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Welcome to my course Non - Metallic Materials and today, we are in module number 5 

Electrical, magnetic and thermal properties of non-metallic materials and this is lecture 

number 27, where Thermal properties Specific heat, heat conduction, thermal diffusivity 

and concepts of thermal expansion will be described. 
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So, this is a well-known material, right from your school age, you are studying the 

thermal properties of material in various form.  

So, in this lecture, I will introduce the heat capacity of a solid. Already while I was 

discussing about the thermodynamic property, we in we just introduced this concept of 

heat capacity, then the classical and quantum theory of heat capacity will be explained, 

then how heat capacity is related to the phase transition. Also, this I have described 

earlier, but it will be elaborated a bit. 



Then, we will talk about the thermal conductivity and then, the concept of expansion and 

in some materials concept of contraction with the increase of temperature will be 

described. And finally, we will talk about zero thermal contraction materials and as you 

will see that not everything is related to non-metallic materials, sometimes metallic 

alloys play a major role. So, in order to maintain the continuity, I will talk about the 

metal alloys also, wherever it is relevant. 
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Now, the heat capacity in a normal solid as you know that a component of atoms are in 

constant motion and the vibration constitutes the thermal energy of that particular 

material. So, the way in which the materials respond to the change in thermal energy that 

forms the basis of a thermodynamics which I have already described which is relevant to 

material science.  

So, I will not go into more details; but a number of more general physical properties 

which are allied with the change in thermal energy that is discussed in this lecture, 

lecture number 27 as well as in the subsequent lecture. 

So, the heat capacity that you know that is the amount of the heat that is required to raise 

the temperature of a sample by 1 degree. So, we call it say molar heat capacity. It is the 

amount of heat required to raise the temperature of 1 mole of substance by 1 degree and 

we call its a specific heat capacity, when amount of heat required to increase the 

temperature of 1 gram of solid by 1 degree. 



So, usually this is a common term to determine the specific heat at constant pressure. 

This is given by the polynomial equation as I have described here is of course, a function 

of temperature and there are several constant terms which is involved a, b, c, d, e 

etcetera. And note the power of the T also is a bit different in each case allied with the 

constant that we have described. 
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Now, according to the classical theory, it is assumed that each of the atom vibrates 

independently in a crystal structure and which is independently of the others. So, this is 

the vibration is not really coupled. So, as you can understand in a three Cartesian system, 

each atom could possess total 6 degree of freedom; x y, x minus y, y minus y, z minus y 

and each of this degree of freedom has a total energy of half k B; k is the base Boltzmann 

constant.  

So, therefore, the energy total energy can be approximated as 6 into this half of k B into 

T that is the energy term and the Avogadro number is multiplied with that. So, it is 

multiplied with any for a molar energy and as you know that the universal gas constant is 

related with Avogadro number and Boltzmann constant. 

Now, if you differentiate this equation, so that is del U by del T at constant v, we get the 

term which is a specific heat at constant volume and this can be approximated as 3 R and 

if you put the value of R, you will get typically 25 Joule per mole per degree Kelvin. So, 



actually this is valid. This value is valid at pretty high temperature. As you can see that 

for two different types of material, if you plot the molar heat capacity with temperature.  

At very high temperature, it is indeed the value is equal to 3 into R; but at lower 

temperature, it is dramatically different. So, why this is dramatically different that is a 

separate story. 
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And it is related to the quantum theory of heat capacity. So, we assumed that the 

vibration of the atoms are actually independent to each other. But in reality, they are 

quantized and this energy is given by n plus half into h into nu; n as you know is the 

quantum number and h is the Planck’s constant and nu is the vibration frequency. So, as 

you can see when n is equal to 0, then still some energy left. So, this is called zero-point 

energy. 

Now, Debye included the fact that the phonon throughout the crystal is coupled together. 

Because in a crystal structure, each of these atoms or molecules are bonded by bonds and 

throughout the crystal structure, if you consider this phonon vibration, they are in fact, 

coupled together.  

So, phonons are actually waves through the solid body and its having its own wavelength 

and frequency and the energies are quantized. So, the heat capacity that can be given 



approximate it by this complicated relation. I am not going into the details of this Debye 

amendment. 

So, here you can see the value R is included; T is the temperature and we can define a 

Debye temperature. So, this is a particular temperature for a respective solid, where 

subsequently, it goes to the high temperature case.  

So, it approaches the 3 R values. So, this theta D is the Debye temperature and you will 

have to integrate it from 0 to theta D by T, this parameter where x is given by h nu by K 

B T. So, nu is the frequency term and this Debye temperature is given by h nu D by K B 

and actually, ah it follows this relation in this region, where actually it is not only not 

follow the 3 R value. 

So, at very low temperature well below the Debye temperature this equation is valid. So, 

it can be derived from this larger equation and here, you can see that C V that actually 

varies with a cubic power of the temperature. 
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So, heat capacity that is very closely related to the phase transition and partially, I have 

already described it. So, when the phase change is involved. So, it is a order to disorder 

change, ferromagnetic to paramagnetic transition temperatures can be considered and 

here in this case, C p is involved. C p as a function of temperature is involved. So, it 



actually both for first order and second order transition, there is a break in this C p versus 

T curve and corresponding to this break, that temperature is your transition temperature. 

So, when phase change takes place as you can understand that for the first order phase 

transition, when phase changes involved say solid to liquid kind of phase transition 

taking place. So, there heat is being taken, but temperature is not changing. So, del T is 

essentially zero. So, the value of your constant I mean C p at that particular temperature, 

this is in finite. So, it is expected because delta T is zero. So, it is almost undefined. 

For second order phase transition, no latent heat transformation case appears. So, C p and 

T is just so show some kind of discontinuity at the transition temperature. Typical 

example is ferroelectric to paraelectric or ferromagnetic to paramagnetic kind of phase 

transition that already I have described in my earlier lectures. 
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Now, in order to explain the thermal conductivity, we will have to understand the basics 

of heat transfer. So, for the steady state heat transferred in one-dimensional case, this 

equation is valid. So, J Q is K into dQ dQ c by dx. So, that is the gradient.  

So, J Q is your heat flux and dQ c by dx that is heat concentration gradient along with 

the direction of the heat flow and this K is called the  thermal diffusivity. Now, thermal 

diffusivity is related to thermal conductivity and in this relation, as you can see the 

density of the material as well as C p is also involved at constant pressure. 



So, thermal diffusivity and thermal conductivity, they are related. If you go for a non-

steady kind of heat transfer which is actually known as Biot-Fourier equation. So, that is 

the temperature gradient not sorry the rate of temperature change dT by dt that is equal to 

diffusivity and d squared T by dx squared.  

So, dT by dx is the change of temperature with time at a point particular point x in the 

solid and you can find the similarities with this equation as we have described with the 

diffusion equation, I described earlier. 
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Now, using this relation of J Q the thermal conductivity is determined under steady state 

condition. So, I can define the amount of heat transferred per unit time by this Q t term 

that is equal to thermal conductivity and area, cross sectional area of the solid in 

consideration and the change in temperature hot and cold and the gradient of x.  

So, the equation is you can approximate like this that this Q t is thermal conductivity into 

area and this is the temperature gradient. So, that is the steady state equation. 

And when you have multiple material connected in series, then across this number of 

materials which is shown in the right diagram, you can see, it is also a linear drop and 

this can be approximated as Q t is equal to area and then, summation of individual 

thermal conductivity and the surface temperature change del T i by del x i. So, this del T 



i is the temperature drop across a small slice whose thicknesses is xi and thermal 

conductivity is k i. 
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So, in case of metal, you know that the thermal conductivity has of course two 

component; one is of course, the mobile electron and you know that in case of metal, it is 

in a pool of electron and also, the phonon spectrum. So, your total thermal conductivity 

that will be a contribution from electronic as well as phonon contribution both will be 

there.  

So, the metal thermal conductivity that will be proportional to electrical conductivity 

because they are also the charge carrier is involved. 

So, the electrical conductivity and temperature with thermal conductivity that is related 

by this relation which is L 0 into the electrical conductivity and the temperature and this 

constant is term as Lorentz coefficient. So, in case of alloy, you have also defect because 

it is not in pure form. So, it has also defects.  

So, in defect is introduced, then you have an additional term here C and it indeed plays a 

major role towards the thermal conductivity. So, this empirical relation is valid for 

material with defect. 



So, as for example, in case of aluminum alloy, this relation is valid. So, as you can see 

this is 2.22 into 10 to the power 8 and multiplied by the electronic conductivity and 

temperature plus a constant term which is exclusively for the defects.  

So, as this view graph shows that electron can be imagined as I said in a pool of electron 

and the velocity of it is higher at the hot end than the cold and so, the kinetic energy is in 

fact transferred to the cold end by collusion collision between electron itself or collision 

with the atoms in the structure and thus, the heat is transferred. 
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In case of insulator like polymers or ceramics, phonon component is of course having the 

major contribution to the thermal conductivity. So, at the hot end, the solid kinetic 

energy of the phonon is of course the greater than the cold end and energy is gradually 

transferred from hot end to cold end by phonon-phonon interaction and interaction 

between the phonon and the solid structure, similar to the electrons.  

So, a mean path is important. So, that is the distance travel before it is actually collide. 

So, short mean path correlates with low thermal conductivity. 

So, if you have point defects that can drastically lower the thermal conductivity because 

that will reduce the collision of the phonon. So, as compared to the pure material, it will 

have lower thermal conductivity and this is the main consideration to synthesize 

ceramics with high thermal conductivity. So, introduce defects.  



So, here I have shown different types of phonon interaction. So, phonon with boundary 

scattering, phonon scattering with the imperfection, with impurity atom and decide atom, 

then phonon electron interaction, phonon interaction with the grain boundaries. So, 

various mechanisms are possible. 

So, if you consider a ceramic which is reasonably good thermal conductor. So, that 

surface of say silicon nitride and this kind of material is oxidized when it reacts with 

oxygen ambient oxygen and it forms a layer of Si O 2 and it generates point defect. As 

you can see that it generates the point defect and you know that how point defects 

exactly is denoted.  

So, you can have silicon in regular silicon site and then some of the oxygen is going to 

the nitrogen site, which we call antisite defects and also, cation vacancies will be created. 

So, totally if you do the balance, you can see that of course oxygen is plus 2 valent and 

nitrogen is having different balanced it. So, all these five point defects generated for the 

creation of a Si O 2 that eventually degrades the thermal conductivity of pure Si 3 and 4 

ceramic. So, this oxidation will have to be taken care off. 
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In case of polymeric solid, the thermal conductivity of the polymer is usually depend on 

the degree of crystallinity and material with a crystalline portion if it is high, then the 

structure will have higher thermal conductivity than the disordered region as we have 



shown it here, most of the amorphous region and some places, they are crystalline, so 

that will conduct it.  

So, the foams are developed plastic foams that will have high porosity in inside the 

structure and they have relatively lower thermal conductivity and voids actually inhibit 

this phonon transfer which I just mentioned. 

So, successful heat transfer across the interface is often important. So, this is not within a 

single material; but a interface in electronic circuitry. Many of the cases, you know that 

in the computer also you have the chip which is having a heat sink, here as you can see 

this metal fins are fitted on the top and actually, there are certain material that is involved 

in a flip chip package.  

So, that actually gives the good interfacial conductivity. So, now the equation is slightly 

changed instead of thermal conductivity, I will introduce a term of interfacial 

conductivity which depends on the surface roughness. So, if it is surface roughness is 

more, then this your gamma will be deteriorated and suitable chemical bonding in the 

interface region can improve gamma.  

So, there are a lot of pastes etcetera is available. So, once you put it, then you put that 

paste on top of it this is we call it say TIM kind of material; so, Thermal Interface 

Material that is given there. So, that the heat transfer is perfect. So, the thing is not 

heated up. 
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So, it dissipates, then let us talk about the thermal expansion. So, thermal expansion of 

the solid usually increases with the temperature and we can define a mean thermal 

coefficient of linear thermal expansion. So, that is given by this relation final length 

minus initial length divided by initial length into change in the temperature.  

So, this is del l by li divided by delta T. So, mean coefficient of the volume that also can 

be estimated and tentatively, this linear coefficient is one-third; sorry, three times of the 

volume coefficient. So, 3 alpha m is your volume coefficient which is given by beta m. 

The term the linear expansivity of a solid which I have defined as alpha here is the 

increase of length per unit increase in the length per unit length is given by this relation. 

So, it is dl by dT by l. So, that define the linear expansivity and clearly, if you then 

compare the two, alpha m is certainly not equal to alpha.  

So, the thermal expansion of a multi-phase solid depends on the expansivity of the 

individual component and also, the ratio of the component that is present in the material. 

Glass ceramics for example, they have negligible thermal expansion coefficient and that 

is why it is used for the cook top etcetera. 
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So, the origin of the thermal expansion, you can derive it from first principle calculation. 

Although, explicitly have not taken as a part of this course, but you can calculate the 

attractive potential between two atoms as well as repulsive potential.  

And I think partly, I have described it in one of my earlier lectures and you can calculate 

the variation of potential energy as a function of the separation between these two atom. 

So, that curve is shown here. So, the minimum inter atomic position is somewhere here. 

Now, if you increase the temperature, then it will be average position will be maintained 

between these two extreme position. 

So, as you can see that if this one is totally asymmetric, something like this; it is 

asymmetric the dotted line, then this mean position with the increasing temperature that 

will be expanded.  

So, this material will show large thermal expansion coefficient. As compared to the 

material with stronger bond, where it is more or less symmetric, this potential well is 

symmetric. So, the mean position will be maintained even if you increase the 

temperature and those kind of material will not exhibit appreciable thermal expansion 

coefficient. 

You can work it out; say for example, you can compare between magnesium oxide and 

sodium chloride and calculate the attractive and repulsive potential and then, sum it up to 



get the total potential and then, you can see exactly how it varies assuming some 

arbitrarily the value of r, so that you can generate this whole curve and accordingly, you 

can see that whether it will be thermal expansion will take place or not in this type of 

material. 
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Now, for certain material thermal contraction is also applicable and one example already 

I had sited, when I was talking about the ferroelectric phase transition. As you can see 

that once you have a low temperature case, then the tetragonal phase for this hypothetical 

octahedra and your cation is sitting exactly at the central position.  

So, it is having a tetragonal structure. So, the value of this one at low temperature is C l 

and then, once you cross the phase transition temperature; then of course, this diagonal 

this is a bit increased, but mostly this one is reduced. 

So, you will have to see that when the contraction outweighs the expansion of a material 

like perovskite lead titanate, then overall thermal contraction takes place. Another 

example is for this types of ceramic which is cordierite or which is spodumene type 

ceramics, it has two rigid structure.  

As you can see two rigid structure and it is bounded by either silicon-oxygen, oxygen-

oxygen, silicon-oxygen or silicon-oxygen-oxygen kind of bond. So, what happens when 

you increase the temperature, then this rigid bond, they are actually this is expanded. 



So, this part is expanded the rigid layer and this oxygen-silicon-oxygen and silicon- 

oxygen-silicon bond angle changes, so that basically shrink and once it shrink, that 

brings this rigid layer close to each other. So, then the thermal contraction takes place in 

this type of material. 
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There are other types of material typically this tungsten oxide base or a phosphate base 

material, where this polyhedral, it changes its shapes. So, it is not actually changing the 

dimension; but it just rotates, it distorts and effectively, due to this cooperative distortion 

there is a thermal contraction. 
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So, then people start working on a material. If it is possible which is does not have any 

thermal expansion or thermal contraction at all. So, number of solids now it is known. 

So, what are notable? This is your Prussian Blue is one of them, ytterbium, gallium and 

De that is another material. This exhibits actually no thermal contraction. So, this is 

actually the material, it exhibits this kind of non-thermal expansion, this is called the 

anti-perovskite material. 

So, this is a combination of normal thermal expansion of course it will take place, but in 

addition a shrinkage of the unit cell will occur, mainly due to the magnetic ordering 

between the manganese atoms.  

So, in this case, I have cited an example of copper germanium which actually takes this 

A site in the near three lattice and N atom is occupy in the octahedral site and actually, 

the oxygen in regular perovskite that is taken by manganese. So, this manganese atoms, 

they have this magnetic ordering. 

So, eventually, the degree of expansion or contraction can be controlled by manipulating 

this manganese contribution via the introduction maybe of defects or by dopant cation. 

So, this type of material actually they are zero thermal expansion, sorry zero thermal 

contraction or you can see thermal expansion material that has been worked out. 
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So, these are the references. Mostly, in the book by the J. D. Tilley. There are certain 

very good sites available in the internet, where interactively, you can understand the 

crystal structure and other phenomena. 
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So, here we have described the heat capacity concept, both classical and quantum theory 

for the specific heat. Then, heat capacity and phase transition, this interrelation was 

explained in order of first order and second order phase transition. Then, introduced 

thermal conductivity concept, thermal conductivity mechanism also was outlined and 



thermal expansion and contraction, why it happens in a nonmetallic material that we 

talked about and finally, we talked about zero thermal contraction material. 

Thank you for your attention. 


