpose all the waves along certain direction? How we can add them

up depending on their phase relationship, depending on the amplitude and so, on. And then

we discussed about factor called atomic scattering factor. We define that we saw that what it

depends on and how it is helpful. So, from there what we just started in the last class was the

relationship establishing a relationship between the intensity of diffracted beam and atomic

arrangement.

And there, we were just tried to understand the phase relationship between the diffracted

intensity or diffracted beam or the waves coming out from 2 individual atoms. One is kept at

the origin and another one is kept arbitrarily in somewhere in the space. So that up to there

we discuss. Will continue that this week as well, this module at least this lecture, we will

continue with that scattering by an atom scattering within the unit cell.

And then we will discuss about something related called the structure factor and how the

structure factor is calculated.
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So, this part we all discussed the scattering by in itself we have seen depending on these 2

different type of unit cell. How the intensity or diffracted beam is present for one set? The

one particular type of intensity diffracted beam 001 or 100 diffracted beam is present in the

center and it is not present in the body centered one. So that means definitely some atomic

arrangement has something to do with the diffracted beam intensity.

Do we realize from here? And even though the Braggs Law is satisfied for both conditions. In

one case, we get an intensity and another case we did not get an intensity.

(Refer Slide Time: 04:23)

And from there in the last class we derive this relationship we did all of this I am just

repeating it again. What we did is basically we imagined an atom in the origin and then we



imagine another atom somewhere in at a distance of x, somewhere in the x direction. And we

imagine that Bragg’s Law is satisfied for this 800 type claims here. And so, this two atoms

this one and this one.

The A and C definitely they are the phase relationship is an integral multiple path difference.

So that that is true, if Bragg’s Law is satisfied then we imagine another type of atoms situated

at a point B and then we try to find out that along this same direction that means the same for

the same incident angle, were Bragg’s Law is satisfied the theta angle.

How we can superimpose this to or how we can add the waves that is coming out? Extra

waves that is coming out from this A atom and this B atom which is arbitrarily oriented

somewhere in the space and here in this case, at an instance of x along the x direction. So,

then what we find out finally is the phase relationship and that is given between 2 phase

relationship of the angular phase difference between this A the wave coming out of this A

atom and the wave coming out of this B atom.

The phase relationship, we finally find out first we calculated the path difference from there

we calculated the phase difference and the phase difference is coming out to be 2 phi h x by a

and then we take the fractional component that is A is the lattice parameter here. So, the

fractional component of this position of this B atom that is given by x by a. So, finally, what

we find out is the phase differences is 2 π h × u.

H is here denoting remember this h is here denoting this planes which are satisfying the

Bragg’s condition. That means, the diffraction is happening from which plane. That is

denoted by this h. And this u here is denoting the position of this second atom arbitrarily

chosen second atom.
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So, up to here, we discussed in the last class and today we can extend this, I am not going

into a detail derivation of this entire part but what we can do is that we can check this we can

this reasoning the same kind of calculation we can extend it all the way to a 3 dimensional

network, where we can imagine that along the origin there is one set of plane is going. And

then we can imagine another set of plane arbitrarily anywhere in the space which is making

again a fractional coordinates of xa, yb and z, zc.

So, this atom instead of atom now, we are considering a complete plane here. So, in this plane

which is having a coordinates of x y z and fractional coordinates, if we imagine that the

lattice parameter for this unit cell is a b c. Then the fractional coordinates for this arbitrary

defined plane is xa yb zc or otherwise we can write what we can write here very

straightforward.

We can write something like u similarly, x by a and v is given by y by b and we can write that

w equals z by c. So, this is the fractional coordinate of this arbitrary defined plane. So, for

this arbitrarily defined plane now, what we can write the phase difference between the rays

coming out of this plane. The phase difference come from the rays coming out of this plane

and this another arbitrarily defined plane.

The phase difference between them we can extend it into 3 dimension and we can write that

in this way, simply 2 π (h u + k v + l w), where h k l is basically this plane. This arbitrary, this



origin, this plane h k l. And for this h k l plane the diffraction conditions are satisfied and this

h k l plane is basically diffracting in the diffracting condition that is what. So, basically this

term is giving the phase difference between the origin or atoms present in the origin or the

planes passing through the origin and any other arbitrarily defined plane.

So that is a phase difference between the X-rays coming out from these 2 atoms or atomic

plates. Now, one thing we must understand is that this relation is very, very general and it is

applicable to any kind of unit cell of any shape. There is no restriction because everything is

arbitrary here, a b c lattice parameters what is their angle we did not define anything that

angle can be anything that relation between a b c can be anything.

That means, this unit cell can be anyone of out of the 7 crystal systems or 14 bravais lattice

anything and but for all of them this relationship will be valid that means this unit cell this

relation is completely general. So, it can be valid for anything now, the point is that this

relation this 2 waves, the waves that is coming out of this plane A and the wave that is

coming out of this another atom B and they not only differ by on this phase difference but

they can also have an amplitude difference.

And that amplitude difference will be the same, if they are same kind of atom that is okay

that is fine. If it is composed of a single element let us say I am considering something like

iron. So, every atom is iron and this is I mean like the amplitude of the waves coming out will

be the same for all. But in case this is a multi element component, a multi element system.

Let us say, I have iron is one and aluminum is the other one. So, these 2 types of atoms are

composing this entire unit cell. Then I have to consider their amplitude separately and

amplitudes are normally as we already understand from individual atom, the amplitude is

basically nothing but the f that atomic scattering factor appropriate values of atomic

scattering factor.

Why appropriate values of this? Because we know atomic scattering factor depends on sin

theta by lambda this term. So, an appropriate value of atomic scattering factor will define this

amplitude of this 2 waves. So, not only the phase difference we have to consider, we also



have to consider their amplitude and that amplitude is given by the atomic scattering factor.

So, if it is composed of 2 iron and aluminum then these 2 X-rays will contain 2 different

waves.

And one of these waves will have amplitude of this f F e and another one will have f A l

with a phase difference of phi between them.
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So now, simply we can imagine that the problem has become the center problem of scattering

from unit cell is now, comes down to a problem where we have to just add up these 2 waves.

As I already said, 2 waves we have let us imagine that we have one way with f 1 wave with f

2 and a phase difference with phi. So, this we have to just add them, this is the entire problem

for the entire unit cell.

This is what will be telling us or this is what we will be giving us the diffracted wave, the

intensity of the diffracted waves, the amplitude phase everything. If we just add up these 2

waves. And these are completely arbitrary 2 different arbitrarily defined atoms for any kind

of unit cell, so, this is completely general. So that means basically, we have to add up this

wave scattered by the atoms in the unit cell one in the origin and another one somewhere else.

This summation, the best way of doing the summation is by expressing this 2 waves in terms

of a complex exponential function. So, we will see what basically means by complex



exponential function and all. What we can do is that we can represent first of all we can

represent these 2 waves, let us imagine one of the waves is coming out of the origin, one of

the waves is coming out from this arbitrarily defined plane any atom from this arbitrarily

defined plane.

We can represent this, 2 waves by the variation in the electric wave, electric field vector,

electric field intensity. Because, if you remember, we already said that every wave these are

electromagnetic waves. So, they can be represented by the electric field vector and that

electric field vector continuously, sinusoidally varies with respect to the time for a fixed

position and with respect to position for a fix time.

So, we can imagine these 2 waves as these 2 sin waves basically. Where there electric field

vectors is varying with time and then we can add them up and get the resultant width. So, the

way we can possibly express these 2 we can express one of these is like this, where we have

this A 1 into sin these are both we are expressing basically these 2, 1 is this u 1 both of them

are sin waves.

One is this and one is this. Both of them are sin waves. So, we are just writing their

expressions. So, what we can write here is 2 φ ν. This is not μ actually this becomes almost

like a gamma. It is just not gamma and this is basically we have to write mu. E1 = A1

sin(2πνt – φ1) and the second wave we can write it in this way E2 = A2 sin (2πνt – φ2). So,

these 2 waves has exactly the same frequency that means same frequency or for that matter,

they have the same wavelength.s

Both of them have the same wavelength, these 2 waves and they have to have same

wavelength because then only they will be able to they can be add up. These 2 waves, they

can be added up. This but they differ in the amplitude and in their phases. One is having φ1,

one is having φ2 and ultimately, if we add them up, we will get this third one, E3. Third wave

E 3 which is again a sinusoidal wave.

But this time with a completely different amplitude and different phase in itself. This will be

a resultant wave of out of these 2 wave, if you sum them up at any given position any given



point, if we sum them up, we will be getting this third one with its own phase and amplitude

which is of course related to the phase and amplitude of this 2 waves that we define. So, we

have to now, basically find out this third wave.

This E 3 that will be the resultant final diffracted intensity coming out of this unit cell,

complete unit cell.

(Refer Slide Time: 15:49)

So, one way we can do that is basically by expressing these 2 waves as vectors. So, this

vectors basically what we can do is that we express the vectors in the plane in this vector.

This vector addition waves which is I think everyone knows the way we can express one of

these waves, we can think about the length as their amplitude and the angle is related to the

angle the mix with the x axis this here.

This is basically the angle is the phase angle here. This is your phase angle, this is another

wave, this is the amplitude and this is the phase and then the third wave or the resultant wave

is basically this with an angle phi 3 phase angle phi 3 and we can just find out this resultant

wave from simply adding this to vectors by following the parallelogram law. So, this is one

way we can very easily find out the resultant wave out of this.
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This is a little tricky to do it and we cannot find out the general expression so easily. So, we

will do it we will solve this problem in some different way altogether. Basically, this

geometrical construction, this vector construction, we can avoid it by some analytical

treatment by using complex numbers. So, we can bring this complex geometry here, the

complex numbers we can bring it here.

And then we can do this adding the same summation we can do it in a much simpler way. So,

how we can do that? That is what we will be seeing now. So, complex numbers as we know

that this numbers complex numbers are plotted in same way as the vectors we can plot them

in this complex plane where again the amplitude is represented by the amplitude. So,

amplitude is represented by this length of this and this is the given this and this angle that it

makes with this real axis.

The real axis is this one this is the real axis here. And x axis is the real axis this one and this

is the imaginary axis, this y axis is basically the imaginary axis. Complex numbers, you

know, they are expressed by this way a + b i that is i is root over – 1. So, i is basically having

a value of root over –1 which is the imaginary part of this entire expression so, in this

complex plane, if we express any of these waves here.

Now, the amplitude is again just like vectors amplitude is represented by this length and this

angle with upsizer this x axis, this angle is the phase axis that is it. So, here now, what we can



do is that this vector, we represent this one vector in this complex plane and then we can try

to sum them up. And that we can do it in this way. Basically, here, we represent the waves in

by this amplitude that same wave, if we imagine that E equals A into the way we have

expressed them earlier.

E equals sin(2πνt – φ). This is the general expression that we earlier wrote for this complex

this waves that is coming out from each of these planes or each of these setup atoms. So, we

can represent them in this complex plane here itself. And similarly now, we can add them up

using this complex number. So, what we can do here is that by each of these waves, we can

express them in this way.

That is we can express them by a power series expansion, where we can write this as

basically equals A (cos φ + i sin φ). So, this is how we can express any of this waves, any

wave in the complex plane, we can express them in this term. Here it has a power series

expansion where we have this cost phi and sin phi basically cos φ and sin φ, if this one is the

wave in the complex plane then cos φ and sin φ are the 2 components along the x axis and y

axis.

That is how we basically express them here in the complex plane. Any way we can express

them here in the complex plane and simply we can the intensity of the of this waves, we

know the intensity is basically its square of the amplitude. So, what we can get the intensity

of any wave just by multiplying this wave this one, this wave by its complex conjugate.

So, what do you mean by complex conjugate? Basically, if any of this any wave is expressed

by this then it is complex conjugate will be A e ^(– i φ). So, this is the complex conjugate of

this wave and if I multiply this 2 that means, what I can do is that I can write A e^ (i φ) just

the modulus of it means the absolute value of it, we can multiply it. We can imagine it in this

way into A e – (i φ) and this equals to A square.

Because i square we know i square equals 1 basically. This is i and if you square it, this will

be –1 sorry this will be –1, i square will be –1. So, this basically finally comes out – i square

which is again the 1. And finally, this is how we can get the intensity of this wave simply



from this by multiplying it with its complex conjugate. So, what we now basically the way

this part.

The importance of this part is to make you understand that any wave in the complex plane

same with this the waves that we were talking about in the earlier cases here. So, one wave

coming out of this origin and one wave coming out of this arbitrarily defined plane anywhere

from this plane. So, these 2 waves we can just represent them either as a vector here or we

can represent them in this way as a sinusoidal waves.

And then find out the third one, we can represent them in a vector as a vector here and then

we can find out this using the parallelogram law, we can find out the third one the resultant

vector or the simplest way of doing it is by imagining them as a complex number in the

complex plane and then try to see how they sum up.
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So that is exactly what we are trying to do here. So, when we do this addition, adding the

scattered wave from each of the atoms in the unit cell, this when we do is basically requires

the addition of this complex numbers representing this amplitude and phase of each of this

waves that is what. So, one of these waves as we understand this waves are represented by

this.



This expression for each of the wave and then one wave coming from the origin, one wave

coming from any other atom any atom situating anywhere else and we just add them up. As,

we said the amplitude and we have to just add their amplitude and phase. So, amplitude is

given by the appropriate value of atomic scattering factor, we have already seen that atomic

scattering factor, if we have 2 different one.

Then we can write 2 different atomic shattering factor, if we have one single type of element,

we can write one single atomic scattering factor. And we have to find out the appropriate

value of this atomic scattering factor considering the sin θ by λ. That means, if we know,

understand this 2d sin θ = λ. That means, basically, so, what we can write here is sin theta by

lambda is basically 1 by 2 d.

So, this we can find out exactly for which sin θ by λ this atomic scattering factor is valid. So,

we have already seen the relationship from there we can calculate this atomic scattering

factor of any particular sin θ by λ ∑means any condition particularly Bragg’s condition where

the diffraction condition is satisfied, for that what should be the atomic scattering factor.

So, these 2 we can find out for a single element the F will be the same and phase we have

already seen that the phase difference is given by this expression 2 π (h u + k v + l w). So,

this is the phase relationship between them. So, the resultant waves that is scattered out of

this entire unit cell. This we can the final one we can write it in this way that is F which is the

final resultant wave that is coming out the entire unit cell.

We can write down that as a summation of basically, if we imagine that there are n number of

such atoms. If we imagine n number of such atoms we can calculate this n equals to 1 to

capital N, ∑ A e^(i φ). So, this is individual or rather what we should write it here this we can

write make it special and write it as A_n e i φ_n. So, this one is the general wave and we are

just summing it over all the atoms present in that unit cell.

And that is giving me the final expression for ultimate expression for this diffracted beam

coming out of this unit cell. So, this we can write it as again summation of n equals from 1, if

it contains capital N number of atom then we can write it, if we imagine that it is one type of



element then we can write it as e into 2 phi and for phi we can write this expression is k v + l

w. This is the final expression.

So, this expression is the final expression for the diffracted beam intensity coming out of the

unit cell and this is called this is the resultant wave basically this is the result and wave from

coming out of all the atoms in the unit cell. This one, this F is called the structure factor

because it describes how the atomic arrangements which is given the atomic arrangement for

in the unit cell which is given in terms of u v w.

How this atomic arrangement is basically affects the intensity of the scattered beam for a h k l

diffraction. So, h k l diffraction is happening, diffraction is happening for h k l planes which

is for have a fixed sinθ for a fixed λ. How this diffracted beam intensity is getting affected by

the atomic position u v w? So that is given by this structure factors and we calculate the

structure factor by adding up all the waves coming out from individual atoms in a unit cell.

So, this is the final structure factor expression that can we can calculate.
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So, this is basically the structure factor is a complex number and it expresses both the

amplitude and phase of the resultant wave. So, what we can write is that, if we have let us say

2 different types of atoms in the unit cell, we can write first one is having an amplitude that is

atomic scattering factor f 1 and if it has the fraction of like u 1 v 1 w 1 then what we can

write from this expression.



From this expression basically what we can write is e raised to the power 2π and we are

satisfying something like h k l a diffraction is happening. So, h u 1 + k v 1 + l w 1 for the

second atom we can write like this, if that has a fraction this fractional coordinates at u 2, v 2

and w 2 we can write this. So, by adding these 2 we will be getting the final structure factor.

So, structure factor in general it is a complex number just like any way can be expressed by

this term. Structure factor also can be expressed by this one, we have already seen structure

factor is basically expressed as a complex number which is a summation of this all n number

of waves which are present from individual atoms which are coming with different amplitude

and different phases.

So, structure factor can be expressed in terms of a complex number like this. And the mode

that is the absolute value of the structure factor basically gives the amplitude of the waves

scattered by this entire unit cell. So, this the mode of this that means, this structure factor we

can go back to the laser point again. So, the structure factor is given like, just like the atomic

scattering factor, structure factor can also be given or can be defined as the ratio of the

amplitudes and structure factor.

The way we define it is basically the waves scattered by all the atoms in a unit cell divided by

the amplitude of the wave scattered by one single electron. So, in that respect structure factor

is basically n times the absolute value of atomic scattering factor. Atomic scattering factor

you know the way we define it is basically the amplitude of the wave scattered by one single

atom divided by the amplitude of the wave scattered by one single electron.

Whereas structure factor is the amplitude of the wave scattered by all the atoms, if the unit

cell contents n number of atoms. So, simply we multiply the atomic searching factor by n and

we get the absolute value of structure factor provided the unit cell containing only one type of

atom. So, this is how the structure factor and atomic factor basically are related and this is

how we can also define the structure factor or the amplitude.



The absolute not basically the structure factor but the absolute value of structure factor we

can because here this is the amplitude of this complex this wave of that is defining the

structure factor. The amplitude of the wave coming out of the unit cell that amplitude we can

define that amplitude in terms of amplitude of waves scattered by one single electron.

And the intensity of the beam diffracted by all the atoms is predicted by Bragg’s Law. And

the intensity is simply proportional to F square which is the intensity that as I said that can go

back to the pen. So, the final intensity is simply the square of the modulus of this amplitude

of the beam. Amplitude is basically this as we just now, discuss the amplitude is given by

mod F and mod F square this is what the amplitude.

And this mod of F square we get by multiplying again F with its complex conjugate which is

represented like this and which we can say is again it is expressed as – i φ. So, if we multiply

F with its complex conjugate, what we get is this intensity of the diffracted beam coming out

of the entire unit cell. So, the structure factor the dependence or the importance of the

structure factor is calculation is that.

This is a very important relation and it permits a calculation of the intensity, final intensity of

the diffracted beam coming out of a unit cell of any shape, unit cell of any kind, any kind of

crystal system. The intensity of the diffracted beam for a particular h k l deflection means for

a particular h k l set a plane, if they are satisfying the diffraction condition, what will be the

intensity of the final diffracted beam irrespective of any kind of crystal system?

We can calculate simply by calculating its structure factor. So, this is what is the importance

substructure factor and this is where we will stop for this and we will continue with structure

factor calculation for some specific crystal systems in the next class. Thank you.


