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Welcome to the seventh lecture of open course on Diffusion in Multicomponent Solids. In 

this lecture, we will derive the expression for entropy of mixing for an ideal solution. In order 

to give you a flavor of the multicomponent thermodynamics, we will apply this treatment to 

an 𝑛 component solution. We will go over solution thermodynamics.   

Last class, we evaluated partial molar Gibbs free energy of mixing of constituent atoms or 

elements based upon assuming the process of forming solution to be equivalent to 

evaporation of one mole of the constituent from the pure element at constant temperature and 

pressure 𝑃𝑖
𝑜, then reducing the pressure of the vapor from 𝑃𝑖

𝑜 to 𝑃𝑖, which is the vapor 

pressure of 𝑖 over the solution and then condensing that one mole of 𝑖 from the vapor phase 

into the solution. 
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With this we got the expression for partial molar Gibbs free energy of mixing components 𝑖 

as: 

∆𝐺̅𝑖
𝑚 = 𝑅𝑇𝑙𝑛 𝑎𝑖 



where 𝑎𝑖 is the thermodynamic activity of component 𝑖 in the solution. And molar Gibbs free 

energy of mixing to form an 𝑛 component solution is: 

∆𝐺𝑚 =  𝑅𝑇 ∑ 𝑋𝑖𝑙𝑛 𝑎𝑖

𝑛

𝑖=1

 

For a binary solution of A and B we will get: 

∆𝐺𝑚 = 𝑅𝑇(𝑋𝐴𝑙𝑛 𝑎𝐴 + 𝑋𝐵𝑙𝑛 𝑎𝐴) 

Now we will go over couple of models of forming the solution of condensed phases. We will 

talk particularly about solids to understand how the process occurs physically. 
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∆𝐺𝑚 or the molar Gibbs free of mixing can also be written as: 

∆𝐺𝑚 = ∆𝐻𝑚 − 𝑇∆𝑆𝑚 

This is at constant temperature and pressure where ∆𝐻𝑚 is the molar enthalpy of mixing and 

∆𝑆𝑚 is the molar entropy of mixing.  The contribution to ∆𝐻𝑚 or the change in enthalpy 

associated with the process of mixing is mainly from the changes in the types of bonds. 

So, we have to form A-B solution from pure A and pure B. In pure A and pure B there are 

only A-A and B-B pairs. When we form the solution, some of the similar atom pairs will be 

replaced by A-B pairs. Now, A-A, B-B and A-B interactions are not same.  As a result, it 



causes changes in the potential energy which will lead to change in the enthalpy.  That is the 

change in enthalpy. 

Obviously, when you form a solution from pure elements, in the solution there are more 

special configurations available. So there is a change in entropy. We will first look at the 

ideal solution model. In an ideal solution, essentially the enthalpy of mixing is 0, which 

means there exist no interactions between the atoms or if there are interactions, they are all 

the same no matter what pair we are looking at A-A, B-B or A B. The interactions are all 

same. And the entropy of mixing is coming from the change in configurational entropy. Let 

us try to evaluate ∆𝑆𝑐𝑜𝑛𝑓. for the process of mixing.  

∆𝑆𝑚 = ∆𝑆𝑐𝑜𝑛𝑓. 
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Suppose, we form an 𝑛 component solution by mixing 𝑁1 atoms of element 1, 𝑁2 atoms of 

element 2 and so on. We have 𝑁1  atoms of 1, 𝑁2 atoms of 2, 𝑁𝑛  atoms of 𝑛 and so on. The 

total number of items will be the summation of all the atoms. 

𝑁 = 𝑁1 + 𝑁2 + ⋯ + 𝑁𝑛 

 Before mixing it is called the entropy of the system before mixing. We are talking here about 

only the configurational entropy. What should be the entropy of the system before mixing? 

Student: 0, sir.  

Professor: 0, right.  How many configurations are available? 



Student: 1. 

Professor: Right, all 1 atoms are on lattice of one, all two atoms are on lattice of two and so 

on, right and all 1 atoms are identical, all 2 atoms are identical and all 3 atoms are identical. 

So, there is only one possible way in which these atoms can be arranged before mixing.   

By Boltzmann’s equation we know: 

𝑆1 = 𝑘𝑙𝑛Ω1 = 0 

Ω is the number of configurations possible. And Ω1  here is 1, so 𝑆1 is 0. Furthermore: 

∆𝑆𝑐𝑜𝑛𝑓. = 𝑆2 − 𝑆1 = 𝑆2 

where 𝑆2 is the configurational entropy after mixing. Let us try to evaluate 𝑆2. For that we 

need to evaluate the number of possible configuration after mixing. Let us call this Ω2. How 

do we evaluate that?  here we are talking about random solution, which means there is a 

random mixing. All 𝑁1, 𝑁2..   atoms are distributed randomly on the available 𝑛 sites.  

In that case how many number of different ways we can arrange 𝑁1 atoms on 𝑛 sites. That 

will be 𝐶𝑁1 
𝑁 . Now once we arrange 𝑁1 atoms, there are only 𝑁 − 𝑁1 sites left.  We select 𝑁2 

atoms and arrange them on the available 𝑁 − 𝑁1 sites.  There are 𝐶𝑁2 
(𝑁−𝑁1)  number of ways 

possible in which 𝑁2 atoms can be arranged. 

After we arrange 𝑁1 and 𝑁2, number of sites left are 𝑁 − 𝑁1 − 𝑁2 and 𝑁3 atoms can be 

arranged on these many sites in 𝐶𝑁3 
(𝑁−𝑁1−𝑁2)  number of ways, and on. Let us write the 

formula for 𝐶𝑁1 
𝑁  , it should be: 

𝐶𝑁1 
𝑁 =

𝑁!

𝑁1! (𝑁 − 𝑁1)!
 

So: 

Ω2 = 𝐶𝑁1 
𝑁 𝐶𝑁2 

(𝑁−𝑁1) 𝐶𝑁3 
(𝑁−𝑁1−𝑁2) …

=
𝑁!

𝑁1! (𝑁 − 𝑁1)!
 ×

𝑁 − 𝑁1

𝑁2! (𝑁 − 𝑁1 − 𝑁2)!
×

𝑁 − 𝑁1 − 𝑁2

𝑁3! (𝑁 − 𝑁1 − 𝑁2 − 𝑁3)!
× … 

We can simplify this. These cross terms will just keep getting canceled. And finally, we have 

the expression for Ω2 : 



Ω2 =
𝑁!

𝑁1! 𝑁2! … 𝑁𝑛!
 

We can write 𝑆2 is equal to: 

𝑆2 = 𝑘𝑙𝑛Ω2 

So, how do we simplify this further?  Each number here is typically a very large number, 

right? When we talk about one mole of solution that 𝑁 is going to be 6.023 × 1023 number 

of atoms.  If we are dealing with large numbers, we can use Sterling's approximation. 
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It says: 

𝑙𝑛𝑥! = 𝑥𝑙𝑛𝑥 − 𝑥 

If we use this approximation, you can write: 

𝑆2 = 𝑘(𝑁𝑙𝑛𝑁 − 𝑁 − 𝑁1𝑙𝑛𝑁1 + 𝑁1 − 𝑁2𝑙𝑛𝑁2 + 𝑁2 − ⋯ ) 

𝑆2 = 𝑘 (𝑁1𝑙𝑛
𝑁

𝑁1
+ 𝑁2𝑙𝑛

𝑁

𝑁2
+ ⋯ ) 

𝑁

𝑁1
 is the atom fraction of 1 or mole fraction of 1, which we call as 𝑋1. So, we can write this 

as: 

𝑆2 = −𝑘(𝑁1𝑙𝑛𝑋1 + 𝑁2𝑙𝑛𝑋2 + ⋯ 𝑁𝑛𝑙𝑛𝑋𝑛) 

If we multiply and divide the equation by the Avogadro's number we get: 

𝑆2 = −𝑅(𝑛1𝑙𝑛𝑋1 + 𝑛2𝑙𝑛𝑋2 + ⋯ 𝑛𝑛𝑙𝑛𝑋𝑛) 

Where R is gas constant and 𝑛𝑖 is the number of moles of 𝑖 component also written as   
𝑁1

𝑁𝐴𝑣
 . 

Basically ∆𝑆𝑐𝑜𝑛𝑓. in this case should be equal to 𝑆2, this should be more appropriately 

∆𝑆′ because we are talking about the entire system. If we say per mole, we have to divide the 

equation by the total number of moles, so we can get rid of this prime sign. 

So, the molar configurational entropy of mixing is obtained by dividing the previous eq. by 

total number of moles: 



∆𝑆𝑐𝑜𝑛𝑓. = −𝑅(𝑋1𝑙𝑛𝑋1 + 𝑋2𝑙𝑛𝑋2 + ⋯ 𝑋𝑛𝑙𝑛𝑋𝑛) 

Basically ∆𝑆𝑚𝑖𝑥𝑖𝑛𝑔 for ideal solution, which is all because of the change in configurational 

entropy should be equal to: 

∆𝑆𝑚,𝑖𝑑 = −𝑅 ∑ 𝑋𝑖𝑙𝑛 𝑋𝑖

𝑛

𝑖=1

 

Obviously, since ∆𝐻𝑚,𝑖𝑑 = 0, delta G m ideal should be equal to: 

∆𝐺𝑚,𝑖𝑑 = −𝑇∆𝑆𝑚,𝑖𝑑 

  

∆𝐺𝑚,𝑖𝑑 = 𝑅𝑇 ∑ 𝑋𝑖𝑙𝑛 𝑋𝑖

𝑛

𝑖=1

 

This is the expression we got for the Gibbs free energy of mixing for an ideal solution. If you 

remember we also derived an expression for Gibbs free energy of mixing for ideal gases, and 

they have come out to be the same. 
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So, let us plot this as a function of composition for just a binary solution of, say components 

A and B. For binary ideal solution of A and B, we can write: 

∆𝑆𝑚,𝑖𝑑 = −𝑅(𝑋𝐴𝑙𝑛𝑋𝐴 + 𝑋𝐵𝑙𝑛𝑋𝐵) 

∆𝐺𝑚,𝑖𝑑 = 𝑅𝑇(𝑋𝐴𝑙𝑛𝑋𝐴 + 𝑋𝐵𝑙𝑛𝑋𝐵) 



Let us plot both these quantities as a function of composition say 𝑋𝐵. 𝑋𝐴 and 𝑋𝐵 are fractions. 

The logarithmic terms are negative which means ∆𝑆𝑚,𝑖𝑑 has to be positive while ∆𝐺𝑚,𝑖𝑑 will 

be negative. 

How do we interpret this curve? Obviously, you see a minimum somewhere. But do not 

interpret it as the composition corresponding to this minimum is the most stable solution.  

The way it has to be interpreted is at a given composition, let say 𝑋𝐴
1-𝑋𝐵

1 ∆𝐺𝑚,𝑖𝑑 for ideal 

solution of A and B is negative.  It means if we mix A and B in this proportions, there will be 

a negative change in Gibbs free energy or this mixing process is an irreversible process. That 

is the way it has to be interpreted.  So, this was for an ideal solution. We will now look into 

the non-ideal solution that will be in the next class. 


