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Lecture – 09 

Thermodynamics of Nanomaterials 

 

This is the lecture number 9. So far, we have been discussing about surfaces and their 

properties. But, in today’s lecture, I am going to take some different topics, mostly 

Thermodynamics. 

(Refer Slide Time: 00:33) 

 

But, before that let us recap, you know we have discussed about surface energy and 

related aspects, and mostly we have discussed about effect of surface energy on various 

aspects like lattice parameter, vapour pressure, even the you know curvature effect of 

curvature on the different aspects of surface energy. And then, we discussed about magic 

numbers which are very important. 
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(Refer Slide Time: 01:07) 

 

And, finally, in the last lecture I discussed about shapes, ok. So, let us go into that little 

bit then before we come back. 

(Refer Slide Time: 01:08) 

 

And you know shapes are very important, and shapes are dictated by the minimization of 

the term called ∑𝐴𝑖𝛾𝑖 ok ∑𝐴𝑖𝛾𝑖. Or 𝐴𝑖𝛾𝑖 means addition of surface area multiplied by the 

surface or specific surface energy terms, ok. This should be minimum for any shape 

which is the equilibrium shape. And nanoparticles do show different kinds of shapes. 
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So, in order to justify that, this methodology is used. And that is something I discussed in 

the last lecture. As you know there are different kinds of shapes which is stabilized cube, 

octahedron, rhombic, dodecahedron or even some other shapes which are shown in the 

bottom of this slide. But, why do these shapes are actually found in different kinds of 

nanoparticle that is something which needs deliberation. 

(Refer Slide Time: 02:10) 

 

(Refer Slide Time: 02:13) 

 

And to do that we have start discussing about the wulff constructions. And wulff 

constructions is basically considers the interfacial energy as a function of orientations. 
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And we have discussed about that. Interfacial energy of any FCC crystal for the sake of 

understanding are different on different planes like 111, 200 or 220 planes. That means, 

what? That means, we can plot interfacial energy as a function of orientation, like see it 

here, right. 

(Refer Slide Time: 02:42) 

 

And what is that? This is what is shown I showed, I am showing you again and again 

because, so that you do not forget. Interfacial energy in 2D will depends on theta by the 

function cos and sin, but, 𝑐𝑜𝑠𝜃 + sin|𝜃|. Please remember that. 

An interfacial energy do change as a function of theta, ok like this, right. And this is 

minimum is at a closest packed plane like 111 plane in FCC structure. As you go away 

from that the interfacial energy increases rapidly. 

233



(Refer Slide Time: 03:23) 

 

So, that means, what? that means, we can create an interfacial energy versus theta plot, 

ok. We can always create that. And I am going to do it for you before actually I move 

into other topics. So, you can draw x and y axis, ok, like this. And suppose x axis 

corresponding to 100 direction in a cubic crystal, y axis corresponding to, ok y axis 

corresponding to 011; sorry not 011, 010 plane of cubic crystal. 

And cubic crystals directional planes are same. So, therefore, the 450 angle will be the 

direction 110 and that is nothing, but summation of these two directions. And 

perpendicular to these direction as I have said this is one 001 directions, ok. What is 

001? This is z axis, this is y axis, this x axis, this is z axis. So, that means, 111 direction 

is basically summation of this and this vertical direction, and if you project that this will 

lie somewhere like this, correct. 

So, now you can actually plot surface energy and it will be maximum here, then it will be 

less here, finally, it will be minimum here, ok, then again it will go to maximum here. 

This is one quadrant of that surface energy. So, you can do that for different quadrants, 

right. You can do that for different quadrants. It will be also like this, right. Similarly, on 

the other half. 

Now, wulff construction tells you if this is the 𝛾 plot or 𝛾 as a function of theta plot. How 

do you know this theta? Because this angular relationship between these different planes 
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are basically given by theta, right. That is what is a theta. Gamma plot, so it is called 𝛾 − 𝜃 plot, and properly known as a 𝛾 plot.  

So, once you know this gamma plot for a particular crystal structure, it will vary 

dependent on crystal structure, depending on the material. Then you can generate the 

wulff construction by simply making, suppose this is a point on this gamma plot, you 

connect this point P to this direction, ok. And this is one of the <hkl> direction, suppose 

any odd hkl direction it will be between, obviously, 010 and 110 that is why it is lying 

there. 

Now, this, if this is the odd direction like that, so and the value of the gamma, value of 

the surface energy is basically magnitude of this vector that is the value of gamma <hkl>, 

ok and direct vector is taking you telling you the <hkl> direction. Then, if you take a at 

this point if you take a 900 cut or basically take a normal, correct.  

So, this normal is then can be used to create a shape inside it. So, suppose if I draw 

another vector like this and this is O cube and then I make another normal here. So, these 

normals can be made everywhere, ok, like this. So, I can create another normal here, 

right. So, go to the next slide, it will be clear. So, that is what is done. 

(Refer Slide Time: 07:21) 

 

So, this is the vector and this is the 𝛾(𝜃) at that angle theta, and this is must be at a 

particular direction <hkl>, and then I have, we have taken a normal to that at this point 
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wherever this normal is intersecting the gamma. So, you can do this. And inside volume 

is or actually it is not volume, it’s area is the equilibrium shape, correct. Please 

remember that this is the what is wolf construction. And this analyze this aspect what I 

discuss ∑𝐴𝑖𝛾𝑖 minimum, right. That is what is this is true, ok. 

(Refer Slide Time: 08:16) 

 

So, now this is something I discussed in the last class. And then, one can generate 

different shapes. This is one sub shapes, this is a this 2D section of the cube octahedral 

shapes, this is the cube octahedral shapes generated, right. So, that is something which 

we discussed now. 
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(Refer Slide Time: 08:21) 

 

Today, in this lecture I am going to deviate a little bit. We will come back to surface 

energy maybe sometime later, but we will talk about the thermodynamics. 

You know thermodynamics talks about free energy, right. All of you should know that. 

Free energy is the basic functions of thermodynamics. And whenever you are trying to 

find some system to be at equilibrium, it is the minimization of free energy again. So, 

what is the free energy which you use in material science is the Gibbs free energy. We 
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normally use Gibbs free energy in material science not as compared to the Wolfs 

Helmholtz free energy, ok. 

(Refer Slide Time: 09:09) 

 

So, Gibbs free energy is given by G and G is nothing, but H -T S, right. What is H? H is 

the enthalpy. What is T? T is the temperature. What is S? S is the entropy. You have 

studied this. If you have not studied this, then please go back study. I am not going to 

give a lecture on thermodynamics of the you know undergraduate troubles because this is 

a post graduate course. So, we have been we will be borrowing the concepts from there. 

But, I am going to discuss you very basic things. 

So, G is the Gibbs free energy, ok. So, that is something let us write it up Gibbs free 

energy, ok. What is Gibbs free energy is? Gibbs, it is named after Gibbs, ok, Wulff W 

Gibbs; Gibbs free energy. It is free to use because do work. H is the enthalpy, ok and this 

H is given by internal energy plus PV term. S is the entropy and T is the temperature. 

So, let us first do the first thing first. See if I take derivative total derivative dG, it is 

nothing, but dH-TdS-SdT, right. That is something everybody should know. So, now, 

that is the total differential of G, correct. Now, I can write down same thing dH = E + 

PV, right. d(E + P V)- TdS- SdT, we are not changing these two terms here.  
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So, or therefore, dG = dE + PdV + VdP - TdS - SdT, right. You can follow me, right. 

You can do these steps one by one. There is no problems in understanding that. That is 

nothing, but differentiation of P and V, that is PdV and VdP, right. 

So, now, I just reorganize this. How do I reorganize that? Using first law and second law 

of thermodynamics. Let us first apply the first law of thermodynamics, ok. So, you know 

dE + PdV is what? I mean the first law of thermodynamic a constant pressure that is 

nothing, but heat, 𝛿𝑞, right. You go back to your thermodynamics you will get that. That 

is plus VdP.  

And why do you use different kind of delta here? Because this is a path variable not a 

state variable and then TdS - SdT, ok. So, now, this is understandable, right. This is the 

first law of thermodynamics dE + PdV is equal to 𝛿𝑞 that is the heat given by. 

So, now, next step is what? Next step is this; this 𝛿𝑞 is according to second law of 

thermodynamics is TdS, right. If you define entropy that is what will come, Δ𝑆 or dS 

rather, dS equal to 𝛿𝑞 by T at equilibrium. You know that, right or you do not know. 

Well, let us do that, dS our definition is this. So, 𝛿𝑞 is TdS. So, I can write down TdS + 

VdP - T dS -SdT. So, finally, what do I get? dG is equal to TdS, TdS get cancelled VdP - 

SdT. 

Now, you must be thinking why I am doing that, because this is the relationship we are 

going to use in next derivations of different kinds of things, that is why we have used this 

one. So, what are the derivations we are going to do? We are going to do how two things 

we are going to do here, if time permits today. One, how the curvature will affects the 

temperature, ok, other one is the pressure.  

That is something we should know, ok. So, but this fundamental relationship dG = VdP - 

SdT will be used every now and then, that is what I thought I should derive and show 

you. So, that you do not forget, ok. Now, let us erase this part, ok. Let us erase this part 

and do the next thing, ok. 

Well, before I do the next thing as you know I will keep this relationship on the top, the 

total differential of free energy, right. I am doing this because it gives me feeling of 

erasing a blackboard, although we are not using the black board. But it gives a very 

feeling as if that you are erasing the black board, although it is you are doing it on the 
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computer screen. And it also gives you some time to think, right. Instructor gets some 

time to think also by erasing the board. 

(Refer Slide Time: 15:16) 

 

So, what is the relationship we have going to keep it? Remember that total differential 

dG = VdP - SdT, and I am writing a different color, ok. So, you all of you know that 

phase diagrams actually are reflection of free energy minimization, ok. So, phases which 

are having minimize minimum free energy are basically form in a particular temperature 

or pressure conditions. 

Let us first do the phase diagram of water, right. You know water, all of you water is 

nothing, but H2O this can form three phases. Water as a liquid which you drink, water ice 

is solid which forms when you cool down in your refrigerator, and if you heat it up 

during making tea or coffee or whatever in the cooking you get vapour, the three phases 

presents, right. 

So, water phase diagram is basically nothing, but source variation of temperature and 

pressure. You have to understand that. Why it is so? Because there is no composition 

variable, water is a pure component. And water is a peculiar phase diagram, correct. So, 

what is this? This is a solid, this is vapour, this is liquid. Solid is what? Ice. Liquid is 

what? Water, which you drink. Vapour is what? Which is forms into vapour, ok. Now, 

each of this line indicates certain kind of equilibrium between solid and liquid, liquid and 

vapour, and solid and vapour. 
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So, for the sake of understanding, let us consider very generic thing equilibrium between 

two phases alpha and beta. It can be further liquid and vapour or vapour and solid, ok. 

So, let us consider for generalization between two solids, two phases alpha and beta. So, 

we can use that relationship. I can write down 𝑑𝐺𝛼= 𝑉𝛼dP -𝑆𝛼dT, right. You can do 

that. And 𝑑𝐺𝛽=𝑉𝛽dP- 𝑆𝛽dT, right. You can understand that. 

Well, you may be thinking why is that P and dT are remaining same. Well, that is 

obviously, at a particular temperature and pressure. This is temperature, this is pressure 

you can see the solid and vapour is stable or if you increase the pressure little bit here, 

this is 𝑃1 your solid and liquid is stable, right this point. And this point solid and vapour 

is stable, ok. So, temperature and pressure are constant at this points. We are not 

changing that. Thus clarifies your point. 

Now, at equilibrium, free energies must be equal. Why? but, at equilibrium dG that is 

nothing, but 𝑑𝐺𝛼- 𝑑𝐺𝛽 (Refer Time: 18:37) is 0 because that is just minimized. So, 

condition of minimization is that the first derivative will be 0. So, that means, I can write 

down 𝑑𝐺𝛼= 𝑑𝐺𝛽. Now, you understand, right. Now, everything is clear, right, why I am 

doing this. You must have done it, but you know you forget sometimes that is why we 

have to redo it, so that you do not forget again. 

So, I can write down then from the top these two, 1 and 2, using 1 and 2, 3 can be 

rewritten. 3, why it is can be written? Very simple 𝑉𝛼dP -𝑆𝛼dT =𝑉𝛽dP- 𝑆𝛽dT. 

Now, once you reorganize, I will not do it. This will be (𝑉𝛽 -𝑉𝛼)dP is equal to (𝑆𝛽-𝑆𝛼) 

dT. So, I get what? What do I get? I get very simple thing that is why, 
𝑑𝑃𝑑𝑇 = 

(𝑆𝛽−𝑆𝛼)(𝑉𝛽 −𝑉𝛼) that, 

right. Let me erase it. I like erasing. So, that is nothing, but 
𝑑𝑃𝑑𝑇 = 

Δ𝑆Δ𝑉.  

And as you know what is Δ𝑆? Δ𝑆 is basically infiltration of change of delta is Δ𝑆. So, Δ𝑆 

is nothing but 
Δ𝐻𝑇 , T is the at the melting temperature, evaporation temperatures, 

solidification temperature, whatever. So, that can be Tm, Tv. So, this is Δ𝐻 is heat of 

sublimation, heat of melting. So, I can write down then, 
Δ𝐻𝑇Δ𝑉.  

So, these relationships, ok, let me write down at the top again. This relationship 
𝑑𝑃𝑑𝑇 = 

Δ𝐻𝑇Δ𝑉 

is known as Clausius Clapeyron equation, ok. What is Clausius Clapeyron? Well, it tells 
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you; Clapeyron equation. It tells you the change of temperature, if you apply pressure or 

vice versa. You know ice, if you apply pressure it melts down that is because volume 

change is negative, from ice to water, water has lower volume than the ice, that is why. 

So, that is the sign of 
𝑑𝑃𝑑𝑇 is negative that is why this curve between solid and liquid has a 

negative slope. 

Now, we understand why this has a negative slope. Obviously, Δ𝐻 is not negative. When 

ice melts it absorbs heats, ok. So, that is it. So, V, Δ𝑉 is basically negative when ice 

melts to water. So, when you apply pressure, melting temperature goes down. That is 

why if you take a chunk of ice put under your feet, apply pressure, it melts down very 

easily. That is something which you should remember that, correct. Now, this is, fine, ok. 

What about solid liquid, solid vapour and liquid vapour curve? See, if you look at this 

curve they look like exponential. Let us do a little bit maths, so that you do not forget 

and I keep those two relationships everything else I erase, ok. I am doing these things for 

you know making your concepts clear, so that you do not forget when you come back to 

nano size. Something we need to know before in the bulk size before going to nano size, 

ok. So, we are considering going to consider any of these two equilibria or any of these 

two equilibria that is solid vapour, liquid vapour. Let us consider liquid and vapour, 

correct. 

(Refer Slide Time: 23:51) 
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So, this relationship will remain constant, right. There also, 
𝑑𝑃𝑑𝑇  if you are considering 

liquid to vapour transformation. This relationship will remain constant. It will not 

change, all right. 

But, what is Δ𝑉 then? Δ𝑉 is equal to or is equal to not while, is equal to, right, Δ𝑉 = 𝑉𝑣𝑎𝑝 −  𝑉𝑙𝑖𝑞. Now, you tell me vapour has a very large volume as compared to liquid if 

masses are same. If I take one gm. of water, the space or the volume occupied by the 

vapour is much much larger than the that will depend on pressure obviously, and we are 

talking about one atmospheric pressure let us suppose. So, volume will be much larger, it 

depends on whatever volume you are using. It does not matter whether you are using a 

small volume or big volume, but volume will be larger. 

So, we can always ignore the liquid volume or we can write down this equal to 𝑉𝑣𝑎𝑝. And 

normally, vapour will follow what? Universal gas law. So, that means, for one mole I can 

write down PV = RT. So, Δ𝑉 =  𝑉𝑣𝑎𝑝= 
𝑅𝑇𝑃 , correct. Now, plug in this into the equation. 

So, 𝑑𝑃, so we are coming from here 
𝑑𝑃𝑑𝑇 is nothing, but  

Δ𝐻𝑣𝑇Δ𝑉 and we are putting this. So, 

RT remain here, P goes up, so that means, 
Δ𝐻𝑣𝑃𝑇×RT You can do that. You can follow my 

steps, right. There is no problem. 

What we have done? We have considered the vapour as a much larger volume than 

liquid. That is true for even solid to vapour transformation also. And, we converted this 𝑉𝑣𝑎𝑝 using the gas law, ok. So, this can be again written 
d𝑃𝑃 = 

Δ𝐻𝑣𝑑𝑇RT2 . So, now, if you 

integrate it on both sides, you will get a constant, right. Let us log write log of A because 𝑑𝑃𝑑𝑇 will come as a log. So, ln P = Δ𝐻𝑣𝑅𝑇 + 𝑙𝑛𝐴. 

So, now if you consider P, 𝑃 = 𝐴𝑒𝑥𝑝(− Δ𝐻𝑣𝑅𝑇 ). I think we should write Δ𝐻𝑣 here, ok. This 

is V, vapourization by RT, that is nothing, but exponential curve and that is what you see 

there. And in fact, both of them lie on the same exponential curve that is pretty 

understandable. So, our theory explains exactly what you see in actual in water vapour, 

water liquid vapour equilibria or solid vapour equilibria. So, we have explained now both 

the concepts, ok. 
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So, now, I again, so now, it is evident to you how these things are important. So, now, 

knowing these aspects we will go further. This is these are the two basic things you 

should have known. And I hope you know all of you know, but in case you have 

forgotten I am doing it. So, that it reminds you. And this simple maths are basically 

important. So, now, we do not require water phase diagram anymore. We can even erase 

that also. So, these three relationships we will keep for the water phase diagram. 

See, I am doing it for pure, right, pure water. Why? Because many of these nano 

materials are pure component, pure copper, pure aluminium, ok. So, that is why I am 

doing it for pure, for that is a simple thing you understand, you do not forget. And now 

for alloys for the impure things we have to use different concept that we will come back 

later on, ok. 

(Refer Slide Time: 28:46) 

 

So, let me just write this equation that is here 𝑃 = 𝐴𝑒𝑥𝑝(− Δ𝐻𝑣𝑅𝑇 ). So, by these three 

things we can explain everything. Now, we go back to our nano things, ok. For the last 

30 minutes we have been discussing this. 

So, first thing is nano materials has a serious problem as per this curvature is concerned. 

They all are curved and very small. And surface to volume ratio is large. This we have 

been discussing again and again. So, how we can you know we are using some equations 

which we have not understood it, like what is the effect of curvature on the melting 

temperature or the pressure, right. So, let us do that. 
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So, as you know if I consider a flat surface, this is a flat surface, ok and we are 

considering equilibria between again alpha and beta phases, and flat is defined as 

curvature which is nothing but, 
1𝑟, which is nothing but 1 by infinity, which is nothing but 

0, correct. We have defined curvature, right. So, a flat curvature is 0. 

Now, I consider a concave surface, again alpha and beta, right. Here curvature is, 
1𝑟 and 

this is finite, this is not 0, this is finite, ok. So, as you see 𝛽 and 𝛼  there is a boundary 

and you know the case of soap bubble, right, the pressure inside the soap bubble is 

higher than the outside. And so, therefore, here 𝑃𝛽, that means, pressure inside the beta 

phase will be given by 𝑃𝛼 plus some additional term because of this curvature, because of 

this curved surface. 

What is that? That is nothing, but surface energy multiplied by kappa, surface energy 

between 𝛽 and 𝛼 and the 𝜅. 𝜅 is the curvature that is 
𝛾𝑟, right. Obviously, there will be 

some constant sometime 
2𝛾𝑟 , sometime 

4𝛾𝑟  depending on different geometries or 

sometime; so, let us forget about it. For simple thing this is S related to 𝛾 into 𝜅 and 𝜅 is 

related to r. This is understood, right. 

So, now we are going to use this top equation here for alpha and beta. I am going to start 

from here. So, 𝑑𝐺𝛼 = 𝑉𝛼𝑑𝑃𝛼 − 𝑆𝛼𝑑𝑇𝛼, because we do not know what is the pressure 

and temperature of individual phase is same or not. So, we are using specific things for 

alpha and beta, correct. And here I write 𝛽. What is 𝛽? 𝑑𝐺𝛽 = 𝑉𝛽𝑑𝑃𝛽 − 𝑆𝛽𝑑𝑇𝛽, right. It 

is clear to you. Nothing, but equations where which we are doing, ok. 

And, again these two phases are equilibrium, so equilibrium says what? 𝐺𝛼 = 𝐺𝛽, my 

hand is going to 𝐺 already right, that is obvious. And that is can be written again 𝑑𝐺𝛼 = 𝑑𝐺𝛽, so, let us plug in these two, right.  

So, 𝑉𝛼𝑑𝑃𝛼 − 𝑆𝛼𝑑𝑇𝛼, ok. I am expanding this 𝑑𝐺𝛼 = 𝑉𝛽𝑑𝑃𝛽 − 𝑆𝛽𝑑𝑇𝛽, right. Am I 

clear, ok. So, then 𝑉𝛼𝑑𝑃𝛼 − 𝑆𝛼𝑑𝑇𝛼. So, what will be 𝑑𝑃𝛽? 𝑑𝑃𝛽=𝑑𝑃𝛼 + 𝛾𝑑𝜅, right. 𝛾is 

constant, 𝛾 we always assume constant. 

So, we are differentiating this thing P; 𝑑𝑃𝛽 = 𝑑𝑃𝛼 + 𝛾𝑑𝜅. So, that is you just multiplied 

by 𝑉𝛽, where 𝑉𝛽is there, that is what it is. You have to do yourself otherwise you know 
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steps will be very large 𝑆𝛽𝑑𝑇𝛽, right. So, I am going to do it now very simple. So, 𝑑𝑃𝛼-𝑉𝛽 𝑑𝑃𝛼- 𝑉𝛽 𝛾𝑑𝜅 = 𝑆𝛼𝑑𝑇𝛼 𝑆𝛼it will this side transfer 𝑆𝛽𝑑𝑇𝛽. 

So, as you know this is a continuum. And this concave thing is very convex maybe it is 

not concave, this convex thing is a curved surface. So, temperature must be continuous it 

has to be, temperature cannot deform between these two. If I consider draw a line like 

this, ok temperature of a soap bubble outside inside. Does it differ? No, it does not, right. 

So, therefore, 𝑇𝛼  = 𝑇𝛽 = T. So, therefore, 𝑑𝑇𝛼, 𝑑𝑇𝛽, dT is equal to 0. There is no 

change. And you can always assume also one more thing for simplicity 𝑃𝛼 =1 

atmosphere. So, 𝑑𝑃𝛼 = 0, right, ok. 

So, 𝑑𝑃𝛼 = 0, correct. So, it is become −𝑉𝛽 𝛾𝑑𝜅 = (𝑆𝛼- 𝑆𝛽) dT, correct, right, ok. I think 

there is some mistake, this should be this, it is not 0, but they are same. So, now, let me 

erase the some part, otherwise I cannot complete it. As I said I am going to use it as a 

board. 

It is very nice, right, sometimes you should do it. So, that you write on your notebook 

you do not listen. If only listening on your things you may not write anything, but this 

forces you to write because I am using the same thing, same slide again and again. 
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So, what I do? I then modify this equation is −𝑉𝛽 𝛾𝑑𝜅 = Δ𝑆 dT or that is nothing, but (𝑆𝛼- 𝑆𝛽) dT. Now, integrate, what you integrate? −𝑉𝛽 𝛾 ∫ 𝑑𝜅𝜅𝜅=0 , 𝜅 will be 0 for flat 
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surface to any kappa of kappa that is equal to (𝑆𝛼- 𝑆𝛽)∫ dT𝑇𝑇=𝑇𝑒  and T for flat surface is 

the equilibrium temperature; that means, that is what is without any curvature effect.  

So, that is called equilibrium temperature. You can also define other way, but that is 

nothing the term which is not dependent on equilibrium temperature that is equal to T, 

right. So, when you have a finite curvature, ok. So, I can erase everything here now, fine. 

So, I can write down this −𝑉𝛽 𝛾𝜅 is equal to (𝑆𝛼- 𝑆𝛽) × (𝑇 − 𝑇𝑒), right. So, finally, if 

you do the maths clearly, what you get? You get and that is can be written even this way 

also −𝑉𝛽 𝛾𝜅, this is nothing, but Δ𝑆. And Δ𝑆 is what? Δ𝑆 I have already done, right.  

That is 
Δ𝐻𝑓𝑇𝑒 . Yes, we are using 𝑇𝑒, 𝑇𝑒 is what is the equilibrium temperature for the flat 

surface, that is what it is. So, this gives me 𝑇 = 𝑇𝑒(1 − 𝑉𝛽𝛾𝜅Δ𝐻𝑓 ). So, that is it. So, if you 

have a curved surface and this temperature is reduced by this effect. 

Now, if you look at this I can expand this term, that is where the nano crystalline effect 

will come 𝑇 = 𝑇𝑒(1 − 𝑉𝛽𝛾rΔ𝐻𝑓) is constant, that is a mole of volume beta phase. 𝛾 is surface 

energy, and this is r remember that, ok. It will create problem for you whenever you see 

later on. 

So, let us not use this r, use this, right. Δ𝐻𝑓 is also constant. So, as you decrease r, the 

temperature or melting temperature is going to go down drastically below. Why? 

Because the r is decreasing, r is becoming smaller. So, this factor is increasing this will 

be always less than 1, because this is 1, ok, but this factor will decrease, ok, sorry 

increase as r decreases and therefore, 1 minus this factor will decrease and this is 

multiplied by 𝑇𝑒 

So, if you consider equilibrium temperature melting temperature of water, basically ice 

to water is 00 Kelvin, 00 Celsius, 273 Kelvin that is equal to 𝑇𝑒, and you have the 

gamma, and you have ice particle of suppose 10 nanometers. You know the volume of 

water, molar volume of water, you know the heat diffusion, so you can basically 

calculate what is the melting temperature of ice particle of 10 nanometer diameter, 

correct or radius whatever. So, this is something which you should know very well. That 

is what we have been using it. And this is true for the pure components. 
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Now, for the time whatever I have, let us quickly get into the other thing. What is that? 

The effect of curvature on the vapour pressure, right, ok. Do not tell me too much 

mathematics. Sometimes we need to know, in this my lecture there will be a lot of 

mathematics that is why the problems will be defined and solved in your face-to-face 

research, ok. So, what are the effect of curvature on vapour pressure? That is the effect of 

curvature on temperature, effect of 𝜅 on vapour pressure. This we have done, but we are 

showing you mathematically, ok. I can use this equation, right or no. 

(Refer Slide Time: 42:35) 

 

Well, obviously, 𝑑𝐺𝛼 = 𝑑𝐺𝛽 let us do it quickly. But, we will come back if you do not 

understand again. And what you can do? We can write down this very easily, right. We 

are ignoring SdT term here. Why? That is because temperature is constant. So, dT is 0, 

right. Here pressure is changing, vapour pressure is changing. 

You are keeping a material at a constant temperature and asking yourself whether it will 

vaporize or not, that will depends on the curvature, that is what you are going to see it or 

the size. So, therefore, Δ𝑇  is constant 0, ok, T is constant. That is why SdT term 

vanishes, we do not need to use it. Am I clear, yes. 

So, now as you have already looked at it 𝑃𝛽=𝑃𝛼 + 𝛾𝑑𝜅 and therefore, 𝑑𝑃𝛽=𝑑𝑃𝛼 + 𝛾𝑑𝜅. 

So, we can write down this 𝑉𝛼𝑑𝑃𝛼 = 𝑉𝛽𝑑𝑃𝛽.  So,  𝑉𝛼𝑑𝑃𝛼 = 𝑉𝛽(𝑑𝑃𝛼 + 𝛾𝑑𝜅 ) that is 

nothing, but 𝑉𝛽𝑑𝑃𝛽 = 𝑉𝛽(𝑑𝑃𝛼 + 𝛾𝑑𝜅 ), you must be thinking you are doing the same 
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thing, no, well, see the difference. So, I write down (𝑉𝛼 − 𝑉𝛽) 𝑑𝑃𝛼 = 𝑉𝛽𝛾𝑑𝜅, right. So, 

that is nothing, but Δ𝑉𝑑𝑃𝛼 = 𝑉𝛽𝛾𝑑𝜅. 

Now, what is Δ𝑉? Let us do the math this side, ok. So, Δ𝑉 = (𝑉𝛽 − 𝑉𝛼)  that is nothing, 

but 𝑉𝛽, right, that is nothing, but 
𝑅𝑇𝑃  for 1 mole. So, you can write down that. For the sake 

of generalization, let us remove all 𝛼, 𝛽 things, that is no longer needed. Because; why 

do not longer needed? Because we are finally, deriving equations on which everything is 

related to phases. So, what do you get? If you solve this equation, what you get? 

(Refer Slide Time: 45:55) 

 

Well, I will write down the final equation, you do yourself at your home. So, you get P in 

P constant or P = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 exp (𝛾𝑉𝜅𝑅𝑡 ) So, you get an exponential relationships. And this can 

be written as P = 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙exp ( 𝛾𝑉𝑟𝑅𝑡), one is capital R, one is small r, capital R is the gas 

constant, small r is the particle radius. So, you have understood, right. This is something, 

these two relationships are very important for pure component temperature and the 

pressure related to the size of the particle. This can be derived directly from 

thermodynamics. 

So, therefore, before I stop for today’s lecture, we started Thermodynamics of 

Nanoparticle discussion today, and we used only one equation dG = VdP - SdT for 

derivation of everything. You can imagine that. Thus, stability equation tells me to 

derive everything in this world, ok. 
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Let me stop here. We will come back and do the mathematics again, ok. 
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