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Good morning. Today, we begin a new chapter. This is on plastic deformation of pure 

metal. Last class, we looked at evolution of micro structure of pure metal, and normal the 

metal that we use, they are made up of several crystals. They are oriented at random and 

its properties will depend on the type of crystal of which it is made up of, and it will also 

depend on the way; these crystals are arranged in the metal.  And  today, we will look at 

what happens if we try to deform the metal. Now, we will look at the types of 

deformation broadly. The deformation can be classified into elastic, and plastic 

deformation. The elastic deformation is reversible. It remains as long as there is a state of 

stress present. Once you remove the stress, the material comes back to its original shape, 

and position or shape and size. Now, plastic deformation on the other hannd is 

permanent, even if you remove the stress applied.  

It is only the elastic part of the stress which disappears, but the permanent deformation 

remains. Now, we will look at critically the mechanisms of plastic deformation of pure 

metal. And we will try and find out at what stress actually the deformation permanent 



deformation takes place. What is the nature of the stress? What type of stresses can cause 

plastic deformation. We will also look at the stress strain behavior of typical crystals, say 

particularly face centered cubic crystal. We will also try to find out and estimate of the 

theoretical strength of an ideal crystal. So, basically, these are the four topics that we are 

going to consider in this chapter. 
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Now, to recapitulate the difference between elastic and plastic deformation; you have 

already familiar with this type of stress strain plot, which we normally perform to find 

out strength of material. We looked at it in detail and the type of information that, you 

get from this kind of test. Now, this part of the stress strain diagram represents elastic 

deformation. If you deform a material here unload, it will trace back its path and come 

back to its original shape and size. But if you load it beyond this point called proof stress, 

then if you unload, it will only the elastic part will get recovered, but there will be a 

permanent strain left behind.  

This is schematically shown here; elastic this is the nature. If you apply, there is a 

deformation; but once the stress is removed, it comes back to its original position. So, 

this is reversible. On the other hand, plastic deformation if you apply the stress, you go 

somewhere here; you remove the stress; it that permanent the deformation remains, only 

a small part which is elastic, is recovered. So, this is permanent. 
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Now obviously, if you look at the mechanism of deformation, what happens with respect 

to the crystal structure? We have seen that, strain is defined as stress over young’s 

modulus; this is the hooks law under uniaxial attention. So, in terms of crystal structure 

so you have, I just shown a 2 D crystal structures. If you apply stress, what happens in 

one direction? This direction it elongates, but in this direction there is a contraction. So 

basically, you have strain in two directions. In one direction, in the direction of tensile 

load, there is an expansion; whereas perpendicular to that, there is a little contraction. 

So therefore, eventhough stresses uniaxial, you have strain in this direction, this direction 

as well as perpendicular to the plane. So, you will have three component of strain. If you 

have a system, if you can measure we have seen the how extra diffraction can be used to 

measure the lattice spacing. If lattice spacing is measured, then the change in lattice 

parameter can be converted into strain; that is change in lattice parameter delta a over 

that initial lattice parameter a. So, this is strain. So, that means, extra diffraction can be 

used to find out the extent of elastic deformation or the presence of stresses in metals, 

residual stresses in metal. 
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Now, it may be worthwhile to understand deformation, we have to know what kind of 

stresses will actually be responsible for deformation? So, for that it is just to recapitulate, 

people having background of applied mechanics will know, how stresses and strains at a 

point is represented? This is shown here as a unit cube. And with respect to this X 1, X 2 

X 3, this is a set of orthogonal axis. This represents the state of stress. This represents 

state of strain. Strain is a represented as epsilon i j, let us say and I can have any value 

from 1 to 3. Similarly, j can also have 1 to 3. For example, this epsilon 3 3 represents 

normal strain on plane, this intersects X 3 axis at right angle. 

 So, this is the plane which intersects, which is normal to X 3 axis. So, this is the normal 

strain. You also have strain in this direction, which is called shear strain. This is 

represent, these acts on plane three in direction two along this direction. And the same 

way, sigma 3 3 represents the normal stress on the plane which intersects, X 3 axis at 

right angle. sigma 2 3 is shear stress, along X 2 direction acting on plane, which 

intersects which is normal to X 3 axis. So, therefore the state of stress can be represented 

in the form of a matrix. Like this, sigma 1 1, sigma 1 2 is a 3 by 3 matrix and also you 

must remember that, state of stress should be such that there should be a state of 

equilibrium. 

So that means, if there is a sigma 3 3 stress acting here on this plane, there should be a 

stress equal and opposite to the other side, this. Similarly, the torque which is generated 

by sigma 1 3 and this is also 3 1, 1 3 and this is 1 3; this is also 1 3; this is the torque 

generated by this should be balanced by the torque generated by the sigma 3 1. So, 



basically, so that means, sigma 1 2 or sigma 1 3 should be equal to sigma 3 1. So, in 

reality, it is good enough to define stress. So that means, the stress matrix is symmetric. 

sigma 2 1 is equal to sigma 1 2; sigma 1 3 is equal to sigma 3 1; sigma 3 2 is equal to 

sigma 2 3 and same thing happens, in case of strain as well. So, you have 6 component of 

stress 6 component of elastic stress, 6 component of elastic strain. 
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Now, advantage of this kind of matrix representation is helps you to transfer the state of 

stress from one reference axis to another reference axis. Very often, those who are 

familiar with stress analysis; they will know that stress at a point. You know can be 

defined with respect to a reference axis. If it is defined with respect to one reference axis, 

and often you have to determine stress with respect to another reference axis. And what 

you need to know is the direction cosine between this old reference system and the new 

reference system.  

Is this direction cosines are known, it using (( )) representation very easily, state of stress 

can be converted from one reference axis to another. Now, let us look at few very 

common state of stress. Like, when you do a tensile test, you subject the specimen to 

uniaxial loading. You have stress only in one direction, that is sigma 1 1 and rest of the 

components, they are 0. You can also have a situation, where the stress says this is s and 

this component is minus s. This type of stress actually represents a case of pure shear. 

What does this mean? It means there is no tensile component.  



It is shear and later on, we will see, it is this shear stress component which is primarily 

responsible to cause plastic deformation in pure metals of crystal. If the state of stress is 

like this, you have only these three normal components; that mean all principal stresses, 

this normal component, this diagonal component are also known as… If this diagonal 

components only exist, rest of these are 0 then, one can call them as principal stress. This 

reference axis is described with respect to the three principal stresses. Now, if all the 

three principal stresses, they are equal; say in this case, this is p p p. So, this means, this 

is a case which is something like, you can say a state of hydrostatic stress.  

So, if it is minus p, minus p, minus p that means, you are trying to compress a particular 

solid from all direction. Now, this kind of stress, state of stress that hydrostatic state of 

stress cannot cause any plastic deformation; Because under this condition, if you convert, 

if you try that reference axis, try to find out what is the state of what kind of shear stress 

you will have? You will find all the shear stress component will be 0. If there is no shear 

stress, the material cannot undergo any plastic deformation. So, it is important to know 

the state of stress, because very often, although a simple tensile test you subject material 

to uniaxial stress. 

But for deformation often you will have at multiple stresses applied along different 

direction. And you should be conversion; one should be conversion with the state of 

stress, which can give plastic result in plastic deformation. Now, using this kind of 

representation, as I said that sigma i j and epsilon k l. So, suppose this is the state of 

stress; epsilon k l is the state of strain at a particular point. These two are related by a 

relationship like this and in inverse of this, a strain is related to stress by this. So, this is 

the strain tensile. This is the stress tensile and you also need another tensile, which will 

we convert one in to the other. This matrix S i j k l, this is called compliance matrix. 

This is called C i j k l is called stiffness matrix. This kind of a representation also 

signifies that, this is not just one term C i j k l; the change from 1 to 3 and wherever these 

indices are repeated like k appears here; k appears here. So, this represents summation 

over k, that k extending from 1 to 3; similarly, l extending from 1 to 3. Similarly, you 

will have here also exactly same thing it indicates. Now, as you can see, if this number 

you know each you change from 1 to 3. If you start writing this full expression, it will be 

a very long equation and as. So, one way a convenient way of reducing it is to see that, 

how many component of state of stresses important?  



We have just seen that, this stress matrix is symmetric. So that means, these (( )) 

diagonal elements, they are equal. So, actually you will have the 6 component of stress at 

a point, sigma 1 2 3. And this is a shear stress component, which is represented said that 

is sigma 2 3 is represented as sigma 4; sigma 1 3 is represented as sigma 5; sigma 1 2 is 

represented as sigma 6 and same thing is done with respect to strain. But to maintain that 

similarity, it is possible to show when you convert you know these kinds of two indices 

to represent strain and two indices to represent stress. When you do and you convert it 

into just 6 indices 1, 2, 3, 4, 5, 6 in that case, there will be some conversion factor and 

which is listed here.  
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So, this this component that strain component, this should be epsilon 6 over 2 is 

represented like this. In that case, you have 6 state of stress; 6 component of stresses. 

There will be 6 component of strain and they will be related by a 6 by 6 matrix. This 

matrix is called stiffness matrix. C matrix is the stiffness matrix. And from this, you can 

find out it is possible to show that, that symmetry that is I said that, sigma i j is same as 

sigma j i. So, these indices, they are interchangeable. With this, it is very easy to show 

that, this kind of and this stiffness matrix; this component C 1 2 will be same C 2 1. So, 

what it means is, this 6 by 6 matrix is actually symmetric matrix.  

So, how many then elastic constants do you have here? So, you can count this. So, first 

row is 6; second row 5; this row 4. Basically, it is a sum of 1 plus 2 plus 3 plus 4 plus 5 

plus 6. So, it will be 21. So, in... So, you can have actually 21 numbers of elastic 

constants, stiffness constants. And this is true I mean this is what, you need to describe 



elastic stress strain behavior of crystals, where you do not have any symmetry. For 

example, it is the triclinic crystal, where there is no symmetry and similar relationship 

also exists with respect to you can say, this is an inverse relationship strain is expressed 

as a function of stress. 
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In that case, the matrix is like this; S 1 1, S 1 2 and this is called compliance matrix. 

Now, this elastic constant; that means, you need a large number of elastic constant to 

describe the elastic state of stress in a material. This number of elastic constant, that you 

need for material which is which does not have any symmetry element, that is triclinic 

crystal. You need 21elastic constant, but we are fortunate. We often handle with the 

number of type of metals that we use. 

They are mostly cubic and cubic crystals have high symmetry. It is possible to show 

using this (( )) representation that, if you impose this symmetry conditions; this number 

of this elastic constants; that you need independent elastic constants; that you need to 

describe this state of stress is reduced drastically. So, for example, what does it mean? A 

cubic crystal has a 4 foul symmetry, 3 4 foul symmetry; that means, if you try to rotate it 

about one crystal axis, say let us crystal axis is usually represented as a b c as has been 

mentioned. So, about a if you rotate it by 90 degree, it comes to occupy exactly similar 

position. 
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 So, in that case, also you can convert this matrix to that and each of this element; they 

will be equal by imposing this condition. It is possible to show that, in case of a cubic 

crystal you need only three elastic constants S 11, S 44, and this is I think is S 12. This is 

a mistake here; this should be S 12. So, you need these three elastic constants and there is 

a relationship between stiffness and compliance and which is written here. In terms of 

stiffness, you will have C 11, C 12 and C 14. In fact, more familiar with this, this is 

called shear modulus. 

Basically, this is and also if you look at this elastic constants of different crystals and you 

will find, if this relationship is satisfied; if there is a relationship between say suppose 

material is isotropic; by isotropic means, it has same property in all directions. So, even 

if you rotate a crystal by any angle theta and that direction, you measure modulus; it 

should be same. So, to impose this condition also, if you impose this condition you will 

find, there is a further relationship between these three elastic constant; that means S 11, 

S 1 2 and S 4 4 which is listed here. So that means and similarly, similar relationship 

exists between the stiffness coefficients. 

We are more familiar with young’s modulus and what is how is this young’s modulus is 

related to this compliances with respect to a single crystal, like E is S 1 1; 1 over S 1 1   

(( )).  This is the ratio of this is minus ratio of S 1 2 over S 11 and shear modulus, the C 

44 actually represents shear modulus. So, there is a relationship if a material is isotropic, 

there is a relationship between shear modulus, young’s modulus and (( )). If one looks at 

the listed from hand book, that elastic constants of different crystals which are (( )) 



measured. If you look at that, you will find incase of tungsten; although it is crystalline 

BCC tungsten, as a BCC is elastic constants are such that, it is the material that it is 

isotropic. 

Now, polycrystalline material we have seen, it is made up of several crystals which are 

oriented at random. Random orientation will even out the effect of the single crystal 

property. Because of that random orientation, most polycrystalline material will exhibit 

isotropic property with respect to these elastic constants. Infact, same will be true with 

respect to other properties which depend on crystal orientation. With this background, I 

think it will be worthwhile to look at mechanism of plastic deformation, because to cause 

the deformation you need a given state of stress. It has been mentioned state of stress, 

which can give plastic deformation is shear stress, which is shown here.  
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You have, I have a 2 D crystal, which is shown here. You can also visualize as if these 

are different layers of atoms; it is like a pack of cards, say if you put a pack of card try 

and slide. So, that is this case of state of shear stress. Now, what happens if you apply 

shear stress? If you apply shear stress, if it is large enough to overcome the lattice forces; 

it can move a part of the crystal will move the stop part moves over the bottom along this 

direction. So, this plane on which this movement takes place, this mechanism is called 

slip. The plane on which this movement takes place is called slip plane and the direction 

and which and the plane, there will be a specific direction along with which this 

displacement takes place. That direction is call slip direction.  



And here after this deformation, if you removed the stress since it is comeback a gone to 

another state of stability minimum energy; it will not come back. The deformation is 

permanent. And if you look at the crystal structure on both sides, the crystals structure 

they are identical. There is no change in lattice parameter; there is no change in 

orientation; there is no change in volume. If there is no change in lattice parameter, there 

will be no change in volume and all atoms here, the top part which has slipped over the 

bottom. All atoms irrespective of a distance from this plane, the bottom plane on which 

slip has taken place. Their distance, the displacement is identical is one atomic distance 

for each one of this. So, this mechanism is known as slip and has mentioned, it takes 

place on specific planes along specific direction.  
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 Now, is it possible to look at the slip lines in a micro structure? So, we are familiar with 

the micro structure of metals. It is made up of several grains. If you try and visualize, say 

suppose it is slip has taken place. It has deformed like this. Now point is, there is no 

change in orientation. Now, if you can look at the micro structure just after deformation 

without polishing, you will see a line here. But you polish it normally, to look at micro 

structure normally what you do? You will polish grind of the surface; make it smooth 

then, you (( )) with chemical agent. 

So basically, since the orientations are identical, if you grind of. So, this portion goes; 

there is no trace left behind. So that means something like this. If you try and look at this 

phase micro structure, it will look both sides of the slip plane, the structure will look 

identical. You would not able to distinguish. So, if you want to slip slip traces what you 



have to do? You have to polish the sample, deform it and then look on the 

microstructure. In that case, you may able to see that, some lines along which permanent 

deformation has taken place.  
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So that means what you do? You will you polish a sample. So, which (( )) see even if 

you before you subjected to deformation, you look at its micro structure something like 

this. And you deform it and then, if you look you will find that, some lines marks like 

this appear after deformation. Different planes, they are differently oriented; this 

orientation of these slip traces will be different. So, this is a situation; but if you polish it, 

they will disappear. You would not see any such lines.  
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There is another mode of deformation, which is called twinning. Now, what is twinning? 

This is zone illustrated here. Suppose, this is a 2 D crystal; now, here also like slip, the 

deformation takes place because of shear stresses. A part of the crystal, what happens? It 

takes of an orientation, which is related to the parent matrix in a definite way. That is, the 

twin portion is just a mirror reflection of the parent crystal.  
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Now, let us look at this process here. Something like this, you can see these are the… So, 

these are the original positions, and on this plane or on this plane is a deformation I mean 

a part of this crystal takes up a different orientation. This is the original position of the 

atom. Now, here this atom moves here; this moves a little more distance; this moves still 

more distance and this distance is the same as it original lattice point. So, there is one 

here. So basically, this one moves you can say, one third of the lattice spacing and this 

direction, this atom moves two third and this moves one lattice distance. 

Now, look at the atomic arrangement across the plane. Look at this. If you join these, this 

is normal and this distance and this distance; they are equal. So, this is a mirror image or 

reflection of this. This is a mirror exactly the similar relationship every part. So, this 

atom which is further down here. So, this is the distance and this distance, they are same. 

So, this part is actually a mirror image of this part, same also here also. That means, this 

point which are marked by red, they are mirror image of with respect to those, which are 

marked as blue light blue here. 
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Now, this part of that deformed portion, now look at it; the orientations are little 

different. So, even if you polish grind of the top, the atomic arrangements are distinctly 

different. So therefore, here even if you grind of polish, you will able to see the twins 

here. This part is the twin; this is the parent crystal and there is a definite relationship, 

crystallographic relationship between this and that. So, twin has a different orientation 

and displacement here. The twin zone is proportional to the distance from the twin plane. 
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A twin also, like slip, it takes place on specific crystal planes along specific direction, 

which are listed here. For BCC, twin plane is 1 1 2; direction is 1 1 1. For HCP, the twin 

plane is, it is a prism plane 1 0 1 bar 2; twin direction is 1 0 1 bar 1; where as in face 



entered cubic, it is the close packed plane, 1 1 1 is the twin plane and twin direction is 1 

1 2. 
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Now, let us look at slip, a little detail. So, slip as has been mentioned, can takes place in 

crystal on specific plane along specific direction. Now, we are familiar with the 

representation of representation of crystal planes and direction; that means miller indices. 

So, slip plane slip system will actually be represented by a set of crystal plane say, h k l 

and a crystal direction u v w. This direction must like, it will is a direction line on the 

crystal plane. Now, cubic axis; they are orthogonal and in orthogonal crystal, there is a 

definite relationship as very simple relationships between the miller indices of the plane. 

And the and the miller indices of representing the direction, which is shown here, h u k v 

l w. Now, the number of slip plane is here. The 1 1 1, this is octahedral plane. So, this is 

shown over here and this crystal, this is 1 1 1. So, 1 1 plane there will be not one; there 

will be several of these 1 1 1 plane. And it is possible, using this relationship it is 

possible to write down the indices of the crystal or the slip direction quite easily as has 

been mentioned here. There are four such slip planes 1 1 1 and if you try and look at this 

here, 1 1 1 is a plane. Now, you try and find out which 1 1 0 direction will lie on this.   

So, one direction which is written over here, this is 1 1 bar 0. Now, to substitute here, 

you multiply this is 1 times 1 is plus 1 this is minus 1 times plus 1 minus 1 and this is 1 

time 0 0. So, that means this satisfies this condition. So, also if you try this permutation 

and combination, you will find there are three directions, which will satisfy this. Infact, 



they are ignoring the direction like 1 bar 1 0, which is actually the same direction but the 

sense is opposite. So that means, each 1 1 1 plane has 3 close packed directions. So 

therefore, you can have you will have 4 number of slip plane and each slip plane has 3 

such direction. So, the number of slip system in FCC is 12.  
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So, same thing you can do it for BCC crystal, but BCC crystal if you calculate this 

atomic density, here the close packed plane is 1 1 0. So, which is shown here; this is 1 1 

0 is the close packed direction and sorry close packed plane and close packed direction is 

this diagonal of the cube. So, in FCC, face diagonal was the close packed direction. In 

BCC, the cube diagonal is the close packed direction this is 1 1 1. Now, you have to find 

out, what combination of this 1 1 0 plane and 1 1 1 direction can how many such 

combinations are there? You will be able to show easily, there are 6 1 1 0 plane.   

So, there are 6 and each like in this case, there is one diagonal is this; if you join this, 

another diagonal is there are 2 1 1 1 directions. So, you have 12 slip system of this type 

but if you let do a little calculation you know; unlike FCC and HCP crystal, the atomic 

packing density in 1 1 0 plane and few other plane like 1 1 2 and 1 2 3, they are not very 

much different.  So therefore, very often this can also this plane can also act as slip 

plane. And it is also possible and leave it as an exercise to show that, on 1 1 1 2 plane 

there is only one 1 1 1 direction; there are 12 such planes. 

So, you will have 12 slip system of this type and if the plane slip plane is 1 2 3 and slip 

direction is still 1 1 1. You have 24 planes of 1 2 3 type and therefore, you will have 24 



slip system of this type. So, who have every large number of slip systems, in case of 

BCC structure. So, that is why if you look at if you do at, you you polish the sample, 

develop the micro structure then, give it a deformation. And look at the slip line, you will 

find this slip line here is wavy; unlike FCC, the slip lines are straight. Here, the slip lines 

are wavy; this is primarily because of a large of slip system being available. 
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Now, hexagonal crystal is shown over here. Here, the most close packed plane is the 

basal plane, that is represented as 0 0 0 1 and close packed directions are this is a close 

packed direction this is a close pack direction.  So, the number of slip system here is one 

plane and three slip directions. But you will actually find that, the third slip direction say, 

this is one direction; this is another slip direction; this is the third direction; but if you 

had this and this, you get this direction. That means, all these 3 system, they are not 

independent. Actually, there are only 2 independent slip systems.  

So, this is quite important you know; hexagonal crystal close packed structure, because 

of its specific arrangement of atom, it has very limited number of slip system. So, that is 

why as I go down little later, it will be clear; it will be much clearer. That is, hexagonal 

crystals are difficult to deform because of non availability of slip systems. Often if you 

other slip system also operate, these are prismatic slip system. So that means, you join 

this and say this, this, this are similarly are this, this, this. So, this prismatic slip, but the 

direction is still same. The direction is along this close packed direction, but so that 



means, you need additional slip plane; also you need additional mode of the deformation; 

that is twinning. 
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Now a quick look at the state of stress, because we have just look that that is stresses and 

strains. They are represented much more convenient to represent in the form of this 

matrix, like epsilon 1 1 1 2 1 3.  So, this represents the state of strain at a particular point. 

Now, this strain can have two components; it is elastic, which is recoverable and plastic. 

Now, when we are dealing with large plastic deformation, we are primarily concerned 

with this matrix; that is epsilon i j p, plastic. Now, if you subtract that elastic component 

from here, you get the plastics strain tensor or strain matrix. And here if you add this 

diagonal element, the sum of this diagonal element gives a measure of volumes strain. 

We have repeatedly as has been mentioned that, during plastic deformation, lattice 

parameter does not change; crystal structure remain same. There is no lattice strain. So, 

basically so that means, there is no volume change; so that means, sum of this diagonal 

element is 0. So that means, in the strain matrix so therefore, you one of this get fixed; if 

you know two, you know the third one. So that means what you have? You really have 5 

components of strains. So, 5 independent and for each of this, you need one slip system.  

So, you need for any arbitrary deformation, if you want take a crystal, give any arbitrary 

deformation. You need a large, atleast 5 independent slip system. We have just in that, 

incase of a hexagonal close packed structure, you do not have 5 independent slip 

systems. If you tick consider only the baser plane, you will have 2. So, that is why more 



other modes of deformation become important. Some other ideas, some other slip lines 

become operative or a twin deformation is a must for to deform a hexagonal close 

packed structure. 
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Now, a quick look at little similarity and the difference between these two mode of 

deformation, slip and twin. Slip is a relatively gradual process and it takes place on 

specific planes and directions. it takes place specific planes and direction Twin also takes 

place on specific plane along specific direction. Here, there is no change in slip; there is 

no change in orientation. Orientation of the crystal on either side of the slip plane is 

exactly same, whereas in case of twin, the orientation on the either side they are 

different; although they are related, one is the mirror image of the other. 

Then, displacement in case of a twin is proportional to the distance of a particular plane 

from the twin plane, whereas in slip, the displacement is same for all planes. Now, slip is 

quiet process whereas, twinning is a noisy process and a very common phenomena, we 

know is tin cry, say when the tin is deformed; tin is body centered, tetragonal structure 

and when it deforms, you know twins and it generates sound. So, it is noisy and it also…  

Secondly, this process the process of slip is very slow; it takes times it of the order of 

milliseconds for the deformation to take place and this process is very smooth. This 

stress strain diagram if you look at, there is no serration on the stress strain diagram, if 

the deformation is due to slip. Whereas in case of twin, the process is very fast; it takes 

place in microseconds and the stress strain diagram shows serrations something like that 



(( )) point phenomenon kind of that. So, these are in shots, this is the basic difference 

between the two. 
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So, today whatever we have looked at, some of primary some of this common modes of 

plastic deformation. We, two common mode of plastic deformation as we have seen are 

slip and twin. Slip, it takes place on specific crystal along specific directions and each 

crystal, like FCC it takes place along plane on plane 1 1 1 along direction 1 1 bar 0. 

Similarly, in twin also, it takes place on specific plane along specific direction. BCC 

also, it has similar type of slip system, but that number is very large. Here it is 12; here it 

is 48 and this has a marked influence on the nature of the microstructure. 

So basically, you see in a in a face centered cubic structure, we have seen that slip lines 

in a polished sample. If you deform and look on the microscope, you will find such slip 

stresses depending on the crystal orientation. They may be differently oriented, but they 

are straight. Whereas, same thing if it is a BCC, you will find (no audio from 48:05 to 

48:13) say like this. So, where we so where we means, this is one plane; this is another 

plane, another direction; this is another plane; this is another. So, it actually crosses over. 

So, there will be such a way, we slip lines in case of this is FCC; this is bcc. Another 

important thing, we learn that, slip on either side the orientation is same. 

If you polish it, the lines will disappear. It will look like this; the lines will not be there 

whereas, in case of twin there is a change in orientation, whereas in case of a twin there 

is change in orientation say something like this. Twin will have two lines, I mean two 



planes; this is one plane; this is another plane. So, this is the twin. Infact, the twin region 

is quite small with respect to the whole grain. Another thing is, next strain here is much 

higher than the strain that takes place with a single that slip. Here, even if you polish and 

this will remain, because this has different orientation. We also looked at the need for 

having larger number of slip system to give any arbitrary deformation. 

Because we have seen that, you need around 5 independent slip systems to give any 

arbitrary deformation. So, FCC and BCC, they have plenty of slip system. So therefore, 

they are very easy to deform; they can take any shape; they have good ductility in 

relation to that hexagonal close packed structures. They are difficult to deform an 

actually. So, they are not show amenable to any deformation process and you need extra 

mode of deformation that is twinning. In the next class, we will look at how this does this 

to deform the crystal? What is the level of stress that you need? And we have seen in a 

polycrystalline material, we have looked at the stress strain diagram. 

(Refer Slide Time: 51:10) 

 

We have seen that, if you draw this stress and strain, you have this elastic deformation 

then, you have that plastic deformation. So, there is a stress called yield stress or proof 

stress. We say that, if you exceed this, then there is a permanent deformation. So, similar 

thing is there in case of single crystal as well. In fact, the single crystal like, if you do 

like this, what will be the nature of stress strain diagram? Now, here this normally a 

polycrystalline material these are, you have a tensile stress strain diagram. So, here the 

diagram that, we will draw is shear stress versus shear strain. So, shear stress tau, shear 

strain. 



So, here also you will have semi (( )), you have something like an elastic part and then 

you will have a region like this; then you will have a region like this and then like this. 

So that means, a typical stress strain diagram of if let us see, if face centered cubic 

crystal will have these distinct stages, now this period is called… You need the stress 

exceed this point and this stress is called critical resolve shear stress. So, when stress 

exceeds critical resolve shear stress, you have permanent deformation. permanent 

deformation. That means, with respect to polycrystalline material, when sigma is greater 

than sigma y, you have permanent deformation plastic deformation.  

So, here so this is you can see has a similarity, has a relationship between y sigma y and 

critical resolve shear stress. Now, you may wonder so, why this slope change is? Now 

here the slip takes place, this is called stage 1. You can say that, here hardening strain 

hardening is very little, slip takes place on a single system. Here, this is case of a linear 

hardening region; here you have a multiple slip and there is again some amount of 

softening, which says some additional slip planes become operating. So, we will look at 

this in little more detail and this is where, you need to capitulate this stereographic 

projection. Because, this kind of this stress verses strain plot will be a strong function of 

crystal orientation. 

We will see, we will look at it in detail the relationship, stress strain relationship little 

more detail. We will also look at that during this deformation, does the orientation of 

crystal when you pull a single crystal in a stress strain straining device, does the 

orientation remain same or does it change. And what is the relationship and what crystal 

say depending on its orientation whether the slip will takes place on a single slip system 

or on multiple slip system? And in the end, we will also try and find out, what is the 

magnitude of if the crystal is the ideal, ideal crystal that means there is no defect, then 

what is the level of stress. And while, we will also have a look, why in real crystal you 

do not have that level of strength? Thank you very much.  


