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Welcome to the ninth lecture of open course on Diffusion in Multicomponent Solids. In this 

lecture, we will see how Gibbs free energy composition diagrams help in determining phase 

stability and phase diagrams. We will alsee how the constraints are imposed on the degrees of 

freedom based on Gibbs phase rule. 

So, in last class we went over the regular solution and ideal solution models for determining the 

Gibbs free energy of mixing, that is the change in Gibbs free energy when we form a solution of 

two components. 
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in general molar Gibbs free energy of ∆𝐺𝑚 can be expressed as: 

∆𝐺𝑚 = ∆𝐻𝑚 − 𝑇∆𝑆𝑚 

∆𝐻𝑚 is the enthalpy of mixing minus temperature times ∆𝑆𝑚  where ∆𝑆𝑚 is the entropy of 

mixing. For ideal solution, enthalpy of mixing is 0 and for entropy of mixing, the entire 

contribution comes from the change in configurational entropy. ∆𝐺𝑚,𝑖𝑑 is expressed as: 

∆𝐺𝑚,𝑖𝑑 = 𝑅𝑇(𝑋𝐴𝑙𝑛𝑋𝐴 + 𝑋𝐵𝑙𝑛𝑋𝐵) 

and for regular solution ∆𝐻𝑚 = Ω𝑋 𝑋𝐵, so: 

∆𝐺𝑚,   𝑅𝑒𝑔 = Ω𝑋 𝑋𝐵 + 𝑅𝑇(𝑋𝐴𝑙𝑛 𝑋𝐴 + 𝑋𝐵𝑙𝑛 𝑋𝐴) 

For regular solution we assume that the entropy of mixing is only because of the change in 

configurational entropy and we assume random mixing. The entropy of mixing for regular 

solution is same as ideal entropy of mixing, but in reality if ∆𝐻𝑚 is not 0 then as I mentioned in 

the last class there will be a tendency for short-range order and whenever there is a short-range 

order, the entropy of mixing will not be equal to the ideal entropy of mixing, because then the 

mixing is not random. 



So, in real solutions the way the Gibbs free energy of mixing is modeled is that we define a 

quantity called molar excess Gibbs free energy. The molar excess Gibbs free energy 𝐺𝑋𝑆 is 

nothing but difference in the Gibbs free energy of mixing of a solution and its Gibbs energy of 

mixing if the solution was ideal. 𝐺𝑋𝑆 is: 

𝐺𝑋𝑆 = ∆𝐺𝑚 − ∆𝐺𝑚,𝑖𝑑 

In what respect the real solution is different from ideal solution? First, it has a non-zero enthalpy 

of mixing, and second the mixing is not random. 

𝐺𝑋𝑆 has two contribution, one is from the enthalpy of mixing and the second one is from the 

non-ideal part of entropy of mixing. There are various models using which 𝐺𝑋𝑆 can be modeled 

and then we can also determine the model for the real solutions. we will not go in details of that. 

Now, we are interested in understanding the stability of solutions. 
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If we draw this ∆𝐺𝑚 versus composition curve and if the enthalpy of mixing is non-zero but has 

a very small magnitude then we have seen in the last class the Gibbs free energy of mixing will 

still be negative at all compositions and if you draw the curve of ∆𝐺𝑚 versus composition 

expressed in terms of 𝑋𝐵 or mole fractions of B it will take a shape something like this.  



Now, I have drawn this curve to be symmetric, because I am assuming constant value of Ω, but 

this Ω may change as a function of composition in which case, the curve will not be symmetric. 

But for simplicity let us just work with the symmetric curves of ∆𝐺𝑚 versus 𝑋𝐵. 

Now what does this mean? That at any composition if I form a solution consider 𝑋𝐵 Prime, if I 

take two components with this composition XB Prime and XA Prime and from a solution there 

will be a decrease in Gibbs free energy and the forming the solution will be an irreversible 

reaction and we see that the solution will be stable at all composition. Now this is delta G M 

versus XB, what about the absolute Gibbs free energy of solution? 

If we draw absolute Gibbs free energy versus 𝑋𝐵 curve, how would it look like? 𝐺𝑆𝑜𝑙  will be 

basically the total Gibbs free energy of the system before mixing plus the ∆𝐺𝑚. The total Gibbs 

free energy before mixing will be 𝑋𝐴𝐺𝐴
𝑜 + 𝑋𝐵𝐺𝐵

𝑜. So: 

𝐺𝑆𝑜𝑙 = 𝑋𝐴𝐺𝐴
𝑜 + 𝑋𝐵𝐺𝐵

𝑜 + ∆𝐺𝑚 

If left axis is A rich, right axis is B rich, and if I write 𝑋𝐵 as X axis, then I will have 𝐺𝐴
𝑜 marked 

somewhere on 𝑋𝐴 equal to one axis. This is basically the molar Gibbs free energy of pure A and 

𝐺𝐵
𝑜 marked somewhere on the 𝑋𝐵 equal to one axis. I am assuming here that 𝐺𝐵

𝑜 is greater than 

𝐺𝐴
𝑜, but it can be other ways also. Before mixing the total Gibbs free energy of the system was 

𝑋𝐴𝐺𝐴
𝑜 + 𝑋𝐵𝐺𝐵

𝑜 or it varies along the straight line joining 𝐺𝐴
𝑜 and 𝐺𝐵

𝑜. and at any given 

composition if you know ∆𝐺𝑚 then you know the absolute value of the Gibbs free energy. 

Plotting at each composition will give a curve something like this. 

This is the absolute Gibbs free energy versus mole fraction. This is how the 𝐺𝑆𝑜𝑙  versus 

composition curve would look like. However, we do not know the absolute values of Gibbs free 

energies. By convention we assign value of 0 to some standard state of each component and 

usually the standard state is taken as the pure element in its stable state at the temperature being 

considered. And in this case we will assign value of 0 to 𝐺𝐴
𝑜 and 𝐺𝐵

𝑜 and if we do that then 

𝐺𝑆𝑜𝑙  becomes equal to ∆𝐺𝑚: 

𝐺𝑆𝑜𝑙 = ∆𝐺𝑚 

 



Whether we draw ∆𝐺𝑚 or 𝐺𝑆𝑜𝑙curves, they give us the same information. Now once we have 

established how the Gibbs free energy of solution varies with composition, our next question is 

then, how do we determine the individual chemical potentials from there? 

Any idea, how do we go about it? It is called a tangential intercept method. if we want to 

determine chemical potential, 𝜇𝐴, it is basically same as the partial molar Gibbs free energy of A 

in the solution and it is defined as partial of Gibbs free energy of solution with respect to number 

of moles of A at constant temperature pressure, and constant number of moles of B: 

𝜇𝐴 = 𝐺̅𝐴 = (
𝜕𝐺𝑆𝑜𝑙

𝜕𝑛𝐴
)

𝑇,𝑃,𝑛𝐵 
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Molar Gibbs free energy of the solution can then be written as: 

𝐺𝑆𝑜𝑙 = 𝑋𝐴𝜇𝐴 + 𝑋𝐵𝜇𝐴 

and from the Gibbs-Duhem equation we have: 

𝑋𝐴𝑑𝜇𝐴 + 𝑋𝐵𝑑𝜇𝐴 = 0 

Now, if we differentiate this equation: 

𝐺𝑆𝑜𝑙 = 𝑋𝐴𝜇𝐴 + 𝑋𝐵𝜇𝐴 



and then use Gibbs-Duhem equation and do some rearrangement of the terms, we will get the 

equation for 𝐺̅𝐴 which can be written as: 

𝐺̅𝐴 = 𝐺 − 𝑋𝐵

𝜕𝐺

𝜕𝑋𝐵
 

We can write the same equation in a little bit different form. 

𝐺 = 𝐺̅𝐴 + 𝑋𝐵

𝜕𝐺

𝜕𝑋𝐵
 

This is an equation of a line, as it is in the form of: 

𝑦 = 𝑚𝑥 + 𝐶 

Where 𝑚 is the slope of the line and 𝐶 is the intercept on Y-axis. So, the slope of G versus 𝑋𝐵 

curve  is 
𝜕𝐺

𝜕𝑋𝐵
. Here 𝐺 is Y and 𝑋𝐵 is X. This is basically the equation of a line which is tangent to 

the Gibbs free energy curve at the desired composition. And 𝐺̅𝐴 in this is nothing but the 

intercept of this tangent on the 𝑋𝐴 equal to 1 axis. 

If we want to determine the chemical potential of A at some composition 𝑋𝐵, we draw a tangent 

to the Gibbs free energy curve at that composition and the intercept on 𝑋𝐴 = 1 axis is basically 

𝐺̅𝐴 which is same as 𝜇𝐴. Similarly, the intercept of the tangent on the 𝑋𝐵 equal to one axis gives 

us chemical potential of B 𝜇𝐵 which is same as 𝐺̅𝐵. 

Now, this method we can apply for determining any partial molar quantity if we know the 

relationship between the actual molar quantity with the composition. For example, if we want to 

determine the partial molar volumes, we draw the curve of molar volume of the solution versus 

composition and by the tangential intercept method we can determine the partial molar volumes 

at the given compositions.  

Similarly, we can also apply this method to ∆𝐺𝑚 curve. At any composition we can determine 

the partial molar Gibbs free energy of mixing of a component. At this composition if we need to 

determine the Δ𝐺̅𝐴, we draw the tangent and at 𝑋𝐴 equal to 1 intercept, this is Δ𝐺̅𝐴 and it is 

nothing but (𝐺̅𝐴 − 𝐺𝐴
𝑜). This was the case when the magnitude of enthalpy of mixing was very 



small, what if the magnitude of enthalpy of mixing is high? ∆𝐻𝑚 may be highly negative, or 

highly positive. 
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Let us first consider the case of ∆𝐻𝑚 > 0 with a large magnitude. We have seen when ∆𝐻𝑚 > 0  

and when it has a large magnitude, ∆𝐺𝑚 curve will develop a negative curvature. Now, how do 

we assess the stability of solutions in this case? If we consider any composition towards A rich 

or B rich side, suppose any composition towards A rich side here, we are drawing ∆𝐺𝑚 versus 

𝑋𝐵 and if we consider composition 𝑋𝐵
1 here and we see that ∆𝐺𝑚 is negative. Single phase solid 

solution is stable in this case.  

What if I consider a higher temperature, at 𝑋𝐵
2 there may be a single phase solid solution. And if I 

quench it to the previous temperature, initially there will be a metastable solid solution, but then 

will it remain stable ? The Gibbs free energy ∆𝐺𝑚 is still negative. What if the solution with 

thiscompositions splits into two different compositions? Obviously, in order to keep mass 

balance one has to be A rich, the other has to be B rich. 

Suppose it splits into two compositions, let us call them 𝑎′ and 𝑏′, the total Gibbs free energy 

now is lying along this line joining 𝑎′ and 𝑏′ and where it intersect this 𝑋𝐵
2 line. By splitting into 

𝑎′ and 𝑏′, there is decrease in Gibbs free energy. There is a tendency for this solution to split into 

two different solutions, one with composition which is rich in A, the other richer in B. Now, this 



can continue further or it can further split. Instead of 𝑎′ and 𝑏′, it can split into 𝑎′′ and 𝑏′′ 

compositions and there is a further decrease in Gibbs free energy. 

So,what will be the equilibrium compositions of A rich and B rich solutions? How long Gibss 

free energy can keep decreasing? If we analyze this, we will see that it will keep decreasing until 

we have A rich solution with composition 𝑎, B rich solution with composition 𝑏 and these points 

𝑎 and 𝑏 are basically the touching points of the double tangent to the curve (double tangent is the 

common tangent to the both parts of the curve). 

Now, why not beyond A and B? If it splits further, we will see that there will be an increase in 

Gibbs free energy. So, the equilibrium configuration will be two solid solutions, one with 

composition A which is in equilibrium with another solid solution with composition B. Any 

solution in between will split into two compositions. At temperature T any composition between 

A and B will be stable as two phase solid solution, one with composition A, the other with 

composition B. 

Upto 𝑎 solid solution I is stable, beyond 𝑏 the B rich solid solution or II is stable and between 𝑎 

and 𝑏 there is a two phase equilibrium, 𝐼 + 𝐼𝐼 and you see these compositions are fixed for the 

two phase equilibrium? Is it also consistent with the Gibbs phase rule? What does Gibbs phase 

rule says?  

𝐹 = 𝐶 + 2 − 𝑃 

where F is the number of degrees of freedom, C is the number of components, and P accounts for 

number of phases, and 2 accounts for two variables, temperature and pressure. 

If we are considering binary system, C is equal to 2 and the number of phases here are 2 in the 

two-phase equilibrium region. we basically have F=0 degrees of freedom since we are drawing 

this curve at constant temperature and constant pressure. Both T and P are constant. 

For a two-phase equilibrium in a binary system, we cannot vary the composition of the two 

equilibrium phases, once we fix the overall composition. The compositions of the two phases in 

equilibrium is fixed, whereas in the single phase region we will have one degree of freedom 

which is the degree of freedom of composition, you can vary the composition and still be in the 



single phase region. Now, within the two phase region what happens if I have different 

compositions? As I change the overall composition, what will change? The compositions of the 

two phases are fixed. 

Student: Out of phase. 

Professor: Right. The relative amount of two phases will change, as the composition moves 

towards B rich side the fraction of B rich phase that is II phase will increase and those phase 

fractions can be obtained by lever rule.  
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Now what happens if I change the temperature? I will redraw this curve here. Between points 𝑎 

and 𝑏 there is no miscibility. It is called a miscibility gap which is the region between 𝑎 and 𝑏. If 

we plot temperature versus 𝑋𝐵, you can plot these compositions 𝑎 and 𝑏. Let us say these are at 

temperature 𝑇1. 

As I increase the temperature, what should happen? As: 

∆𝐺𝑚 = ∆𝐻𝑚 − 𝑇∆𝑆𝑚 

The entropy of mixing factor is multiplied by the factor of temperature. As I increase the 

temperature, contribution from the entropy term is increasing, so the miscibility gap should 

decrease or increase? Decrease. 

Relative contribution from ∆𝐻𝑚 is decreasing, so the region with negative curvature should 

decrease as I increase the temperature. If I draw the same curve at a higher temperature 𝑇2, it will 

be something like this and if I determine again the equilibrium compositions by tangential 

intercept method, this will be let us say 𝑎′ and 𝑏′.  If I keep increasing the temperature, at some 

point this negative curvature will vanish. During the transition somewhere at temperature 𝑇3 the 

curvature will become 0 and that is called the critical point. At that point basically 𝑎′ and 𝑏′ are 

overlapping.  



So when enthalpy of mixing is highly positive, temperature versus 𝑋𝐵 curve is basically the locus 

of 𝑎 and 𝑏, we will basically get the phase diagram with miscibility gap. At temperatures above 

𝑇3, there is no negative curvature because the contribution from 𝑇∆𝑆𝑚 term is very high. The 

negative curvature which was because mainly which was mainly because of the highly positive 

value of ∆𝐻𝑚 has vanished and again complete miscibility will exist at higher temperature. 

Below the critical temperature 𝑇3, the miscibility will be there again.  

This is how we can obtain the phase diagram from Gibbs free energy of mixing curves. This is 

an example of phase diagram with miscibility gap. So, far we consider only one solid solution, 

what if there are more phases which are stable?  
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For example, the simplest of such system is an isomorphous system. In isomorphous system 

there is complete miscibility in the liquid solution as well as complete miscibility in the solid 

state and there is a two-phase region in between liquid plus solid. 

There are two phases we need to consider here, liquid and solid. How do we get to this phase 

diagram from the Gibbs free energy of mixing curves? Since there are two phases, we need one 

curve for each phase, we need one ∆𝐺𝑚 curve for solid solution, one ∆𝐺𝑚 curve for liquid 

solution. 



Let us first draw the ∆𝐺𝑚 curve for liquid solution, we can draw 𝐺𝑆𝑜𝑙  curves, that way I can 

explain it in a better way. To calculate 𝐺𝑆𝑜𝑙  curve for liquid we take first pure A in liquid form at 

the temperature which is being considered and we take pure B in liquid form and mix them to 

form liquid solution. Now, let us select the temperature T, let us call it 𝑇1  which is in between 

the melting points of the two. 𝑇1 is greater than the melting point of A and it is lesser than the 

melting point of B. On 𝑋𝐴 equal to 1 axis, I have to first locate 𝐺𝐴(𝐿)
𝑜  the molar Gibbs free energy 

of A, this is in liquid form. At 𝑋𝐵 equal to 1 axis, I locate 𝐺𝐵(𝐿)
𝑜   when B in liquid form and then 

we find out the Gibbs free energy of liquid solution. We then draw the curve for liquid solution 

and we do the same procedure for solid solution, we first take A in solid form, then B in solid 

form and then mix two, find out what is the change in Gibbs free energy. 

Now, 𝐺𝐴(𝑆)
𝑜  where would it lie relative to 𝐺𝐴(𝐿)

𝑜 ? It will be above because at 𝑇1, liquid A is a 

stable phase. Solid A will have higher molar Gibbs free energy than liquid A: 

𝐺𝐴(𝑆)
𝑜 > 𝐺𝐴(𝐿)

𝑜  

What about 𝐺𝐵(𝑆)
𝑜 ? 

𝑇1 < 𝑇𝑚 (𝐵) 

So, pure B is stable as solid.  

𝐺𝐵(𝑆)
𝑜 < 𝐺𝐵(𝐿)

𝑜  

and we can draw a curve for solid solution. Both the curves are intersecting at some point and we 

can draw a common tangent to both of them. Let us mark the touching point of the common 

tangent to liquid solution and solid solution as 𝑎 𝑎𝑛𝑑 𝑏. Up to 𝑎 we can see that if we vary the 

composition from 𝑋𝐵 = 0, up to 𝑎 we will see that liquid solution has lower Gibbs free energy 

than solid solution. So, liquid solution will be stable, beyond composition 𝑏 up to 𝑋𝐵 = 1, we 

see that solid solution has lower Gibbs free energy than liquid and solid solution is stable, but 

between A and B what happens? Again, if we consider any composition in between, let us say 

𝑋𝐵
′ , we see that if this composition splits into one liquid solution and one solid solution, it will be 

associated with a decrease in Gibbs free energy. 



At 𝑋𝐵
′  it looks like liquid solution has a lower Gibbs free energy than solid solution, one would 

tend to think that liquid solution is stable but we also need to think about other possibilities by 

whichl there will be any further decrease in Gibbs free energy, and one such possibility is by 

splitting the same composition into liquid solution which is richer in A and solid solution which 

is richer in B. 

And by doing this we can decrease the Gibbs free energy and one starting composition will split 

into liquid solution and solid solution, and the equilibrium compositions can be marked by the 

common tangent to the two curve 𝑎 and 𝑏 . Any composition between 𝑎 and 𝑏 there is a two-

phase equilibrium, liquid plus solid.  

If we increase the temperature, what should happen? will the two curves will shift up or down or 

one will shift up, one will shift down? 

Student: Both the curves will shift down  

Professor: Exactly, both the curve will shift down, why? You know this equation of state: 

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + ∑ 𝜇𝑖𝑑𝑛𝑖 

At constant composition, last term will be 0 and at constant pressure: 

(
𝜕𝐺

𝜕𝑇
)

𝑃
= −𝑆 

If you consider any composition, as I increase the temperature the Gibbs free energy should 

decrease because the slope is −𝑆 which is always negative, so the Gibbs free energy should 

always decrease with temperature. But entropy of liquid is higher than entropy of solid. The 

liquid curve will shift down faster than the solid curve. In a way it will look like relatively the 

liquid curve is shifting down with repsect to the solid curve. if we try to draw that, we will see 

that the points 𝑎 and 𝑏 as I increase the temperature are shifting towards right and they are 

approaching each other. 

Similar to here, if I determine the equilibrium compositions of liquid and solid at a higher 

temperature 𝑇2 this will be  𝑎′ and 𝑏′
 and this will continue until 𝑇𝑚 (𝐵) and beyond 𝑇𝑚 (𝐵)what 



will be the situation? Only liquid is stable. The solid curve will lie completely above the liquid 

curve, so at all compositions Gibbs free energy of liquid solution is lower than that of solid 

solution. 

We looked at how to derive phase diagrams from Gibbs free energy of mixing versus 

composition curves for some simple systems, the one with miscibility gap and isomorphous 

system. Now, in both these cases solid A and solid B components in solid states had the same 

crystal structure. 
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What if they have different crystal structures? Then it will give rise to little more complicated 

phase diagrams. One example is the eutectic phase diagram similar to what I have drawn here. 

This is a eutectic phase diagram between two components A and B, there is a little bit of terminal 

solid solubility, 𝛼 is the A rich solid solution which let us say is BCC, 𝛽 is B rich solid solution 

which let us say is FCC, and there is a eutectic point here, the three phase equilibrium between 

𝛼, 𝛽 and liquid. 

How do we get to Gibbs free energy versus composition from the phase diagram? In 

computational thermodynamics essentially we evaluate the Gibbs free energy curves for different 

phases and then from this Gibbs free energy versus composition data we derive the phase 

diagram. That is the actual way we go in computational thermodynamics. But to understand the 

process really well, let us do it a reverse way. At a given temperature on the phase diagram let us 

see how the Gibbs free energy of mixing curves will look like. 

Let us start with the temperature 𝑇1. Here, you have a two phase equilibrium 𝛼 and 𝛽. Now, there 

are three phases on the phase diagram we need minimum three curves, one for BCC solid 

solution that is 𝛼, one for FCC solid solution that is 𝛽 and one for liquid solution. First we need 

the curve for 𝛼 that is the BCC solid solution, we need to first mark 𝐺𝐴
𝑜 and A solid in BCC 

crystal structure and we need the point 𝐺𝐵
𝑜 and B also in BCC. Note B is stable as FCC but we 

need the value of molar Gibbs free energy of B in BCC. So, we first need to convert FCC B into 

BCC B and then mix A in BCC and B in BCC to form the BCC solid solution. That will give us 

the curve for Gibbs free energy of mixing for 𝛼. 

Practically it may not be possible to determine the Gibbs free energy change associated with this 

transformation FCC B to BCC B but we need to know that. It may be done by the first principle 

calculations. Then we need the curve for 𝛽, for 𝛽 which is FCC we need 𝐺𝐴
𝑜 for FCC that is the 

molar Gibbs free energy of A when it is FCC and obviously A FCC is an unstable phase. The 

value of 𝐺𝐴
𝑜 FCC will be higher than 𝐺𝐴

𝑜 BCC.  B is stable as FCC, so 𝐺𝐵
𝑜 FCC will be lesser than 

𝐺𝐵
𝑜 BCC and we can get the curve for 𝛽. We can determine the two-phase region by drawing a 

common tangent and these touching points 𝑎 and 𝑏 mark the equilibrium compositions of the 

two phases in equilibrium. 



If we see up to point 𝑎, there is the 𝛼 stability, beyond the composition 𝑏 𝛽 single phase is stable 

because Gibbs free energy of 𝛽 is lesser than that of 𝛼 and between 𝑎 and 𝑏 there is a two phase 

equilibrium 𝛼+𝛽. As I increase the temperature 𝑎 and 𝑏 points will approach each other. We will 

see that the solubilities on both sides are increasing, note here one thing there is a common 

tangent right at 𝑎 and 𝑏. If I want to find out chemical potential in the two phases, at any 

composition between 𝑎 and 𝑏, what would it be? You know any composition between 𝑎 and 𝑏 

will be stable as two phase mixture, one with composition 𝑎, another with composition 𝑏. 

I need to know the chemical potential of A for example in phase 𝛼 and in phase 𝛽. It will be 

given by the tangent. Trivially since this is a common tangent: 

𝜇𝐴(𝛼) = 𝜇𝐴(𝛽) 

Similarly: 

𝜇𝐵(𝛼) = 𝜇𝐵(𝛽) 

 And this is the condition for two phase equilibrium. The chemical potential of A in one phase 

should be equal to the chemical potential of A in the other phase. Similarly, chemical potential of 

B should be same in both the phases. What about the liquid solution curve? It will be lying above 

this tangent line. As the temperature increases the Gibbs free energy of liquid solution is 

decreasing faster than the solids. At a certain temperature there may be a possibility that there 

will be a triple tangent because this liquid curve relatively is shifting down and at some point it 

may touch the common tangent to both the solid solutions. 

In that case, there is basically a three phase equilibrium because in this case: 

𝜇𝐴(𝛼) = 𝜇𝐴(𝛽) = 𝜇𝐴(𝐿) 

i.e., chemical potential of A in 𝛼 is same as chemical potential of A in 𝛽 same as chemical 

potential of A in liquid solution. Similarly: 

𝜇𝐵(𝛼) = 𝜇𝐵(𝛽) = 𝜇𝐵(𝐿) 



and this is called the eutectic temperature. At eutectic temperature there is a three phase 

equilibrium. 

We can mark 𝑎, 𝑏 and 𝑐 as the three points where common tangent is touching the three curves of 

𝛼, liquid and 𝛽 touching points respectively at the eutectic temperature. In this case up to point 𝑎 

single phase 𝛼 is stable, beyond point 𝑏 single phase 𝛽 is stable and between 𝑎 and 𝑏 there is a 

three phase equilibrium 𝛼+ 𝛽+ liquid.  

This way you can assess other more complicated phase diagrams also. Now, let us look at one 

more case when ∆𝐻𝑚 is highly negative. When ∆𝐻𝑚 was positive, there was a tendency for 

phase separation, it developed a miscibility gap. Because ∆𝐻𝑚 is positive it means A-B bonds 

are weaker than average of A-A and B-B bonds, or there is a tendency to minimize the number 

of A-B bonds. But when ∆𝐻𝑚 is highly negative that means A-B bonds are much stronger than 

A-A and B-B or there will be a tendency to maximize the number of A-B pairs. Now, in extreme 

case what might happen? For example, if you are considering 50-50 percent of A and B, when 

will be the number of A-B pairs maximized? When all A atoms have only B as neighbors and all 

B atoms have only A as neighbors. This is called an ordered structure and it may form a 

completely different phase which is called as intermetallic phase. When enthalpy of mixing is 

highly negative there will be a tendency for ordering. 
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Let us consider such an example. This is an example of a phase diagram with an intermediate 

phase, we have A, B and this is intermetallic AB. In that case now we have three solid phases, 𝛼, 

𝛽 and intermetallic AB which will have a completely different crystal structure and then there is 

a liquid phase. 

We need at least four Gibbs free energy curve, one for 𝛼, one for 𝛽 and one for AB. And 

typically, the Gibbs free energy curve for this intermetallic will be very sharp because ∆𝐻𝑚 is 

highly negative so that it develops a sharp ∆𝐺𝑚 curve. Then we can draw one curve for 𝛼, one 

curve for 𝛽 and we can determine the two phase regions by the method of common tangent. If 

you consider this temperature 𝑇1 upto point 𝑎, 𝛼 is stable, beyond 𝑏 𝛽 is stable. 

Now, we can draw two common tangents, one between 𝛼 and AB, the other between 𝛽 and AB. 

𝑎𝑐 is the common tangent between 𝛼 and AB and 𝑑 is the point where the common tangent 

between 𝛽 and AB touches the curve of AB and there is a small region between 𝑐 𝑎𝑛𝑑 𝑑 where a 

AB is stable. 

Between 𝑎 and 𝑐 we have  𝛼+AB between 𝑏 and 𝑑 we have 𝛽+AB and between this small region 

there is a single phase AB which is stable. So, when ∆𝐺𝑚 is positive there is a tendency for 

phase separation and when ∆𝐻𝑚 is negative there is a tendency for ordering. 


