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Welcome back to the eighth lecture of open course on Diffusion in Multicomponent Solids. 

In this lecture, we will go over the statistical model for evaluating the enthalpy of mixing for 

regular solution. And, again to give a flavor of multicomponent thermodynamics I have 

treated ternary solution in this lecture. 

(Refer Slide Time: 00:50) 

 
 

in last class we analyzed ideal solutions. Today, we will try to analyze Gibbs free energy of 

mixing for non-ideal solutions. So: 

∆𝐺𝑚 = ∆𝐻𝑚 − 𝑇∆𝑆𝑚 

Unlike an ideal solution, for a non-ideal solution delta: 

∆𝐻𝑚 ≠ 0 

heat is either evolved or heat is absorbed during the process of mixing. Why it would 

happen? Because of the interactions, because A-A, B-B and A-B interactions are different 

and when we replace some of the A-A and B-B pairs with A-B pairs in the solution, there is a 

heat effect resulting into potential energy change. the enthalpy changes. 



Now when A-A, B-B and A-B interactions are not same then the mixing will not be random 

like in real solutions. Because there will be some preference for the nearest neighbor pairs. 

For example, if A-B bonds are stronger than A-A and B-B bonds, then there will be a 

tendency to form or maximize A-B bonds. On the other hand, if A-B bonds are weaker, there 

will be a tendency to form A-A and B-B bonds and minimize the number of A-B bonds. 

There will be a kind of short range order associated with the difference in the interactions. 

And, the mixing process will not be completely random. 

And, ∆𝑆 mixing will not be same as that for an ideal mixing where we assume random 

mixing. But, in order to understand this interaction effect let us try to simplify the model. Let 

us assume that: 

∆𝐻𝑚 ≠ 0 

But,  

∆𝑆𝑚 = ∆𝑆𝑚,   𝑖𝑑𝑒𝑎𝑙 

This is the regular solution model. We now need to evaluate the enthalpy of mixing. ∆𝐻𝑚 at 

constant temperature and pressure is: 

∆𝐻𝑚 = ∆𝑈 + 𝑃∆𝑉 

We make further assumption that ∆𝑉 is negligible. And so: 

∆𝐻𝑚 = ∆𝑈𝑚 

∆𝐻𝑚 just becomes equal to the change in internal energy. 

Further the temperature is constant, we do not need to consider the changes in kinetic energy, 

therefore: 

∆𝐻𝑚 = ∆𝐸𝑚 

Where 𝐸 denotes the potential energy part. And, the change in potential energy is only 

because of the changes in the types of pairs or changes in the number of particular bonds A-

A, B-B or A-B in a binary solution. 
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Let us try to evaluate change in potential energy and let us consider a ternary solution, for 

example, 1 mole of solution formed by mixing of 𝑁1 atoms of 1, 𝑁2 atoms of 2 and 𝑁3 atoms 

of 3. Let us denote their potential energy before mixing as 𝐸1, potential energy after mixing 

as 𝐸2. 

Now if we consider the solution after mixing, how many different types of bonds will be 

there? There will be of course 1-1, 2-2 and 3-3 type of bonds. Then there will also be 

dissimilar atom interactions or bonds, 1-2, 1-3, 2-3. So in total 6 types of bonds. Let us say 

there are 𝑃11 number of 1-1 type of bonds, and each bond has an energy 𝐸11.  

Similarly, 𝑃22 number of 2-2 bonds each having energy 𝐸22, 𝑃33 number of 3-3 bonds each 

having energy 𝐸33, 𝑃12 bonds with energy 𝐸12 per bond, 𝑃13 bonds with energy 𝐸13 and 𝑃23 

bonds with energy 𝐸23. So, what will be the total energy after mixing?  

𝐸2 = 𝑃11𝐸11 + 𝑃22𝐸22 + 𝑃33𝐸33 + 𝑃12𝐸12 + 𝑃13𝐸13 + 𝑃23𝐸23 

And what will be the energy before mixing? Before mixing there will be no dissimilar bonds, 

only 1-1, 2-2 and 3-3 bonds and their numbers will be obviously different. Let us assume they 

are 𝑃11
′ , 𝑃22

′ and 𝑃33
′  respectively. In that case total potential energy before mixing will be: 

𝐸1 = 𝑃11
′ 𝐸11 + 𝑃22

′ 𝐸22 + 𝑃33
′ 𝐸33 

And: 

∆𝐸𝑚 = 𝐸2 − 𝐸1 

∆𝐸𝑚 = (𝑃11 − 𝑃11
′ )𝐸11 + (𝑃22 − 𝑃22

′ )𝐸22 + (𝑃33 − 𝑃33
′ )𝐸33 + 𝑃12𝐸12 + 𝑃13𝐸13 + 𝑃23𝐸23 
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Now all we need to do is evaluate this number of bonds. To do that let us apply the balance 

equation for number of bonds. First we have to find the total number of bonds in which, for 

example, atoms of type 1 are involved. They will be either 1-1 or 1-2 or 1-3 and there are 𝑁1 

number of 1 atoms. So each atom 1 will bond with 𝑍 number of atoms which is the 

coordination number of 1. It can be written as: 

𝑁1𝑍 = 2𝑃11 + 𝑃12 + 𝑃13 

For 1-1 type of bond we have to count twice as this bond is shared by two 1 atoms. For the 

dissimilar type of bonds we have to count only once. Or we can write: 

𝑃11 =
1

2
𝑁1𝑍 −

1

2
𝑃12 −

1

2
𝑃13 

Similarly, we can apply this for atoms of type 2 and also atoms of type 3 and we will get: 

𝑃22 =
1

2
𝑁2𝑍 −

1

2
𝑃12 −

1

2
𝑃23 

𝑃33 =
1

2
𝑁3𝑍 −

1

2
𝑃13 −

1

2
𝑃23 

Now if we apply this equation before mixing, where we essentially have pure 1, pure 2 and 

pure 3 then we get : 

𝑁1𝑍 = 2𝑃11
′  



Or  

𝑃11
′ =

1

2
𝑁1𝑍 

as there are no dissimilar bonds. Similarly: 

𝑃22
′ =

1

2
𝑁2𝑍 

𝑃33
′ =

1

2
𝑁3𝑍 

Now if we substitute for 𝑃11 and 𝑃11
′  in this equation, we can find ∆𝐸𝑚 as: 

∆𝐸𝑚 = −
1

2
𝑃12𝐸11 −

1

2
𝑃13𝐸11 −

1

2
𝑃12𝐸22 −

1

2
𝑃23𝐸22 −

1

2
𝑃13𝐸33 −

1

2
𝑃23𝐸33 + 𝑃12𝐸12

+ 𝑃13𝐸13 + 𝑃23𝐸23 

Essentially we have found here ∆𝐻𝑚. 

Student: Sir, how can we assume that the coordination number for the all the three type of 

atoms can be same? 

Professor: Okay. That is a good question. There is an assumption that we are making here. 

We are starting with same crystal structure as the crystal structure of the solution. 

That is how we systematically form a thermodynamic solution. For example, in a binary if we 

want to form a solution between A and B which is FCC, we first bring pure A to FCC 

structure, we bring pure B to FCC structure and then mix the two to form the final FCC 

solution. If A and B are stable as FCC, then we just have to consider A and B in stable 

phases. 

But suppose B is not stable as FCC, B is stable as HCP, we first have to covert HCP to FCC. 

There will be some Gibbs free energy change associated with it. And, then we mix the two to 

form the final solution which is FCC. And that is why we are considering the coordination 

number here as the same. 

If we rearrange the previous equation we get: 

∆𝐸𝑚 = 𝑃12 [𝐸12 −
𝐸11 + 𝐸22

2
] + 𝑃13 [𝐸13 −

𝐸11 + 𝐸33

2
] + 𝑃23 [𝐸23 −

𝐸33 + 𝐸22

2
] 



We are multiplying the number of dissimilar bonds with the difference between the energy of 

that dissimilar bond and the average of the similar type of bonds. 

If write this for binary solution A-B, for example, this will be: 

∆𝐻𝑚 = 𝑃𝐴𝐵 [𝐸𝐴𝐵 −
𝐸𝐴𝐴 + 𝐸𝐵𝐵

2
] 

And, 

∆𝐻𝑚 = 0  𝑖𝑓 𝐸𝐴𝐵 =
𝐸𝐴𝐴 + 𝐸𝐵𝐵

2
 

This will be 0 if 𝐸𝐴𝐵 is equal to average of A-A and B-B bond energy. If: 

 𝐸𝐴𝐵 =
𝐸𝐴𝐴 + 𝐸𝐵𝐵

2
 

∆𝐻𝑚  is 0 and then it is an ideal solution. So, for solution to be an ideal solution we initially 

said that the interactions have to be same. But it can be little more relaxed. As long as the A-

B bond energy is equal to the average of A-A and B-B bond energies, we can still get an ideal 

solution. If we have a ternary solution then that has to be true for each of the dissimilar pair. 

Then solution is an ideal solution. Even if for 1 of the pair, it is not true then you will have 

some non-zero value of ∆𝐻𝑚. And the solution will be non-ideal. 
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Now to look into this further we need to evaluate 𝑃𝑖𝑗′𝑠, where 𝑖 and 𝑗 are different types of 

atoms. So how do we evaluate  𝑃𝑖𝑗? Number of 𝑖 − 𝑗 pairs. If we know the total number of 

pairs and multiply it by the probability that a particular pair is an 𝑖 − 𝑗 pair, we will get 𝑃𝑖𝑗.  

This first term will be how many total number of atoms pairs are there. This will be simply 

𝑁𝑎𝑍

2
. It is total number of atoms × number of bonds per atom and since we are counting each 

bond twice we divide by 2. Now if we have a crystal structure with given number of atom 

pairs, what is the probability that a selected pair let us say this one is an 𝑖 − 𝑗 pair. 

We select the first atom and then the next nearest neighbor. What is the probability that the 

first atom is an 𝑖 atom? If we consider random solution which we are considering here, this 

probability is nothing but the mole fraction of 𝑖 atom. It is then multiplied by the probability 

that the next atom is a 𝑗 atom which is 𝑋𝑗. This will be 𝑋𝑖 × 𝑋𝑗. We can also select first atom 

to be a 𝑗 atom and the next one to be an 𝑖 atom. In that case it will be 𝑋𝑗 × 𝑋𝑖. So,  

𝑃𝑖𝑗 =
𝑁𝑎𝑍

2
(𝑋𝑖𝑋𝑗 + 𝑋𝑗𝑋𝑖) = 𝑁𝑎𝑍𝑋𝑖𝑋𝑗 

For ternary we get: 

∆𝐻𝑚 = 𝑁𝑎𝑍 [𝐸12 −
𝐸11 + 𝐸22

2
] 𝑋1𝑋2 + 𝑁𝑎𝑍 [𝐸13 −

𝐸11 + 𝐸33

2
] 𝑋 𝑋3

+ 𝑁𝑎𝑍 [𝐸23 −
𝐸33 + 𝐸22

2
] 𝑋2𝑋3 

Or, 

∆𝐻𝑚 = Ω12𝑋1𝑋2 + Ω13𝑋 𝑋3 + Ω23𝑋2𝑋3 

Where, 

Ω𝑖𝑗 = 𝑁𝑎𝑍 [𝐸𝑖𝑗 −
𝐸𝑖𝑖 + 𝐸𝑗𝑗

2
] 

Clear? So, we have the expression for molar enthalpy of mixing in terms of bond energies of 

different types in the solution. 
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If we consider the binary solution then: 

∆𝐻𝑚 = 𝑁𝑎𝑍 [𝐸𝐴𝐵 −
𝐸𝐴𝐴 + 𝐸𝐵𝐵

2
] 𝑋 𝑋𝐵 

Since there is only one term, we can just call it Ω: 

∆𝐻𝑚 = Ω𝑋 𝑋𝐵 

where 

Ω = 𝑁𝑎𝑍 [𝐸𝐴𝐵 −
𝐸𝐴𝐴 + 𝐸𝐵𝐵

2
] 

Now when A-B bond energy is same as or is equal to the average of A-A and B-B bond 

energies then ∆𝐻𝑚 = 0 and the solution is ideal. But, when: 

𝐸𝐴𝐵 <
𝐸𝐴𝐴 + 𝐸𝐵𝐵

2
,      Ω < 0, ∆𝐻𝑚 < 0 

Essentially, what this means is if A-B bonds are stronger or have lesser bond energy than 

average of A-A and B-B bonds, then the enthalpy of mixing is negative. Which means heat 

will be released during the process of mixing. We have seen this when we studied the 

Raoult's law and the Henry’s law, or how the vapor pressures vary with composition. 

If you remember we said that if A-B bonds are stronger than A-A or B-B bonds, the 

evaporation rate or the intrinsic evaporation rate of A will come down by going into the 

solution from pure state. That corresponded to the negative deviation from ideality. Negative 



deviation of ideality also means that ∆𝐻𝑚 mixing is negative. Similarly, if A-B bonds are 

stronger than A-A or B-B, which means in this case if: 

𝐸𝐴𝐵 >
𝐸𝐴𝐴 + 𝐸𝐵𝐵

2
  𝑡ℎ𝑒𝑛     Ω > 0, ∆𝐻𝑚 > 0 

It means heat will be absorbed during the process of mixing. If A-B bonds are weaker it 

means A-B bonds will have higher energy than average of A-A and B-B. And by forming 

solution you are replacing some A-A and some B-B bonds with A-B bonds. So, you are 

replacing stronger bonds with weaker bonds, you are replacing bonds with lower energy with 

bonds with higher energy, which means energy has to be provided to form the solution. And, 

that is why ∆𝐻𝑚 will be positive. This is important, so we went over this model in little bit 

details because it is important to understand how the interactions between the atoms give rise 

to the changes in the Gibbs free energy or basically changes in the enthalpies and entropies 

They also affect the diffusion, especially the cross-effects. 
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Because of these different interactions the atom jumps will be biased in a multicomponent 

system. And it is important to understand this, how this atom interactions affect the Gibbs 

free energy changes. Now if we plot for an A-B solution, for regular solution: 

∆𝐺𝑚,𝑟𝑒𝑔 = ∆𝐻𝑚,   𝑟𝑒𝑔 − 𝑇∆𝑆𝑚,   𝑟𝑒𝑔 

For binary solution: 

∆𝐺𝑚,𝑟𝑒𝑔 = Ω𝑋 𝑋𝐵 + 𝑅𝑇(𝑋𝐴𝑙𝑛 𝑋𝐴 + 𝑋𝐵𝑙𝑛 𝑋𝐴) 



Now if we try to plot ∆𝐻𝑚, ∆𝑆𝑚and ∆𝐺𝑚 for a regular solution, when let us say Ω < 0 delta: 

∆𝐻𝑚 < 0 

Ω𝑋 𝑋𝐵 have a shape something like this which is ∆𝐻𝑚 .  

∆𝑆𝑚,   𝑟𝑒𝑔 = ∆𝑆𝑚,   𝑖𝑑 

We know it will be positive always. And if we evaluate ∆𝐺𝑚 at each of the composition, it 

will be negative everywhere.  

What if Ω is positive? ∆𝑆𝑚 will still be positive everywhere. Now ∆𝐻𝑚 is positive and we 

will see that the magnitudes of ∆𝐺𝑚will be would be lesser than what it will be for negative 

Ω. As Ω becomes more and more positive, what happens? This curve will increase, it will 

also affect the curvature of ∆𝐺𝑚. And when ∆𝐻𝑚is very high, you will see there will be a 

negative curvature developed on the ∆𝐺𝑚curve. This delta ∆𝐺𝑚 curve corresponds to this 

∆𝐻𝑚. We are still assuming ideal or random mixing, so ∆𝑆𝑚will not change for assumption 

of random mixing. But then because ∆𝐻𝑚 is becoming more and more positive, it will affect 

the curvature and at beyond certain value of ∆𝐻𝑚,  ∆𝐺𝑚 curve will just develop a negative 

curvature in between. Now this is very important because it will affect the stability of the 

solution. And how it will affect, we will see in the next class. Any question so far? All clear? 

Okay. Thank you. 


