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Good morning. We shall continue with our lecture on crystal defects in metals, and last 

class we introduced the concept of stacking fault. See, so far we have been talking about 

dislocations, which are perfect that means the burger vector is equal to I mean the burger 

vector has the least in particularly in face centered cubic crystal the burger vector of a 

perfect dislocation is a by 2 1 1 0 type. But  we found out that energy of this type perfect 

dislocation is more than partial and we also showed you with the hard sphere model that 

it is much easier to move. As say I mean with the help of partial displacement or partial 

displacement vector. 



(Refer Slide Time: 01:30) 

 

In fact what we said is in face centered cubic crystal the different layers are arranged in a 

fashion, which is shown over here, and if you consider the first layer as a layer A, say 

this layer is A and on the top of it we put another layer of similar hard sphere. So, these 

sites are called B; these sites are B sites. So, obviously what you find then when you 

place an atom on the B site part of this C is blocked. So, you cannot put on hard sphere 

over here, and so and if you have a situation like something like this, you have the next 

layer part of that next layer is occupying B position, and part is occupying C position.  

Now, you see C position is like this next B position here is you have an atom here, now 

you cannot keep an atom here this is C. But you can keep an atom here so basically this 

is that perfect dislocation burger vector. So, what is happening is has if this movement 

here this atom has to go over this sphere part of this sphere whereas, instead of going like 

that if it moves through the valley, it is more energetically favorable. So, that means this 

perfect dislocation is split up into two partial, one like this, another from here to here like 

this and these are called partial dislocations and there burger vector is of the type a by 6 

2 1 1 kind.  

So, if this plane is 1 1 1 then the burger vector will be lie on the plane. So that conditions 

should be satisfied that is direction should lie on this plane and similarly, you can find 

out this burger vector you can find out this and you will find that angle between these 



two will be 120 degree. On this plane you can have three vectors of burger vector of 

these one this, this, other like this. 
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And same thing, which is shown over here and it was shown that if this perfect 

dislocation splits up into two partial, which is shown over here and then you calculate the 

energy, which is equal to square of the burger vector. So, in this perfect dislocation 

energy is a square over 2 and partial dislocation energy is a square over 6. So, two of this 

if you add up this a square over 3, which is less than a square over 2. Therefore, this is 

energetically favorable as well. Now what happens if such a partial dislocation exists in a 

face centered cubic structure. In a face centered cubic structure you can visualize that 

this 1 1 1 plane is the closed pack plane. So, this is 1 1 1, if we called this as layered A 

the layer on the top of it you can make it by joining this. So, this is this second layer we 

can call this layer is B and the third layer passes through this corner which is layer C and 

this sequence is repeated A B C A B C whereas, we recall it hexagonal the sequence is A 

B A B A B kind of thing or A C A C A C kind of thing. 
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Now, here imagine that here a such a thing happen a part of number of atoms these two 

rows of atom. They have more through one partial vector burger vector which is shown 

over here, it has move from this point to this. So, that means this layer has now B has 

move to C so which is shown over here B has to move C. So, if it will be bounded a part 

of this has happens mean in this region. So it will be bounded by two dislocations, which 

is shown with the opposite sign that means this will not be exactly opposite. But  the two 

burger vectors they will be suspending some angle and for simplicity we have 

represented it is an edge component.  

Now, this is where this stacking sequence is disturbed what has happen is, you can see 

instead of that B layer moves to C and C layer will move A. So, this how it has changed 

now if this parts of the crystal it has undergone that kind of a partial movement 

displacement. So, this becomes C this is A, this is B, this is C. So that now look at this 

stacking sequence here it is A B C A B C. But  look at a cross this is what you have C A 

C A, which is something like a part is repeating like a hexagonal stacking. So, this fault 

or the stacking sequence is called stacking fault and so that means we can consider that 

this fault to be a two dimensional defect.  

So, around cross this area there is a fault stacking sequence and we call this stacking 

fault energy and this partial dislocation known as Shockley partial dislocation and 

Shockley generation of the Shockley partial induces a fault in stacking sequence. Now 



this stacking there is a fault there will be an energy associated with it so there is surface 

defect it has energy it something similar to surface tension. But  this partial dislocations 

they are mobile, they can move on this glide plane, the glide plane is fixed. 
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Now, this is a pictorial view of the same thing. Here this part where a stacking there is a 

stack stacking fault is been created over this zone. So, there is a partial dislocation here. 

There is a partial dislocation here, which is diagrammatically represented here. A part of 

its somewhere on this side the two join and this perfect dislocations. But  here we have 

two partials, which are shown here. So, it means that this is yet to slip or here you know 

this side is slipped, this is has undergone partial slipping and this side is yet to slip 

because, dislocations we remember is that a boundary between the slipped and unslipped 

region. 

This portion is slipped this is yet to slip whereas, over here there is a partials here and 

this is represented like and these two vectors, you know they are like this approximately 

what we can say there will be a repulse force acting between in that two and which can 

be calculated like this G b 2 dot b 3 over 2 pi d, where d is the distance between the two 

partial and this will be determine this distance will be determine by the magnitude of 

stacking fault energy. If the stacking fault energy is high this distance between the 

separation distances between the two partial will be low. 
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Now, Shockley type of partial can be created by through slip. There is another way the 

partial or stacking sequence can be disturbed in a face centered cubic crystal, which is 

shown over here. Say at any temperature you have some vacancy in the lattice. Suppose 

if some these vacancy if this concentration of vacancy is more than equilibrium, which 

can happen. If you suppose heat a piece metal to a high temperature and concentration of 

vacancy is a function of temperature and then if you quench then the suddenly that entire 

the total number of vacancy cannot eliminate itself.  

So there is excess vacancy and this excess vacancy can condense or can accumulate in 

one of the slip plane and which is shown over here. If they accumulate on B plane over 

here. Here this as accumulated so there what you have because of the accumulation of 

vacancy excess vacancy, which are accumulated here. You have an edge dislocation 

created something like, which is shown why this involve and the burger vector of this is 

perpendicular to the plane and which is shown diagrammatically over here. This is one of 

the planes B and on the plane this is where the dislocations are this is vacancy have 

contains and quails and this has the direction this has sense which is marked over here.  

This is positive sense and this is the burger vector. So it is this burger vector is 

perpendicular to the dislocation line at every point. So, this is type of dislocation is a 

pure edge dislocation and this pure edge dislocation it will and we know that edge 

dislocation can slip on only one plane that contains the dislocation as well as burger 



vector as well as the dislocation. So, here the plane is not a flat plane it is basically a 

cylindrical surface and cylindrical surface which is not necessarily a slip plane. 

Therefore, this type of dislocation is called frank this type dislocation is an immobile and 

that is called frank partial dislocation. Now why partial because if you calculate this 

vector, you know basically displacement.  

You know on this side A layer you know this B has gone to C. So, this part has been 

moved over here or this has basically this distance by this displacement, you do not come 

to occupy that similar A side. So, basically we can calculate this burger vector, this 

burger vector will be direction is perpendicular to the closed pack plane closed pack 

plane, in this case is 1 1 1 and this burger vector is equal to a by 3 1 1 1, a by 3 1 1 1 and 

distance between two 1 1 1 are closed pack plane in face centered cubic crystal is equal 

to A over root 3, this distance is a over root 3 and this type of dislocation has been 

mention is immobile and we also this dislocation terminology is use this sessile. While 

Shockley dislocation partial is sessile can glide it is sessile and this cannot move this is 

sessile. 
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Now, let us revise it that Lomer lock and in terms of what happens this Lomer lock. We 

considered formation of the Lomer lock, when two dislocations moving on intersecting 

slip plane, if they joined together along the line of the intersection. In that case a certain 

type of dislocation reaction can take place, which is shown over here and this is also and 



this is accompanied by reduction in energy. Because, here this burger vector square it is a 

square over 2, this is also a square over 2 if you add that two it is a square, whereas the 

product dislocation energy is a square over 2. Therefore, this is energetically favorable 

and look at this is line along that line of an intersection, so that means it is basically it is 

line along the intersection and its burger vector is a by 2 1 1 0.  

Calculate this line of intersection and the line of intersection is 1 1 bar intersection line 

of intersection with 1 1 1 with 1 bar 1 bar 1 is 1 1 bar one. Therefore, character of this 

dislocation is edge dislocation edge character and it can move on a slip plane you can 

calculate this slip plane which comes out to be 0 0 1. So, a dislocation slip plane is this, 

which is not a normal slip plane in a face centered cubic crystal therefore, this 

dislocation is immobile. Now, what happens if the crystal has the low stacking fault 

energy? So instead of this perfect dislocation it will be made up of two partials.  
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So in that case, this is shown over here. They are made up of two partial and the leading 

partial when they interact, which is shown here. The leading partial when the interaction 

you get another partial dislocation, which is a by 6 1 1 0. The character is still same the 

edge character you can show. But  look at that energy this is also energetically favorable. 

It accompanied by substantial reduction in energy and this type of lock is associated with 

the stacking fault lying on here as well as here. So what happens when this type of lock 



formed? It will (( )) further movements of dislocation on this plane say if another 

dislocation is generated.  

Somehow on this plane at this trying moving to this dislocation and will try to repel. If 

this effects similar character it will try to repel that. Similarly, a dislocation moving on 

this will repel by this. So that means when ever this type of lock is generated in the 

crystal it makes dislocation movement difficult or it makes the material stronger. We call 

this in technical term the material undergoes strain hardening. 
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Let us look at; what is the effect of stacking fault on cross slip plane? Take up a two case 

these are two intersecting slip plane. Let us say and here on this plane somewhere here 

down this plane, somewhere here there is a dislocation barrier something like. Let us say 

a Lomer lock is there and whenever let us consider these two partial dislocations, which 

is separated by a faulted region and character of this dislocation had it been perfect. So 

this is the burger vector of the perfect dislocation, where ever where as the burger vector 

of this partial is shown over here, this and the two resultant of two is parallel to the 

dislocation direction.  

Now, here when it is moving it comes out the cross this dislocation barrier it cannot 

continue its movement along this direction on this plane. So, what is the alternative? 

Alternative means they may be another slip plane, which intersect this slip plane 

somewhere here. It can possibly cross slip on to this. But  only screw dislocation can 



cross slip and for that to happen you have to apply a stress high enough. So, that this two 

partial joint together become a perfect dislocation lying along this line along this line and 

when this becomes a perfect dislocation this can cross slip on to another the cross slip 

plane.  

So, effect of stacking fault energy on cross slip is if this stacking fault energy is a low the 

dislocations are separated by a large distance, you have to do additional work to join the 

dislocation together and in other extreme case if this stacking fault energy is high in that 

case something situation is something like this. So here the work to be done to join the 

two dislocations will be less. Therefore, what we can say that whenever the material 

where this stacking fault energy is low, there cross slip is more favorable. The 

deformation by cross slip you can say this keeps an additional mode of the dislocation 

movement or you can say this contributes to strain softening whereas, formation of lock 

contributes to strain hardening.  
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Now, we have just seen how when one dislocation meets with another they interact with 

each other, and there are very large numbers of such interactions are possible. We look 

that few of these, we looked at formation of Lomer lock, and when these Lomer locks 

are associated with stacking fault, this lock is much more stable and this type of lock as 

known as Cottrell Lomer lock. So this is one kind of interaction. We also looked at in 

interaction when a dislocation is moving on a particular plane, and it intersects the 



dislocations which are perpendicular to the plane, and in that case what we have is the 

interaction is far as dislocation.  

So, in that case it forms jogs and or steps in the dislocation line, it can form jog and kink 

while kink can glide but  jogs cannot glide and if this jog will exert a registering force of 

the dislocation location. So, formation of jog also leads to strain hardening makes a 

difficult for the dislocation to move but  formation of Lomer locks will contributes, its 

contribution to strain hardening will even be more and that will be many such possible 

interactions and these interaction can be very easily visualize. 
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If we consider, as say geometric construction something which is shown over here. So 

this is we consider these interactions primarily only for face centered cubic structure. In a 

face centered cubic structure, this is you can say imagine, this is a crystal, it is a cube 

single crystal and look at how these 1 1 1 planes are meet. This is 1 1 1 plane, this is 

another 1 1 1 plane, this is another 1 1 1 plane and this is the fourth and this four slip 

planes 1 1 1 type slip planes they make one tetrahedron, which is shown over here and 

they are designated this vertex of tetrahedron as designated as A B C D.  

Now, here each of this side represent a perfect you can say the dislocation of a burger 

vector of type 1 1 0. This direction as represented by this is 1 1 0. So, each of this edge 

are like that and it is possible to find out or write down this induces of each of this plane 

and direction and you can try it yourself but  in this slide it is shown over here. This 



vectorically what are the magnitudes like B C is A over 2 1 0 1 bar and these planes 

induces will be different and these planes is subtend an angle between them. You can 

calculate the angle between these 2 1 1 1 plane and this angle it is easy to calculate this 

angle will be close to around 55 degree. 

(Refer Slide Time: 25:11) 

 

Different types of dislocations can be represented in terms of the tetrahedron, which is 

called Thompson tetrahedron. Like this perfect dislocations these edges of the 

tetrahedron they represent perfect dislocation burger vector of the perfect dislocation. 

Now, a perfect dislocation on a slip plane breaks down into disassociates into two 

partials like B delta, delta C. So, these are known as Shockley partial and where as you 

think about frank partials. Frank partial dislocation burger vector is perpendicular to the 

1 1 1 plane and you can imagine you can draw a perpendicular say from C vertex C to 

the plane C, which is just opposite facing C. So, that means it is lying on this particular 

point here. So, these are called frank partials. Now it is much easier to write down 

different and visualize the dislocation interactions using this type of representation.  



(Refer Slide Time: 26:33) 

 

So, one of these it is quit easy say this is a look at this dislocation moving in one of these 

plane. Say suppose A D so A D is breaks into two partial D gamma gamma A or gammaf 

D or A gamma gamma D A gamma gamma D. These are the partial and imagine another 

which is on this plane C beta C beta and C alpha C beta C alpha. So, C beta C alpha and 

here it is basically if you look at say similar another intersecting plane and then they can 

interact and get this kind of dislocation B beta alpha and these are perpendicular to the 

edge beta alpha is perpendicular to C D. 
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So, this is the way you can visualize this dislocation to interact. Now we also mention 

that the dislocation when they are moving on a slip plane, they will interact with 

dislocations which are threading. Say suppose a dislocation moving on this slip plane is 

intersecting with this dislocation, which is threading through the plane. In that case a step 

is created which is shown here and one of these steps say suppose one of this dislocation 

is a screw dislocation and this step this is a jog, which is come out of this slip plane. So 

this character is a burger vector and this dislocation moving along this and this burger 

vector of this dislocation.  

So this component is the edge component. So if this screw dislocation continuous to 

move along this slip plane, it will leave behind it has to it has to drag the jog. If it drags 

the jog along with it, it will leave behind a trail of vacancies, which is shown over here 

and this vacancy will exert a force on this dislocation and which will lead to strain 

hardening. But  they can be extreme other cases this jog you know this length of the jog 

is very large. In that case these two ends of the dislocation they are other free to move, 

which is shown here. In that case it forms a dislocation dipole and this is the one way of 

increasing the dislocation length you look at substantial through the movement of 

dislocation, how the dislocation length has been increased and we will see shortly that 

increasing length of the dislocation means also means that the strength of the dislocation 

goes up, it will lead to strain hardening.  

So dislocation has we have seen say if you have a perfect crystal, then the crystal is very 

strong suppose to be very strong. But  presence of dislocation makes it weaker and 

makes it mean able to plastic deformation. But  if you continue to compete and generate 

more and more dislocation. Within the crystal again the crystal becomes hard. So, 

dislocation can be explained both can explain why real crystals the yield strength of the 

real crystal is low and why when it when we deform it as the number of dislocation 

density increases. There will be lot of dislocation dislocation interaction and which will 

make it strong. 
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 Now, let us see that if the crystal is perfect how dislocations are generated within the 

crystal. Say suppose if you imagine this is a perfect crystal there was no dislocation and 

to generate dislocation, you will apply shear stress which is shown and now with the 

application of the shear stress, imagine that two screw dislocations of opposite sense. So, 

this is the positive direction here, this is the positive direction for the other one and so 

this type of two edge screw dislocations are created and this separated by this small 

distance x. In that case, what is the energy of this type of configuration? Now, we know 

the energy of a dislocation that is equal to G b square over 4 pi l n x over r naught.  

So what we imagine that dislocation when it is created separated by a distance. So, then 

x and r zero is the core dislocation core, we can assume that this dislocation course size 

is the order of burger vector b. So, this is the energy elastic stored energy of the 

dislocation. Now, subtract which is done work done to separate to create dislocation. So, 

tau is the force and you need to move the dislocation by a distance then the force on the 

dislocation is tau b and you are moving the dislocation by distance x. So, this is the work 

done, so this is the total work done. 

Now if you differentiate and find out what is that maximum energy, which has to be 

supplied to create this spear of screw dislocation of opposite sign? So, you differentiate 

this and then we can say that to find out its maximum value at what separation distance 

the magnitude of this energy is maximum. It differentiated equate it zero then you will 



find with algebraic simplification you will find the critical distance of separation is equal 

to G b over 4 tau. You substitute this back into this equation you get this and now for 

spontaneous generation of dislocation, we can say that for this process to be spontaneous 

this energy ratio should be very low are approach or becomes zero.  

If you put this condition and that case this is l n G or you can say G over 4 pi tau will be 

equal to e and therefore, tau is given by this and approximately you can say that shear 

stress needed for homogeneous nucleation of dislocation is of the order of G b over 30. 

So, which is very high therefore, to generate dislocations, this is not possible. I mean if 

the material is perfect this cannot it is impossible, you can say this also says that a 

perfect crystal will be very difficult to deform, because to create a dislocation there you 

need to apply very high shear stress. So since homogeneous nucleation of dislocation is 

impossible, then what are the dislocation sources in a real crystal? 
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Now, one source which is shown which we will talk about this is because say suppose 

this dislocations not necessarily straight and the dislocation lines may be curved and this 

extend of curvature will depend on the magnitude of the stress that you applied and it is 

possible to drive an expression relationship between the line tension or between the 

applied shear stress and the radius of curvature of the dislocations and which is shown 

over here. We know the dislocation has an energy associated with energy; we can 

visualize this to be you can say as a vibrating spring kind of thing.  



If you have elastic string you are pulling it you can visualize dislocation to be a similar 

line, a line on which you are applying a tension. Now you if you apply a stress on the say 

suppose this is a string and you are applying a stress then this will try to bend like this 

something similar is happening which is shown over here. This is the dislocation line and 

we can say that along the line there is a tension line tension acting on it and this is the 

stress, which has been applied to the dislocation. So, this is the force which is trying to 

bend the dislocation and when the dislocation bends its length increases and since it has a 

line tension it will try would have a natural tendency to shorten itself.  

So there will be a restoring force acting on it, which is shown here. If this is the tension 

and you this is along this is the tension you draw a perpendicular a perpendicular here 

you can say this is the centered of the curved dislocation and this angle is theta and if this 

radius of curvature is large. We can say this angle is very small and this component is 

horizontal component is equal to T cos theta. So, you have horizontal component acting 

in this direction you have an horizontal component acting in this direction and both will 

cancelled out there equal and opposite they will cancel out. So, net force on the curved 

dislocation, because of line tension will be along this and this magnitude is equal to 

twice sin theta and if theta is small, we can say this will be sin theta is equal to theta.  

Therefore, this restoring force is equal to 2 T theta whereas, the applied force is this and 

now let us look at it here this length segment of this is s. Now, what you see here is the 

force acting on this dislocation segment is tau b; this is the force per unit length times 

dislocation segment length. This is the total force acting on the dislocation and this is the 

restoring force equate that two, you can say equate that two and remembering that theta 

is very small this can be represented as s over R. So, basically this s cancels out, so what 

you have is approximately it comes out to be T over R b, R is the radius of the curvature 

of the dislocation. The shear stress comes out of this magnitude and we know that line 

tension is approximately for dislocation is equal to 0.5 G b square. So, what we can say 

the tau is equal to half G b over R.  
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Now, consider a case like this. You have a dislocations segment, which are print here. So 

this point cannot move and you have applied a stress.  
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Now, here if it bends like this. Then this tau the applied stress can be written as 0.5 G b 

over R and this R you can say that center of curvature, the center of this curved 

dislocation lies somewhere here and distance of the center form this line is x. If it is 

shown then this R will be x square plus half l square root over. Now, you think about say 



so that means this applied shear stress is a function of this distance of the center of this 

curvature curved dislocation line from this linear segment from these two points.  

Now what is the maximum value tau, when will this tau will be maximum. Obviously, 

when this denominator is minimum and denominator is minimum when x is zero that 

means center lies in between the two these two points. So, in that case what we can say 

the tau max value G b over l. Now, considering that burger vector this of the order of 

atomic spacing say b is of order of the atomic spacing. 
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Say may be it is 2 into 10 times from 2 into 10 to the power of minus 8 Armstrong and 

let us say this spacing is of the order of 100 atomic spacing. So, basically let us say 100 

or 1000 that atomic spacing, so in that case what is this so this is 2 into 10 to the power 

minus 5. So, G b over l so this is the order of G over 1000. So, by this so that means if 

this is small, then this strength of the crystal you can say that increase if these dislocation 

segment is large, then it dislocation can be generated easily and which is shown over 

here. So, when you reach this stage in that case you reach a stage of instability after that 

in a little expansion.  
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You know will form a configuration like this. Now if you look at the character this and 

this they have character of one is the positive screw dislocation and another is negative 

screw dislocations. So they will have a force of attraction. 
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So, ultimately they will join together and annihilate it. 
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And in the process, what you will be left with you know segment like this and it will try 

to reduce its length.  
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So, finally it will come back its original configuration and it will be left with a ring of 

dislocation. So, this type of source is a regenerative type generates a look dislocation 

loop come back to its original position with application of further stress, it will generate 

another loop. So, in this way on the dislocation on that particular slip plane a series of 



dislocation can be generated and this type of regenerative dislocation source is known as 

frank read source. 
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Therefore, now what happens if this type of dislocation source is operating, they are 

acting on a particular plane and several of these dislocations are generated. So, in that 

case what you will have is it you will generate a set of pile up, which is shown something 

situation is something similar over here which is shown. So, here is a frank read source 

you have a frank read source here it is generating at dislocation. Now it generates a loop 

so one side we have given a positive, another opposite we have given a negative sign and 

this dislocation moves until it meets an obstacle. Suppose the first dislocation which 

meets an obstacle which is a grain boundary here.  

So, it stops it cannot across this barrier this dislocation boundary this grain boundary is 

dislocation barrier, it cannot cross this. Imagine that it cannot this then what will happen 

the second dislocation, which is generated which will come close it. But  it will receive 

there will be an opposing force act on it, which will not allow the dislocation to come 

close to it. So in this way said series of dislocation will pile up on the slip plane, which is 

shown over here and when a pile up formation takes place it will result in significant 

strain hardening. Now the question comes up, how many dislocation can you pile up, can 

get piled up within a grain or within this particular on this slip plane.  



Now in a particular grain they will multiple such slip planes and which is shown over 

here. This is another slip plane. So here also a pile up as formed. Now the question is 

how this can pile up you know can this pile up is it stable or it can cross the dislocation 

boundary as well. Now what will happen this pile up them dislocation at the head of this 

pile up will be subjected to a sufficiently larger stress. It is possible we will to calculate 

and when this stress becomes large enough, it can initiate another dislocation source 

operating here on or else it can be create a step in the can move into and generate a 

dislocation on this particular slip plane on the neighboring boundary.  
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And when can this happen it is possible to calculate this using that dislocation stress field 

and we know that when you apply a shear stress on the material, that the force that is 

acting on the dislocation. This is equal to tau b. Now imagine this dislocation pile up, 

which is made up of end dislocations, so we can say as if this is made up this is a super 

dislocation with the burger vector n b. So, force acting on it is tau n b. So, this you can 

see that force at the head of the pile up dislocation and the head of the pile up the force 

acting on this particular dislocation is many times magnified.  

So, if there are five dislocations in the pile up this will be five times the force that is 

applied on a single dislocation. Now grain boundaries we can say sign the strength to the 

grain boundary, this is the critical stress which has to be exceeded. So that a dislocation 

is generated on this slip plane on this neighboring plane and the forces of the 



deformation can continue. Now the question comes up, how many dislocations can you 

pile up with in a grain? This will obviously be determine by the grain size and the 

number of dislocation that you can produce or say length of this dislocation pile up. 

There is relationship between the length of the dislocation pile up and the number of 

dislocations and which is shown over here. It is possible to calculate that using the 

concepts, which has already been explain but  we will not go into detail of it look at this 

nature. This is this is factor which depends on the nature of the dislocation whether it is a 

mixed dislocation or is a perfect screw or perfect edge. We can take that assume that k to 

be 1 approximately we can take k to be 1 and in that case you see that length of this 

dislocation pile up is L. So, this is the length which we can say approximately is half of 

the grain diameter half of this grain diameter and you can substitute this n over here, 

which is done over here and if you take that grain diameter the d over 2 is equal to l. 

Then it is clearly, it is seen that the shear stress tau which is needed for to excite 

dislocation source on the neighboring grain. It is inversely propositional to root over the 

grain diameter and this is the famous the hall pitch equation. Now, so mind you apart 

from this is the grain size effect apart from this there will be the normal fiction stress. 

Say, it is tau zero this tau will be equal to tau zero plus a constant of a proportionality k 

over root d and which is shown over here.  

So in terms of this tensile stress we can say that the strength of a poly crystal material 

will be given by this type of equation. This is the friction due to the friction stress this 

sigma zero and this is the contribution of grain size or grain size effect on strengthening, 

this is k y over root d and this equation is known as hall pitch equation. So, that means 

what it say is if the grains are finer the strength of the crystal or strength of the material 

will be higher. So, this is an important mechanism of increasing the strength of the 

material, if you want stronger material you make it the grain size finer. 
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Now, with this now we are in a position to go back and analyze look at or find out the 

mechanism of deformation of single crystal. We recollect that this single crystal behavior 

or stress strength behavior of its deformation of a single crystal is shown by resolves 

shear stress strain diagram and if you recall there are three testing stages. Stage one, 

where there is very little strain hardening. Now this is a single crystal say suppose an 

orientation is somewhere here. Now there will be a stage when the dislocation can move 

only on one slip plane. So which is shown here in this as long as this orientation is within 

a triangle, it will move it will have can slip only on one slip system. So until it reaches 

this point it will be moving in one slip system.  

So that is the time only mechanism of strain hardening will be interaction with forest 

dislocation. So that is why here the strain hardening is less. Now when the orientation 

reaches here you have multiple slip taking place and when slip takes place on more than 

one slip system, then the dislocation moving on one plane will interact with another 

moving on dislocation on a another. It will form Lomer Cottrell lock and there will be 

large strain hardening. It will also land to formation of dislocation pile up. Because it is 

quite likely the dislocation moving on one slip plane will reach the boundary, which is a 

barrier or will reach Cottrell Lomer lock. That is a barrier further movement is 

prevented.  



So, this is the situation therefore, that is why this is where you have severe strain 

hardening and the main mechanism of strain hardening is formation of dislocation locks 

like Lomer Cottrell lock and dislocation pile up. Now finally, it is a quit possible that 

you as you go on increasing shear stress, so you will also reach a case say where say 

many of the dislocations, they may have split into partial and when the shear stress 

becomes large enough some of these partials, they can come together and they can join at 

form a perfect dislocation and if this dislocation has a screw character. It can cross slip to 

another plane.  

So and when this mode becomes operative that cross slip then there is some amount 

strain softening that is stage three. So with this concept idea about that dislocation 

movement that resistive forces that dislocation experiences when it moves through the 

lattice. Say it is it experiences resistive source resistive force because of periodicity of 

these atomic arrangement, which is say you can say it is a friction stress apart from that it 

will also experience registering force. Because of other dislocations, which are present in 

the crystal and they can interact dislocations moving in different plane.  

They can interact form different types of locks, which prevent further movement of the 

dislocations and this dislocation movement is also control by formation of surface defect 

like stacking faults and which make a which also contributes to the strain hardening and 

it can also depending on the magnitude of stacking fault energy and the applied stress. If 

a perfect dislocation this stacking fault disappears then the cross slip becomes possible 

and which can lead to strain softening. So this is how it is possible to explain the 

mechanism of the perfect a mechanism of deformations of face centered cubic crystals 

and different deformation in other crystals, also can be tell in the same fashion. 

But, I think it will be in that case that will be going into too much deep details and this is 

beyond in the course I thing of introductory course on physical metallurgy. But  

principles exactly the same and next class we will look at a little beyond is we will also 

see the dislocations. So far we are taking it from granted is this is the defect, which is 

there in the crystal, but are they there are there any experimental evidence. 

And can we calculate that what the number of dislocations which are present in the 

crystal, can we see the dislocations, and also we will look at certain specific dislocations 

arrangements, which will simulate a grain boundary. And we will also look at the nature 



of grain boundary or the grain boundary, we have refer to number of times that is also a 

surface defect. But  there are some low angle dislocations boundaries can explain, and 

give some idea about order of grain boundary energy, but  still it is still now exactly 

nature of the grain boundary still not known. But  the concept of dislocation helps us to 

understand the nature of dislocation boundary, and we will take this up the next class. 

Thank you. 


