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Last class, we talked about how we can analyse experimental concentration profiles for 

getting interdiffusion fluxes within the diffusion zone. Today, I would like to talk about 

various methodologies that we can use for determination of interdiffusion coefficients in 

multicomponent systems. We will first start with determination of fluxes, hence the analysis 

of interdiffusion fluxes becomes very important. 
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For binary it is very simple because there is only one interdiffusion coefficient that describes 

the interdiffusion flux of both components: 

𝐽1 = −�̃�
𝜕𝐶1

𝜕𝑥
 

 You can get: 

�̃�(𝐶1) = −
𝐽1

𝜕𝐶1

𝜕𝑥

 

At every composition plane within the binary diffusion zone, we can determine the value of 

interdiffusion flux of any component, for example 1 here. We can divide flux by the gradient 

of that component at the same plane get the interdiffusion coefficient at that particular 

composition. We can do this throughout the diffusion zone, so we can get the binary 



interdiffusion coefficients as functions of composition. As we increase the number of 

components, the complicacies increase. If we consider ternary diffusion couple to start with; 

in ternary we know that there are two independent fluxes. 
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Let us consider the system, let us say 1-2-3. If you treat 3 as a dependent component, we can 

write: 

𝐽1 = −�̃�11
3

𝜕𝐶1

𝜕𝑥
− �̃�12

3
𝜕𝐶2

𝜕𝑥
 

The second independent flux, 𝐽2 is: 

𝐽2 = −�̃�21
3

𝜕𝐶1

𝜕𝑥
− �̃�22

3
𝜕𝐶2

𝜕𝑥
 

 We have four interdiffusion coefficients, at any composition plane of a single diffusion 

couple. And we can get only two equations one for 𝐽1, the other for 𝐽2. So, we cannot evaluate 

the entire set of four interdiffusion coefficients with a single diffusion couple. Obviously, I 

need more than one diffusion couple. Since the interdiffusion coefficients are functions of 

composition, we want to make sure that there will be a common composition in the diffusion 

zones of the independent diffusion couples that we assemble. Kirkaldy had proposed 

originally this approach. As per Kirkaldy’s approach for a ternary system, we need two 

independent diffusion couples with intersecting diffusion paths. What is a diffusion path, this 

is an important concept that I would like to explain now before I go further in Kirkaldy’s 

method. A diffusion path simply speaking, is the sequence of compositions that develop 

within the diffusion zone of a couple plotted on to the isotherm. 
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If we consider a ternary isotherm, it can be represented by an equilateral triangle which is 

referred to as Gibbs triangle. The three corners of the triangle represent hundred % of the 

three elements, 1-2-3. Each side of the triangle represents the binary system. So, we have 1-2 

binary, 1-3 binary and 2-3 binary. Any composition that lies inside the triangle is a ternary 

composition. I would explain in little more detail the ternary isotherms as we would need it 

for multiphase diffusion. I will explain it in a separate class but, right now it is just sufficient 

to know this. 
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Now, if we consider any ternary diffusion couple. Let us say left terminal alloy is 50 % of 

one, 20 % of two and 30 % of three. Right alloy is 20 % of one, 70 % of two, 10 % of three. 



The initial concentration profiles of a component in left and right terminal alloy can be 

represented by 𝐶1
− and 𝐶1

+ respectively. After diffusion annealing for a certain time, 

concentration profiles will develop. As the diffusion time increases, we know that the 

diffusion profiles will broaden. The composition profiles will change with time, that means 

each composition plane will move with time. We know each composition plane moves 

parabolically, that is: 

𝐶 = 𝑓 (
𝑥

√𝑡
) = 𝑓(𝜆) 
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𝜆 is the Boltzmann parameter. I can mark the compositions of alloy 1 and 2 on the ternary 

isotherm and I join these two compositions by a straight dotted line. Now, if I plot the 

compositions sequence that is developed in the diffusion profile on to this ternary isotherm 

what would it be like? One may tend to think that it will follow this straight line joining the 

two-terminal alloys? But it is not the case, we will find typically this sequence of composition 

takes shape of S on the ternary isotherm. So, the diffusion path is typically an S-shaped 

curve. 

And, what is the significance of diffusion path? The significance of the diffusion path is that 

it is independent of time or it is invariant with time. We have seen if we plot concentration 

versus distance, x-axis here is distance coordinate, it is a function of time. With time each 

composition plane is moving. The diffusion profile is broadening, but not the diffusion path.  

This is because; in an infinite diffusion couple the each composition plane moves 

parabolically with time. It is a function of Boltzmann parameter 𝜆, there is no new 



composition plane added or any composition plane getting removed. Obviously, the sequence 

of composition will not change although the profiles will broaden with time such that the 

diffusion path is independent of time. This is an important concept.  

When we conduct the diffusion couple experiments, in order to assess the reliability of our 

experiment we should usually prepare at least one diffusion couple three-four different times. 

The same couple which is the couple between the same two ternary alloys should be annealed 

for three-four different times, I have to make sure that at different times the diffusion paths 

are same. That helps to establish the reliability of the experiments. 
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Now, coming back to Kirkaldy’s method here for determining ternary interdiffusion 

coefficients. We want two independent couples. Let us say I prepared two independent 

couples, one between alloy A / alloy B and the other between alloy C / alloy D. These two 

couples should be such that there diffusion paths should intersect on the ternary isotherm. So, 

if I prepare the two diffusion couples such that the straight line joining the two-terminal 

alloys intersect, there is a high possibility that the diffusion paths of the two will intersect. 

Both of the couples will develop S shape diffusion paths and they will intersect at some 

composition, let us denote this by P. It means the composition P is common to both the two 

diffusion couples A-B and C-D. Why it is important? Because, at point P or at the 

composition corresponding to point P in each of the couple, we can write the two independent 

flux equations. 



One set of two equations for couple A-B, the second set of independent equations for couple 

C-D. This way we have four independent equations, now we can solve those for the four 

interdiffusion coefficients. Those four interdiffusion coefficients will correspond to the 

composition at point P. These are the exact values of the ternary interdiffusion coefficients. 

In order to get interdiffusion coefficients at different compositions, we need to prepare such 

intersecting path diffusion couples and get the values. It is not possible to predict the 

diffusion path exactly. We cannot really design the diffusion couples whose diffusion paths 

will intersect at the exact desired point. But, we can kind of design the couples in a way so 

that the straight line joining the two-terminal alloys intersect. We know somewhere the 

diffusion paths will intersect. This way the method has been applied to many ternary systems 

and the interdiffusion coefficients have been determined.  

In principle, Kirkaldy’s method can be extended to any 𝑛 component system. For example, in 

quaternary we have three independent fluxes, 𝐽1, 𝐽2 and  𝐽3which are expressed as functions 

of three independent gradients. So, there are nine interdiffusion coefficients at any given 

quaternary composition. If we extend this analysis to quaternary, we will need three 

independent diffusion couples whose diffusion paths will intersect at one point. Now, it is 

highly difficult to design such couples. For quaternary system, an isotherm is a 3D figure. In 

ternary it is a 2D figure because there are two independent concentrations. In quaternary, 

there are three independent concentrations, so it will be a 3D figure. Now, imagine three 

diffusion paths in three dimensions intersecting at one common point. It is almost not 

practical to design such couples. In principle, this method can be extended to 𝑛 component 

system, but practically it had not been possible far. 

However, recently there has been one approach proposed that I will discuss next. Recently 

John Morral has proposed an approach called body diagonal diffusion couples which we can 

use in limited cases in order to get quaternary, quinary or even higher component 

interdiffusion coefficient matrices. I will explain that approach now. Body diagonal diffusion 

couple approach is essentially an extension of Kirkaldy’s approach to 𝑛 component system, 

but it gives a systematic way to design the multicomponent diffusion couples such that they 

would intersect possibly at one point. I will explain this with the help of a quaternary system, 

then I will explain how we can extend it to the higher-order systems. When I consider a 

quaternary system, I need three independent concentration variables to define one quaternary 

composition. So, if I plot a particular composition, I need a 3D composition space. The fourth 



component is of course dependent. If I design a couple between, let us say between alloy I 

and alloy II, concentration of the terminal alloy I can be defined by 𝐶1
𝐼, 𝐶2

𝐼 and 𝐶3
𝐼. For alloy II 

composition is defined by 𝐶1
𝐼𝐼, 𝐶2

𝐼𝐼 and 𝐶3
𝐼𝐼. The difference between the corresponding 

concentrations of the two terminal alloys is denoted as ∆𝐶𝑖. The composition vector ∆𝐶𝑜 is 

written as: 

∆𝐶𝑜 = (∆𝐶1 , ∆𝐶2, ∆𝐶3) 
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In body diagonal diffusion couple approach, the terminal alloys needs to be selected. Now, 

consider a composition 𝐶̅ and imagine a cube around this composition 𝐶̅ such that 𝐶̅ is at the 

body centre of this cube. So, this cube is drawn in a 3D composition space of 𝐶1, 𝐶2 and 𝐶3. 

𝐶2 axis and 𝐶1 and 𝐶3 is are as shown in the figure. 

In body diagonal diffusion couple approach the two terminal alloys of a diffusion couple are 

selected from two ends of a body diagonal of this cube. That is why the name body diagonal 

diffusion couple. Now, why it is significant that you will realize soon. For quaternary for 

example, there is a cube here. For a cube, there are four body diagonals and we can form four 

such sets of diffusion couples. Now what is the special feature about the body diagonal 

couples? They are characterized by same difference in concentrations for three independent 

components. 
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If we determined the difference between the concentrations of any two alloys selected from 

the two ends of the body diagonal, the three components will have the same difference of the 

concentrations. The fourth one of course, maybe different because it will make up for the 

total to be a 100 %. Now, if I imagine the origin (0,0,0) to be at 𝐶̅ that is at the body centre, 

then I can mark the eight corners of the cube in terms of ∆𝐶𝑜 or more specifically, in terms of 

∆𝐶𝑜

2
 because ∆𝐶𝑜 is the composition vector. I have to select the terminal alloys from the ends 

of the body diagonals. That is the terminal alloys are from the eight corners of the cube. The 

eight corners have the coordinates as shown in the figure above. 

Since there are four body diagonals, we can have four sets of diffusion couples. If we select a 

specific 𝐶̅  and specific ∆𝐶𝑜, we can write down the compositions of all the alloys on the 

eight corners of the cubes. If we write those compositions, now the question is why it is 

important to select the terminal alloy concentration from the two ends of a body diagonal. 

Because, if ∆𝐶𝑜 is very small then we expect the interdiffusivity matrix to be more or less 

constant throughout the diffusion zone. And if the interdiffusion coefficients are constant 

then the diffusion path is symmetric, which means for any of this body diagonal couple, the 

diffusion path will intersect the body diagonal exactly at the body centre position that is 

exactly at 𝐶̅. We can have in quaternary four diffusion couples whose diffusion paths are 

expected to intersect at one single composition 𝐶̅ here. This way the body diagonal diffusion 

couples help us to design the diffusion couples which will intersect at one desired 

composition. 



The steps are easy, we select 𝐶̅ which is the desired composition at which interdiffusion 

coefficients are to be evaluated. Then select particular ∆𝐶𝑜, the small composition difference 

in which we expect the interdiffusivities to be constant. Then, we form a cube around 𝐶̅ with 

the composition vector ∆𝐶𝑜 and based on these coordinatesprepare the body diagonal 

diffusion couples. For quaternary we need three couples although there are four body 

diagonals. We can form actually four diffusion couples, but that will be more than sufficient 

number of couples.  

To get the variation with the composition we can shift 𝐶̅ to form new sets of couples. Let us 

see an example here, let us say I want the quaternary interdiffusion coefficients at 𝐶̅ equal to 

25 % of 1, 25 % of 2, 25 % of 3. Obviously, the component four will also be 25 %. ∆𝐶𝑜 =

10. With this, the centre is (25, 25, 25) and I need to find out the eight corner compositions. 
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These coordinates of the cube as already mentioned will help me to do that. For example, 

alloy A is diagonally opposite to B, together they will form couple I. if alloy B has 

coordinates 
∆𝐶𝑜

2
(1̅, 1̅, 1̅) then A has coordinate 

∆𝐶𝑜

2
(1, 1, 1). Composition for B is obtained 

by: 

𝐶𝐵 = 𝐶̅ +
∆𝐶𝑜

2
(1̅, 1̅, 1̅) 

𝐶̅ = (25,25,25) 

Which gives: 



𝐶𝐵 = (20, 20, 20) 

Fourth component of alloy B is (100 − 60) = 40 %. The composition of A is: 

𝐶𝐴 = 𝐶̅ +
∆𝐶𝑜

2
(1, 1, 1) = (30, 30, 30) 

Fourth component of  alloy A is 10 %. We can see the difference is (10, 10, 10) for all three 

independent components between alloy A and B. The fourth one is different because it has to 

make up for the total weight % or the total atom % to be 100 %.Similarly we can write the 

composition of other alloys as given in Table below: 

  1 2 3 4 

I 
A 30 30 30 10 

B 20 20 20 40 

II 
C 20 20 30 30 

D 30 30 20 20 

III 
E 20 30 20 30 

F 30 20 30 20 

IV 
G 20 30 30 20 

H 30 20 20 30 

 

This way we can design four sets of diffusion couples, with eight terminal alloys from eight 

corners of the cube which is formed around 𝐶̅ with the composition vector ∆𝐶𝑜. We can see 

for each of the couples, the components 1,2 and 3 have the same difference 10, 10, 10. The 

fourth one makes up for hundred %. Now, since the four diffusion couples are expected to 

intersect at one composition 𝐶̅, we can four diffusion couples whose diffusion paths are 

expected to intersect at the body centre position 𝐶̅. We can select any three of them for our 

experiment so that at the common composition 𝐶̅ we can get nine independent equations 

because there will be three independent fluxes in each couple at the common composition. 

We can write nine independent equations and we can solve for nine quaternary interdiffusion 

coefficients. 

This method, we can extend even to the quinary or higher-order system in principle. In 

higher-order systems we need to imagine the hypercube formed in 𝑛-1 dimensional space. 

Like in, quaternary there was a 3 dimensional composition space and  we can get four body 

diagonal diffusion couples. In an 𝑛 component system, we have 𝑛-1 dimensional composition 

space and there would be 2𝑛−2 body diagonals possible. 



For example in quinary if we imagine a four-dimensional hypercube, there will be 23 = 8 

body diagonals. In quaternary, we have already seen in three-dimensional composition space 

there will be 22 = 4 body diagonals which I have already got. Ternary, it’s simple, there will 

be two body diagonals. This way we can extend this method for the higher-order system, so 

we have applied this to quaternary as well as quinary system. I will illustrate the application 

part of it, for each of the system, binary, ternary, quaternary, quinary of the methods. 

We have seen how we can get the interdiffusion coefficients in binary, ternary, quaternary 

higher-order systems. I will also give some examples from the literature of actual 

determination of interdiffusion coefficient sets in practical systems that will be in the next 

class. Now, these are the methods which give exact values of entire sets of interdiffusion 

coefficients. There are also some additional techniques because it may not be always possible 

to design such couples. 

For example, in the body diagonal couple approach, one limitation is, we need a large enough 

single-phase region. Because, if there is no large enough single-phase region, we won’t get 

enough space for this cube in quaternary or hypercubes in quinary, etc to form. Also there is a 

possibility that one of the diffusion paths may cross the single-phase region so it will be a 

multiphase diffusion couple, again which is not desired. 
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So, it is not always possible to form such couples, in that case, we should have access to at 

least some of the diffusion coefficients. There are a few techniques that we can use for that. I 

will talk about those techniques now. In multicomponent systems, it is frequently observed 



that some components develop a maximum or minimum on their concentration profile. One 

such profile I have shown here in an infinite diffusion couple of a component 2 with terminal 

composition 𝐶2
− and 𝐶2

+ on the left and right side respectively. 

And this peak is of interest, why? Because we can get at least a couple of interdiffusion 

coefficients in the ternary system out of four.  If I treat three as a dependent component, I can 

write two independent fluxes as: 

𝐽1 = −�̃�11
3

𝜕𝐶1

𝜕𝑥
− �̃�12

3
𝜕𝐶2

𝜕𝑥
 

𝐽2 = −�̃�21
3

𝜕𝐶1

𝜕𝑥
− �̃�22

3
𝜕𝐶2

𝜕𝑥
 

At the maximum, the gradient of component 2 is zero which means: 

𝜕𝐶2

𝜕𝑥
= 0 

I can get rid of the second term in both the flux equations. Essentially, I can get two 

coefficients �̃�11
3  and �̃�21

3  with respect to three as a dependent. These coefficients are obtained 

at the composition corresponding to maximum using: 

�̃�11
3 = −

𝐽1

𝜕𝐶1

𝜕𝑥

 

�̃�21
3 = −

𝐽2

𝜕𝐶1

𝜕𝑥

 

This is how we can get interdiffusion coefficient at a maximum or minimum. Of course, not 

the entire set but at least some of them. This gives us an idea about the main interdiffusion 

coefficient of 1 and also the kind of interaction that 1 has with 2 or how the gradient of 1 can 

affect the diffusion flux of 2. 
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Also we have talked about ZFP’s or zero flux plane yesterday. These are also important to the 

point of view of understanding the interdiffusion coefficients here. If there is a minimum or 

maximum formed, we expect that there may be a zero-flux plane. It is not necessary that there 

will be, but there may be. We find an area under this peak here and find we find an area on 

the right-hand side of this peak such that its area is equal to the first area. The zero-flux plane 

will be given at the position of the second area. This is the ZFP for 2. 

Now, why this is important because, at ZFP, 𝐽2 = 0 which means: 

𝐽2 = −�̃�21
3

𝜕𝐶1

𝜕𝑥
− �̃�22

3
𝜕𝐶2

𝜕𝑥
= 0 

we can get the ratio of : 

�̃�22
3

�̃�21
3

= −
(

𝜕𝐶1

𝜕𝑥
)

(
𝜕𝐶2

𝜕𝑥
)

 

These gradients are evaluated at the location of ZFP. Remember the gradient is zero at the 

peak, not at the ZFP. At ZFP both component 2 and 1 would have developed some gradient. 

So, we can get the ratio of the main coefficient to cross coefficient. 

This gives a good idea about how significant interactions are, because if the interactive 

coefficient is about similar order of magnitude to the main coefficient, then the ratio would be 

close to unity. If the interactions are more dominant, the ratio would be less than unity. If the 

interactions are less dominant, the ratio would be more than unity. The sign ofcourse gives us 

an idea about what kind of interactions these are. Because assuming �̃�22
3  is positive, right and 



sign will tell us whether �̃�21
3  is negative or positive. Okay, this is how this zero-flux plane, 

maximum / minimum will give us an idea about at least some of the diffusion coefficients or 

the diffusional interactions. 

Then, there is another approach proposed which is called pseudo-binary approach which  is 

proposed by Aloke Paul. This is applicable to get the main coefficient of at least one 

component in a multicomponent system. In this what is done is, for example if you are 

dealing with a quaternary system, only two of the components will develop concentration 

profiles in the diffusion zone, the remaining two will not. The diffusion couples are designed 

such that let us say component 2 and 3 have the same concentration in both the terminal 

alloys. 
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But, component 1 and 4 will have different concentrations, how it helps? Let us say if I write 

the equation for independent fluxes. In quaternary, let us treat component 4 as a dependent 

and we have three independent fluxes. We can write: 

𝐽1 = −�̃�11
4

𝜕𝐶1

𝜕𝑥
− �̃�12

4
𝜕𝐶2

𝜕𝑥
− �̃�13

4
𝜕𝐶3

𝜕𝑥
 

And suppose we have selected the diffusion couples such that only component 1 and 4 have 

different concentrations in the two-terminal alloys. But, component 2 and 3 have the same 

concentrations such that they will not develop any concentration profiles during diffusion. So 

in the above equation, last two terms will be zero. We can straightaway get: 

𝐽1 = −�̃�11
4

𝜕𝐶1

𝜕𝑥
 



 This way we can find the value of �̃�11
4  through the pseudo-binary diffusion couples. Of 

course, it won’t give the entire set but it gives an idea about at least how, how fast or slow a 

particular component is diffusing based upon its main interdiffusion coefficients. We can 

design such couples to get different main coefficients. Then we can find out the main 

coefficients at different compositions based upon the pseudo-binary technique. 

The advantage is that this can be applied to any component system as long as only two 

components develop the composition profiles. But the limitation is we are assuming that the 

interactions are not significant because if the interactions are significant, even if we start with 

the same concentrations of a component in both the terminal alloys, it will end up developing 

some concentration profile. There will be an uphill diffusion region developed, which is not 

desired for the pseudo-binary couple. In that case then we cannot solve for �̃�11
4  directly. 

Similarly, a pseudo-ternary approach has also been proposed in which instead of two, we will 

have three varying concentrations and remaining constant. We can design two such couples 

with the same set of components having invariant composition in the two terminal alloys. The 

two couples have at least one common composition in the diffusion zones similar to the 

Kirkaldy’s approach for ternary that I explained. We can solve the four equations at the 

common composition and get four independent interdiffusion coefficients. 

Again, it won’t be an entire set because in quaternary, for example, we need nine 

interdiffusion coefficients. Through pseudo-ternary couples, we will get four out of the nine 

coefficients. Again, one assumption there will be all the components which are supposed to 

be invariant will not develop any uphill diffusion region, which means they will not exhibit 

significant diffusional interactions from the other components. Okay, these are some of the 

experimental techniques which we can use for determination of interdiffusion coefficients in 

multicomponent systems. 

In the next class, I will show you some specific examples from the literature in which such 

estimation of interdiffusion coefficients has been reported. We will stop here, for now, thank 

you. 


