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Good morning, we start with the second lecture of this course. In the last class, we 

started talking about atomic bonding; and primarily looked at some of the important 

characteristics of metallic bond, which are listed here. Just to recapitulate, it has low 

electronic specific heat, it has high electrical conductivity, it is non-directional, strength 

of this bond is proportional to the number of free electrons per atom, it has high stiffness, 

and there is a relationship between stiffness and bond energy, and it has high melting and 

boiling point.  
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To recapitulate some of this, we talked about the bond in carbon; and carbon has half 

field outer orbit. As it was said, you know if the orbit is half full, so that means, there are 

four electrons in the outer orbit, all have parallel spin. In this case, we call this orbit as a 

hybridized orbit; and all 4 electron in this orbit have identical energy. So, therefore, if 

you arrange, try to arrange this in solid, these bonds will be subtending equal angle; so, 

four equal angle. The only way you can have this is like substitute at the centre of a cube; 

in that case, the other nearest atom will be located either here, here, here, here. So, of 

that, with that atom you know, it will form a bond with one having just opposite this 

beam. So, this atom will have this beam here; rest they are similar.  

And I ask you to find out this angle, and I hope you have done; if not, I think, when we 

do little more detail the crystal structure, it will be evident. You can solve this by 

trigonometric, simple trigonometry plus an atom point at this centre of a tetrahedron, 

regular tetrahedron, and join the centre to the corner; this corner, this corner, and then try 

to find out this angle. Now, this type of bond you know, is highly directional, it has a 

completely filled up valence band; so, therefore, there is no electron to carry charge; 

therefore, it is insulator, it has insulating property, and this bonding is extremely strong; 

the distance between carbon to carbon atom is very less; so, therefore, it has high 

modulus. So, this is the structure, you get in diamond.  



(Refer Slide Time: 03:41) 
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Next, we looked at the nature of that bond strength, the origin of the bond strength. So, 

when you have two atom, you can visualize that this atom, and this atom; as if they are 

held by a spring, if you try to displays it a little, it will try to come back; but this spring is 

also strip, if you straight to push it too close, it will try to repair. And this is, so that is 

why you know, you have two kind of force; one is the force of attraction and other is a 

force of repulsion. I wanted you to show by differentiating the position or distances are 

at which this energy is bonding, this energy U is minimum. And I hope you have done; if 

not, the steps are shown; if you differentiate, you will find... and equate it to 0, you find. 

So, this is the equilibrium distance; this expression gives you the equilibrium distance.  

And usually, look at this exponent m and n; now this is the attraction force; now in case 

of electro static bond or ionic bond, this m is 1; and m is usually m is always less than n. 

So, that is, so that means, when the atoms are nearby by this is much more denominate 

than the repulsion - repulsive force. Now in case of a vanderwaal bond, which is weaker, 

they are the index m is equal to 6. Now lower the value of m indicates that the bond is 

stronger. Now once you have found out this, if you substitute this r naught in this 

expression, you will get the expression for the minimum bond energy. And the reference 

was made that this bond energy will have a direct relationship with the strength of the 

material.  
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Now, and to find out the relationship between bond energy and stiffness, you imagine 

that you have two atoms which are nearby its equilibrium distance between this and this 

is r naught; you try to displace it by a small distance x. And then the value of that energy 

U near r naught, that means at r naught plus x can be given by a Taylor series. So, this is 

the value of U at r naught; then the first differential at r naught, the times, distance x, 

then second differential, then x square times x square, there is a constant coefficient 1 

over 2, and we can neglect that higher order term, which is smaller. 

Now, from this, you can say the change in energy, you can rewrite this; and this form, 

and this we know that when U is minimum that is at r naught, this is equal to 0. So, 

therefore, this does not remain in this. And now, if you differentiate this with distance, 

then you get force. Then obviously, you get this term - the second differential d 2 U d r 

square at r equal to r naught times x; and this is known as second differential can be 

defined as stiffness. So, therefore, stiffness, relationship between stiffness and U is given 

by this.  
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And I wanted you to go through and this, and derive an expression or relationship 

between, derive the relationship between bond strength and bond strength or bond energy 

and stiffness. Now we are very familiar with young’s modulus; now how do you, is there 

a relationship between young’s modulus and stiffness? So, visualize two atoms, and the 

same way separated by a distance r naught, you try to displace it by a distance small 

distance x. Then the force that is acting between the two the restoring force or that pull 

that which you are apply, this is stiffness time x. So, and this, and stress we know is 

defined as force over area; assume that this area of the cross section area of this atom is 

proportional to r naught square. So, F over r naught square is this stress; and therefore, 

you substitute here, and now we know that X, which is the displacement, X is the 

displacement, and r naught is the original distance between the two atom. So, this is 

equal to strain. 

So, now we have a relationship between stress and strain; now we know the stress and 

strain, the relation that there is a proportionality constant, and which is known as young’s 

modulus. So, therefore, what we can say that young’s modulus is S over r naught. Now if 

you differentiate this bond energy, this is the first differential; differentiate it in second 

time, you get this. And substitute that r naught, the value of r naught over here; in that 

case, what you get is d 2 U d r square at r equal to r naught; in that case, this is the value, 

and then you try and find out that young’s modulus; young’s modulus will be S over r 

naught. So, again you substitute this over here, you get this. So, there is a direct 



relationship between young’s modulus and the bond energy or the co-efficient, which is 

defined by these four constants A, B and two index m and n.  
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If you look at this bond energy versus stiffness, here are some examples, which we have 

listed; it is a covalent bond, the carbon-carbon, in fact, the diamond is the strongest 

material, for this the young’s modulus is of the order of 1000 GPa. And from this, if you 

know this atomic distance, you will just multiply this by the atomic distance, you get the 

stiffness. So, basically this atomic distance roughly that is of the order of 1 to 2 

angstrom, between 1 to 2 angstrom that is could be 1.5 or let us say that it is 2 angstrom 

or 20 nanometre, so 10 to the power minus 9. So, if you multiply, this is GPa so that 

means, this is 10 to the power 3 gigapascal that is 10 to the power 9.  

(No audio from 13:20 to 13:32) 

So, you will get that this may come around 200. So, same is true in all other cases also. 

So, here are the young’s modulus for few metallic bonds, which is of the order of 300 

GPa; whereas, the young’s are this is, young’s modulus is of this order, and bond 

strength is this. Now, in ionic crystal like alumina, the values are this. So, simply you 

multiply this by the inter atomic spacing, the nearest inter atomic spacing, you get this 

stiffness. Now, if you look at the bond between these polymers, this is the young’s 

modulus, and this is the stiffness. Now here it is stiffness is very low, and it is primarily, 

if you look at the carbon - carbon bond, which is very strong; the carbon - carbon bond, 



but in polymer you know, along the chain it has high strength, but it strength is primarily 

determine by Vander Waal bonds, which are between chains; certainly, several chains. 

So between chain, there is a Vander Waal bond, so strength here, here and here, is 

primarily determined by Vander Waal bond.  
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Now, we also looked at specific heat, we also looked at specific heat of metal, and where 

we came to know that classical mechanics cannot explain why specific heat becomes 0 at 

0 degree kelvin? It can the classical mechanics can explain Dulong-Petit law, so that 

means, over here at a higher temperature or room temperature are normally metals, a 

room temperature is considered to be quiet high for most metallic materials. So, here 

most metallic material have a specific heat, molar specific heat around 6 calorie per gram 

mole per degree Kelvin So, it can explain that, but when you go to a lower temperature, 

it gradually a goes down to 0.  
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And we talked about that to explain this, one has to refer to quantum mechanics; and 

quantum mechanics basically here is a table, short table which gives you when you apply 

quantum mechanics and then classical mechanics. Usually when we were looking at high 

temperature and high energy that when particles have higher energy, it is classical 

mechanics gives correct prediction. However, when the temperature goes becomes very 

low or energy or particles are also very low, in that case classical mechanics gives wrong 

prediction. And this is where one need to apply the principle of quantum mechanics, and 

usually the calculations using quantum mechanics a little difficult to understand and little 

complex. 

So, therefore in normal cases, we do not at the temperature is high, and energy of the 

particles they are all so high, it is use of quantum… it is not required. Now, quantum 

mechanics imposes certain restrictions on occupancy and transition occupancy and 

transition of particles from one energy level to another. And this is given by this statistics 

- the probability of occupation, probability of a particular orbit being occupied or filled 

up is given by a statistics called Fermi Dirac statistics, in contrast to Maxwell Boltzmann 

statistics, which is applicable in case of classical mechanics. And the difference between 

the two is shown in this diagram, this is the probability that in energy level E i is 

occupied, 1 means it is fully occupied, 0 means it is break end; and at absolute 0, the 

Fermi Dirac distribution, look like this.  



So, beyond an energy level say E naught, which is called Fermi energy, there is no 

electron in the band; whereas at high temperature, distribution will be something like 

this. So at Fermi level, you can say half the number of electrons, occupy energy less than 

the Fermi level, and half beyond the Fermi level. So, this part of the diagram, probability 

distribution is very similar to that of the Maxwell Boltzmann distribution; so, that is why 

at higher temperature, both predictions are similar.  
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Now, to calculate specific heat using quantum mechanics based model, one things of 

atoms, which are arranged in a periodic fashion in a crystal you know, as if they are 

connected by spring, and these atoms they keep on oscillating about its mean position of 

rest; and this oscillation, that frequency is a function of temperature. Now, in terms of in 

quantum mechanical model, it is assumed that this oscillator can have certain specified 

level of energy, which is given by this, this is plunk’s constant, this is the frequency, this 

is the quantum number n plus half. So, one point which obviously comes up that n is an 

integer, it can have 0, 1, 2. So, therefore, even when n is 0, so that is at 0 degree Kelvin, 

it can have, electrons will have small that some finite energy. 

So, there is a basic difference between this and classical mechanics. Using this, Einstein 

worked out this was the first quantum mechanics based approach to explain molar 

specific heat, and he came out with an expression, which says that molar specific heat 

will decrease exponentially. Around the same time, a little later the Debye came up with 



another model, which predicted that molar specific heat is proportional to T to the power 

3, and he introduced, but time stand here also you know, this theta is called Debye 

characteristic temperature; and above this characteristic temperature that molar specific 

heat obtained from classical mechanics and quantum mechanics, they are seen.  

And at low temperature, the Debye prediction is closer to the experimentally determined 

values. And this I think we went through if you apply this to free electron, that means to 

apply this to find out what is the contribution of electrons that free electrons in an atom 

to this specific heat. If you go through this calculation, which was explained on the last 

class, you will find out that if you follow classical mechanics that means all electrons can 

observe thermal energy, then that electronic contribution it comes out to be very large.  

But if you apply quantum mechanics, only the electron near the Fermi energy can absorb 

energy. So, therefore, the number of electrons, which can absorb thermal energy, is 2 k T 

over Fermi energy; and if you calculate this, it will come out to be very small, may be 

about 1 percent at room temperature. So, therefore, electronic contribution to specific 

heat is very negligible in compared to the atomic contribution, contribution of atomic 

vibration to specific heat.  
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So, with this briefly recollection of, what was covered in the last class, let us look at how 

do we explain that electrical conductivity of metallic material and what are the factors 

that determine electrical conductivity? The electrons are the charge carrier in metal, and 



when you apply an electric field, if there will be a force acting on the electron, which is 

given by this expression. Now we know the mass of electron is same, so if you divide 

this force by mass, you get acceleration. Now to calculate this average velocity, so 

imagine these electrons, which are moving in all directions, it can move in different 

directions, until it come mix an obstacle and its direction changes.  

So, basically what we can say that what is the relaxation time or the time between this an 

electron heating and abstraction; if we say that that this time is T, then we multiply 

acceleration by time we get average velocity. Then the current flux, it is possible to 

calculate, that is current flux J will be proportional to the number of electrons n, 

electronic charge, and then average velocity. And here if you substitute that average 

velocity over here, you get this term. Now J is proportional to this expression say, the J is 

proportional to the electrical field; this is one way of specifying ohms law; and that 

constant of proportionality is sigma, which is known as conductivity. So, this is the 

expression for conductivity. So, it depends primarily on the number of charge carrier, E 

is constant, and the relaxation time T.  

(Refer Slide Time: 26:08) 

 

Now, with this back ground let us try an estimate, what is the lightly time or an idea 

about the time scale for this relaxation time T. Now, this is the expression for relaxation 

time, see one over this rho is the resistivity. So, rho is basically resistivity, which is one 

over conductivity. So, for metals, this is known, take a case of so, let us say gold; for 



which this resistivity is given by 2.2 into 10 to the power minus 8 ohm metre. Now this 

is a constant charge of an electron, which is known; what you need to calculate here is n, 

because m is also constant, this is known. And how do you calculate that number of 

electrons, which take part n conductivity or in conducting electricity.  

Now one way could be if you, can you find it out from density? Density of a metal is 

known, say suppose this density of gold is D, which is given as around 19 gram per cc; if 

you divide this by its atomic weight, so you get the mass of 1 atomic mass of 1 cc of 

gold, and then you multiply it by Avogadro number. So, then you get n in number per cc, 

and you need to convert it into metre cube to substitute in this expression. So, one need 

to be careful about the units, you should put substitute all these constants or the values in 

consistent unit; once you do this, you get a value of around 2.74 into 10 to the power 

minus 14 second.  

Now let us try and find out what is the drift velocity? It is possible to calculate drift 

velocity from it is related to Fermi energy E naught; in fact, if you look at that Fermi 

energy, here the entire energy is due to the kinetic energy of electron, and this is equal to 

half mass of electron into velocity square. So, from here it is possible to estimate the drift 

velocity, this is of the order of 10 to the power 8 centimetre per second. So, therefore, 

mean free path of this electron is, if you multiply this and this, you get this is of the order 

of 10 to the power minus 6 centimetre.  

So, therefore, you can say that atomic distance for most crystalline structure is of the 

order of 2 Armstrong; so Armstrong means that is 10 to the power minus 8 centimetre. 

So, therefore, this mean free path is around, this is 2 order of magnitude higher than this, 

so you can see that mean free path of this electron is around 100 times atomic spacing. 

So therefore, in metals of good conductor, whereas covalent bonds you do not have free 

electron, so therefore, they are insulator.  

(No audio from 30:52 to 31:04) 
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Now, let us look at the conductivity in little more detail, so effect of temperature on 

conductivity. Now, this conductivity expression is written like this; so now there are, 

which are the terms, which are affected by temperature? This is the drift velocity, now 

the drift velocity, it is determined by Fermi energy; at this Fermi energy is a very weak 

function of temperature, so therefore, you cannot change much. So, this is ruled out. So, 

and here also, this number of electron, it is determined by the crystal structure or atomic 

structure, this is constant. So, the only term, which can change primarily, is l, so this is 

the mean free path can change.  

Now, this mean free path is proportional to temperature due to scattering, these electrons 

are scattered by, because we can assume that crystal is made up of a periodic 

arrangement of atoms, atoms are placed at certain mean position of rest, they are not 

stationary, they keep vibrating; and this extend of vibration increases with temperature. 

So that means, there is a little loss in periodicity, and this vibrating atoms, they will emit 

particles called phonon, that vibration energy you can say it is emitted by the oscillating 

atoms as phonons; and this phonon and electron that there will be interactions, and this 

electron get scattered.  

If they are too many phonons emitted, this extend of scattering will be high. So, 

therefore, at high temperature, higher the temperature, there will be more atomic 

vibration, there will be more scattering. So, therefore, you can say that, that mean free 



path is proportional to temperature, and resistivity is inversely proportional to 

temperature. So therefore, as resistivity is proportional to temperature; so most metals 

the resistivity increases with temperature, and this linear dependence at except that very 

low temperature, it deviates from linearity; but by and large resistivity, it is a linear 

function of temperature; therefore, resistance of metallic wires are often used as a 

temperature measuring device. 

Now, electrons can also get scattered by impurities; if there are different atoms present 

which disturbs the periodic nature and the crystal structure, they also will contribute to 

scattering. Like when you do align, you put in a second element in the lattice, and they 

can be treated as impurity, because it is characteristic is different from the atoms of 

which the main metal that structure is made up of. So, therefore, they also will be a 

source of or they also will scattered electrons. So, therefore, if you increase this impurity, 

there should be a direct relationship between resistivity and the concentration of these 

impurity elements, which is represented like this rho is proportional to the atom fraction 

of that impurity. 

Now, you can say suppose we take a binary system say two element, A and B both are 

conductor, and they can be mixed in all proportion. So, both end, and this end also the 

resistivity will go up with concentration, this end also, this is the base resistivity of metal 

B, so this also will go up. And if you plot the total, you will get a mix maxima, 

somewhere in between, where X is 0. 5. So, logically in such cases, effect of a impurity 

or effect of align can be put by a factor like this, X is rho is proportional to X into 1 

minus X.  

So, any align we will have poorer conductivity; there is a lot of similarity between 

thermal conductivity and electrical conductivity; it may be interesting to look at this. So, 

now, electrons are the primary career of electricity in metals. Now if you look at the 

thermal conductivity, this thermal conductivity will depend primarily on two factors; one 

is its specific heat; now this specific heat is actually controlled, primarily controlled by 

the atomic vibrations.  
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An apart from that, you have this atomic vibration you can say they are emitted as 

phonons; so and phonons, the displacement of this phonons, this wavelengths… So let us 

look at this specific heat will be a function of this thermal conductivity will be a function 

of specific heat, and the mean free path of electron, and mean free path of photon. Now 

mean free path of electron we have just seen is of the order of 100 atomic spacing; 

whereas, mean free path of phonon, so these wave lengths are much smaller, so they gets 

scattered very easily, and this is of the order of atomic spacing. So, therefore, any crystal 

structure or any structure solid, liquid, wherever you have basically the ionic or covalent 

bond, there is no free electron. So, they are bad conductor, in fact, even bad thermal 

conductor.  

Metals have free electrons; they are good electrical conductors, so they are good thermal 

conductor as well. Now, here also you can discuss in the same way, what will be the 

effect of temperature. With increasing temperature with increasing temperature, 

resistivity goes up, so also thermal conductivity will go down. Similarly, alloy addition, 

also will bring down thermal conductivity. Now because it will be interesting to see what 

is the relationship between thermal conductivity and electrical conductivity, because both 

the cases, electron is the charge career; in fact, if you look at thermal conductivity and 

electrical conductivity for most metal, you will find that this is the constant, and this 

constant is known as Wiedemann-Franz constant, and this magnitude is given here  



(Refer Slide Time: 39:31) 

 

Now what this, we have covered the nature of a atomic bond; now let us look at the 

crystal structure. Metals, all metals they are crystalline; now crystalline material, the 

atoms are arranged in a periodic fashion. Now, how do we represent this periodicity or 

how do we visualize this periodic arrangement of atoms in a crystal? In order to do that, 

we make use of a framework and array of point in space. Now we visualize the array in 

such a way that each of this point have identical surrounding; and this array of point is in 

space is known as lattice.  

Now let us try and look at let us try and look at, how does this point lattice look like? 

Now, suppose we consider 1 1 at this particular figure, consisting of 4 points here, 4 

points here, and try to repeat case, and this direction as well as this direction, so 

something like this. So that means, one point has a surrounding, it has atoms one here, 

one here, one here, one here, one here, one here. So, this has a surrounding of 6 points; 

and if you repeat this, it is possible to generate the lattice of points like this; and this is 

called point lattice. And this smallest building block, this is known as unit cell. Now all 

crystal structures, we try to represent in terms of this lattice structure.  
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Now, this is the lattice. 

(No audio from 42:11 to 42:22) 

This is the lattice structure. Now, when you have points… This is the smallest building 

block of that lattice called unit cell; and let us look at this particular unit cell. Recall here, 

we have points only at the corner of the cell. Now let us try to calculate, there are how 

many lattice point in a cell like this; this cell, where you have points only at the corner is 

called primitive cell. And let us try and calculate, what is the number of points in this 

primitive cell? Now here, if you go back to the previous is what you have this particular 

point does not (( )) belong to 1 unit cell, it is shared by all the adjacent unit cell. Now 

here, how many adjacent unit cells are there to this point? You have 1 here, 2 here, 3 

similarly, another here 4, 4 this side, similarly 4 on this side as well. So, this point is 

shared by 8 unit cells nearby unit cell. 

So, therefore, you can see that this primitive cell contains the number of points is it has 8 

corners, but each corner point is shared by 8 such neighbouring unit cell. So, contribution 

of this, each is one-eighth, so this is 1. Now, you can also having unit cell it is not 

necessarily that not necessary that unit cell should have points only at the corner, they 

can have certain additional point as well, which is shown here. So, this is the primitive 

cell, here this number is 1; if you have 1 at this centre of the body, in that case that 

number of points per unit cell will be 2, because this corner, contribution of corner is 1; 



and this central point exclusively belongs to this unit cell. So, it is not a part of any 

neighbouring cell. 

So, therefore, here the number of points per unit cell is 2; similarly, this is called body 

centered unit cell, this is primitive cell, this called face centered. So, in addition to the 

corner points, you have points at the each of the face centred; by substituting this 

additional point, we do not violate the definition of point lattice, because point lattice we 

defined that a point lattice is an array of point in space, so that every point as identical 

surrounding; I think you can take this as an exercise, and try to find out or plot the array 

or arrangement of neighbouring points to a that a body centered unit cell and a face 

centered unit cell. And you also try to find out in a face centered unit cell, what is the 

number of points per unit cell?  
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Now, let us look at the unit cell little more critically; how do you define this unit cell, 

which is shown in this slide. So, this is the unit cell, it is defined by its linear dimension, 

dimension of each of these edges. So, suppose this is an aspect of axis X, Y, Z, very 

often we normally represent in geometry, the axis as X, Y, Z. In crystallography, we try 

to represent then as a, b, c. So, for X, we put it X, so the distance between two points, 

along this direction is represented as a vector a similarly, the distance between two points 

along axis y is put as B, and the distance between two points along the z direction is c;  



Similarly, apart from this linear dimension, we also need to defined angle between d’s 

axis; so this angle just opposite a, so this is x axis or in crystallography, we call it a, so 

opposite a, so this we call alpha. Similarly the angle opposite y, we call this beta; and the 

angle opposite z, we call gamma. Now, depending on the magnitudes of the relationship 

between this linear dimension a, b, c, and this angle alpha, beta, gamma, you can have 

different shapes for this unit cell, and which is listed here; and based on this, we can 

classify all crystals into 7 classes, which is listed here.  

So in cubic, and for most metallic material, the crystal structure can be described by 

cubic or most of the cases as we will come to know, the crystal structure is cubic; here all 

the lattice a equal to b equal to c, and the three angles alpha, beta, gamma they are equal 

and equal to 90 degree. This is the most symmetric crystal that we can think of, and 

down this, as you go that element of symmetry goes on decreasing, and you have the 

other extreme triclinic, where none of these parameters a, b, c they are equal, and none of 

this angles are equal alpha, beta, gamma, they are different; and this is called triclinic. 

So, this is the this has the high symmetry, this has the least symmetry; and intermediate 

you have tetragonal, hexagonal, orthorhombic, rhombohedra and monoclinic; and the 

relationship between the a, b, c an alpha, beta, gamma are listed here; and these values 

they are called lattice parameter. So, a, b, c and alpha, beta, gamma they are called lattice 

parameter. 

(No audio from 50:24 to 50:43)  
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Now, most of the metallic crystals, they belong to one of these, not but there are no other 

crystal structure, but primarily this is body centered cubic, this is face centered cubic, 

and this structure although, it is primitive lattice is hexagonal, we call this hexagonal 

closed pair structure. Now it will be good to look at what is the number of nearest 

neighbour say like in case of a BCC lattice, so look at this, and the number of nearest 

neighbour is 1, 2, 3, 4 and the term 4 at the bottom. So, here we call this number of 

nearest neighbour as a coordination number, and this is 8. And from this it is little 

difficult to find out the coordination number, we will try and look at it little later. But 

here it is easy, relatively easy; you take this, and try to find out the number of nearest 

neighbour. 

So, so let us say you take this, you have 6 in the plane, you have 3 neighbours here, this 

here, similarly you have 1 over here, 1, 2, 3 and similarly, 3 at the top. So, in this case, 

coordination number is 12. So, this is the maximum coordination number you can have 

in a crystal structure; and in this case, metals, so one of the simplest way, we can 

visualize this atom, we can assume then to be hard sphere, and go through if we 

calculation, hard sphere model and go through a few calculations.  
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You try to find out this is a little elaborate view of the face centered cubic structure, 

assuming the hard sphere, along this directions, they touch each other. So, if we assume 

the radius of the atom to be R, then try and find out what is the relationship between R 

and the lattice parameter that is, this is the lattice parameter a. So, what is the 

relationship between the atom radius and a; so for FCC, and try to find this, for BCC.   
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And another thing, it will be interesting to look at this the array little more carefully. If 

we look at that atomic array you know, they are arranged like this; you know, this is the 



hard sphere surrounding it you have 6 atoms. Suppose we call this layer, layer A. Now 

on that, if you try to bring another layer of hard sphere, so where does it go? There are 

two places here, say if I go to the previous here, there are two places next layer can 

occupy. So, one is here, another here. But if you put an atom here, part of this gets 

blocked. So, you can only have either here or here. So, here it comes, it occupies one of 

the position, we call this layer B. And then we bring in another to the other side, we call 

this as a layer C. So, look at this, this arrangement from this side, it has a similarity to 

face centered cubic structure.  

(Refer Slide Time: 55:34) 

 

So, you try and visualize the same thing in a hexagonal, which is shown over here; you 

have one layer, we call this A, second layer, and third layer, second layer is B; and the 

third layer it goes and occupy layer A, there is no C layer. And you try and visualize this, 

this resembles hexagonal closed pack structure. With this, we finish the second lecture 

on a atomic bond and crystal structure. You can go through this exercise particularly 

assuming atomic bond; and apart from calculating the relationship between the radius of 

the atom and lattice parameter, you try to find out lattice parameter from density of 

metal. And next class, we will talk about a little bit more detail, how do we represent the 

directions and planes in a crystal, introduce the concept of Miller indices, and we will 

talk a little about stereographic projection, thank you. 


