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Last class we talked about interdiffusion analysis in binary systems. Today, we will study 

interdiffusion analysis in multi component systems. 
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For example, let us consider a ternary diffusion couple. Let us say on left side, we have an 

alloy, 50 copper-30 nickel-20 zinc. Right side we have pure copper, that is 100% copper. The 

left terminal alloy concentration of copper is 𝐶𝐶𝑢
− . Right side concentration would be 𝐶𝐶𝑢

+ . We 

also have 𝐶𝑁𝑖
+ = 0, 𝐶𝑍𝑛

+ = 0 in the right terminal alloy. 

Since, we are dealing with ternary diffusion couple, we have two independent fluxes. If we 

take zinc as dependent component, we can write for copper: 

𝐽𝐶𝑢 = −�̃�𝐶𝑢𝐶𝑢
𝑍𝑛

𝜕𝐶𝐶𝑢

𝜕𝑥
− �̃�𝐶𝑢𝑁𝑖

𝑍𝑛 𝜕𝐶𝑁𝑖

𝜕𝑥
 

Foe nickel it will be: 

𝐽𝑁𝑖 = −�̃�𝑁𝑖𝐶𝑢
𝑍𝑛 𝜕𝐶𝐶𝑢

𝜕𝑥
− �̃�𝑁𝑖𝑁𝑖

𝑍𝑛 𝜕𝐶𝑁𝑖

𝜕𝑥
 

 

So, we need four interdiffusion coefficients at any given composition of the ternary systems. 



(Refer Slide Time: 3:35) 

 

How do we find this? For binary, we used the formula: 

�̃� =
−1

2𝑡 (
𝜕𝐶
𝜕𝑥

)
∫ (𝑥 − 𝑥𝑜)𝑑𝐶

𝐶(𝑥)

𝐶−

 

If you compare with Fick’s law, this straight away tells me that the numerator is nothing but 

the interdiffusion flux. But this we can say for binary system. How do we go about finding 

interdiffusion coefficients in ternary? Because if we apply the continuity equation, it is not as 

simple as for binary as now it is a coupled equation. 

If you consider in general components 1-2-3 you can write the continuity equation as: 

𝜕𝐶1

𝜕𝑡
=

𝜕

𝜕𝑥
[�̃�11

3
𝜕𝐶1

𝜕𝑥
+ �̃�12

3
𝜕𝐶2

𝜕𝑥
] 

In order to go ahead, we will use a very powerful approach which was proposed by 

Dayananda. With this approach we first find out the interdiffusion flux directly from the 

concentration profile that develops in the diffusion couple at the end of the diffusion 

annealing. 
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Let us see how do we go about this? We know the continuity equation: 

(
𝜕𝐶

𝜕𝑡
)

𝑥
= − (

𝜕𝐽

𝜕𝑥
)

𝑡

 

For ternary, we have two independent concentration variables. So, we need to mention at 

least two concentrations in order to completely define a composition. So, we would like to 

denote the flux and concentration with subscript i: 

(
𝜕𝐶𝑖

𝜕𝑡
)

𝑥
= − (

𝜕𝐽𝑖

𝜕𝑥
)

𝑡

 

Again, we would like to use the Boltzmann parameter, 𝜆 which is: 

𝜆 =
𝑥

√𝑡
   

We assume that each composition plane that develops in a multi component diffusion zone is 

also a function of 𝜆. This has been shown to be true in many of the ternary diffusion couples 

experimentally. Then we have: 

𝜕𝜆

𝜕𝑥
=

1

√𝑡
    ,      

𝜕𝜆

𝜕𝑡
= −

𝑥

2𝑡√𝑡
 

 If you look at the left hand side, in the thermodynamics refresher, we had seen the upstairs, 

downstairs inside-out formula for the partial derivatives, which we can apply here. We can 

write with that formula: 



(
𝜕𝐶𝑖

𝜕𝑡
)

𝑥
(

𝜕𝑡

𝜕𝑥
)

𝐶𝑖

(
𝜕𝑥

𝜕𝐶𝑖
)

𝑡

= −1 

We get: 

(
𝜕𝐶𝑖

𝜕𝑡
)

𝑥
= − (

𝜕𝑥

𝜕𝑡
)

𝐶𝑖

(
𝜕𝐶𝑖

𝜕𝑥
)

𝑡
 

Now if you look at the first term on the right hand side, (
𝜕𝑥

𝜕𝑡
)

𝐶𝑖

 is nothing but the velocity of 

the composition plane 𝐶𝑖. 
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We can write: 



(
𝜕𝐶𝑖

𝜕𝑡
)

𝑥
= −𝑉(𝐶𝑖) (

𝜕𝐶𝑖

𝜕𝑥
)

𝑡
       (1) 

 Now, let us try to find out this 𝑉(𝐶𝑖): 

𝑉(𝐶𝑖) = (
𝜕𝑥

𝜕𝑡
)

𝐶𝑖

 

Since 𝐶𝑖 is a function of 𝜆, we can write this as 

𝑉(𝐶𝑖) = (
𝜕𝑥

𝜕𝑡
)

𝜆
 

Now, we can write: 

𝑥 = 𝜆√𝑡 

Since 𝜆 is constant, we get: 

(
𝜕𝑥

𝜕𝑡
)

𝜆
=

𝜆

2√𝑡
 

If we substitute again for 𝜆, this is nothing but: 

(
𝜕𝑥

𝜕𝑡
)

𝜆
=

𝜆

2√𝑡
=

𝑥

2𝑡
 

So, 

𝑉(𝐶𝑖) = (
𝜕𝑥

𝜕𝑡
)

𝐶𝑖

=
𝑥

2𝑡
 

If 𝑥 not is our origin, we can write it as 
𝑥−𝑥𝑜

2𝑡
. If we substitute back into equation (1) here then 

we get: 

(
𝜕𝐶𝑖

𝜕𝑡
)

𝑥
= −

𝑥

2𝑡
(

𝜕𝐶𝑖

𝜕𝑥
)

𝑡
 

Left side should be equal to − (
𝜕𝐽𝑖

𝜕𝑥
)

𝑡
: 

− (
𝜕𝐽𝑖

𝜕𝑥
)

𝑡

= −
𝑥

2𝑡
(

𝜕𝐶𝑖

𝜕𝑥
)

𝑡
 

Since the partial derivatives on both sides are at constant time, we can take those out. If we 

multiply both sides by 𝑑𝑥, we get: 



𝑥

2𝑡
𝑑𝐶𝑖 = 𝑑𝐽𝑖 

 Now, if we integrate both sides from the left terminal to the desired 𝑥, we get: 

∫ 𝑑𝐽𝑖

𝐽𝑖(𝑥)

𝐽𝑖(𝑥=−∞)

=
1

2𝑡
∫ (𝑥 − 𝑥𝑜)𝑑𝐶𝑖

𝐶𝑖(𝑥)

𝐶𝑖
−

 

Here we use 𝑥𝑜 as our reference plane. We know that the diffusants will never penetrate on 

the two terminals,  so the fluxes at the two terminals would be 0. Or: 

𝐽𝑖(𝑥 = −∞) = 0 

We straight away get: 

𝐽𝑖(𝑥) =
1

2𝑡
∫ (𝑥 − 𝑥𝑜)𝑑𝐶𝑖

𝐶𝑖(𝑥)

𝐶𝑖
−

     (2) 

This is how we can get formula for interdiffusion flux. So, we can obtain interdiffusion flux 

directly from the experimental concentration profile. 
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I will illustrate how. Consider any one of the profiles that developed after the diffusion 

annealing, let us say component 𝑖. 𝐶𝑖
−

 is again left terminal alloy concentrations, 𝐶𝑖
+ is the 

right terminal alloy concentration. If we want to evaluate the interdiffusion flux at any 

position 𝑥, we use the above formula. Here integral in Eq. (2) is nothing but again the area 

under the curve shown by shaded lines. 



Matano plane 𝑥𝑜 is shown in the figure. So, just by finding the area under the curve and 

dividing it by 2𝑡 we can get the flux at any position 𝑥. We derived this formula Eq. (2) again 

independent of the number of composition. So, this should be applicable to a multi 

component diffusion couple. This way we can obtain the interdiffusion flux of each 

component at every composition plane that is developed within the diffusion zone here. 
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Now, let us try to look at the nature of the diffusion flux profiles that can be obtained. 

Consider again, this concentration profile of component 𝑖 which is developed in the diffusion 

zone after the diffusion annealing time 𝑡. We want to determine the interdiffusion flux and 

we want to see the nature of diffusion flux profile in the diffusion zone. 

We derived the formula for J as: 

𝐽𝑖(𝑥) =
1

2𝑡
∫ (𝑥 − 𝑥𝑜)𝑑𝐶𝑖

𝐶𝑖(𝑥)

𝐶𝑖
−

 

If we consider any location, let us say 𝑎 here the flux will be 
1

2𝑡
 times the shaded area under 

the curve. So, this will be the area that we need to determine. Let us call this area 𝑎, 𝑏, 𝑐, 𝑑 

here. Let us determine sign of the flux: since (𝑥 − 𝑥𝑜) on left side is negative, 𝐶𝑖 is 

decreasing with 𝑥, so 𝑑𝐶𝑖 would be negative  and the sign of the flux would be positive. he 

flux at a would be positive. 

So, we know 𝐽𝑖 at 𝑎 would be area, abcda and this would be positive. If we determine flux on 

the left side of matano plane but at a different location, let us say 𝑒 here. Then we need to 



consider this area 𝑑𝑒𝑓𝑐 which is again positive and greater than the area 𝑎𝑏𝑐𝑑. So, the 

interdiffusion flux will be higher at point 𝑒 than at 𝑎. Now, the interdiffusion flux is positive 

and it is increasing with 𝑥 until we reach this position of Matano plane. 

𝐽𝑖(𝑎) = 𝐴(𝑎𝑏𝑐𝑑𝑎) 

𝐽𝑖(𝑒) =
1

2𝑡
{𝐴(𝑑𝑐ℎ𝑑) − 𝐴(ℎ𝑔𝑘ℎ)} 

What happens beyond 𝑥𝑜? If we consider any position, let us call this as 𝑔 here, then for this, 

we first need to integrate up to 𝑥𝑜 the area would be 𝑑ℎ𝑐. The first integral would be 𝑑ℎ𝑐 

which is positive. Next the integral from 𝑥𝑜 to point 𝑔, that would be area ℎ𝑔𝑘. First area has 

a positive sign but beyond 𝑥𝑜, (𝑥 − 𝑥𝑜) is now positive but 𝑑𝐶𝑖 is still negative. So, second 

area will have a negative sign attached with it. As a result, the flux starts decreasing until in 

the right terminal, it will again reach 0.  

So, this is how the interdiffusion flux profile will look in the diffusion zone. At the two 

terminal ends, the fluxes would be 0. That is because we are dealing with infinite diffusion 

couples. The infinite boundary conditions are maintained. Flux will have a maximum at the 

Matano plane location. Similarly, if we are dealing with a concentration profile which has 

opposite gradient, a positive gradient, logically the interdiffusion flux will be negative. With 

the similar logic we can show there will be a minimum in the interdiffusion flux at the 

Matano plane location.  

Now this is when we are considering the normal concentration profile like this. But in multi-

component systems, many times there will be maximum/minimum developed on the 

concentration profiles. 
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How do we get the interdiffusion fluxes in that case, what special features it develops, let us 

try to look at it. Let us consider another concentration profile as shown here, there is a 

maximum developed on this concentration profile here. What would be the nature of 

interdiffusion flux profile here? Let us try to assess that. Up to the point of maximum, that is 

up to point 𝑏 here, we know, the interdiffusion flux would be negative. Because based on the 

flux formula, (𝑥 − 𝑥𝑜) is negative but 𝑑𝐶𝑖 from 𝑎 to 𝑏 is positive. 

In the terminal of course the flux is 0, it is increasing in the negative direction to point 𝑏. 

What happens at point b? Beyond point 𝑏, now the slope of the profile has changed. Here, 

𝑑𝐶𝑖 becomes negative, so any additional area contribution would be positive. The magnitude 

of flux will start decreasing beyond point 𝑏 or beyond the maximum on this profile here. 

If you want to find the flux at a point 𝑑 for example, that we can find as: 

𝐽𝑖(𝑑) =
1

2𝑡
{ ∫ (𝑥 − 𝑥𝑜)𝑑𝐶𝑖

𝐶𝑖(𝑏)

𝐶𝑖
−

+ ∫ (𝑥 − 𝑥𝑜)𝑑𝐶𝑖

𝐶𝑖(𝑑)

𝐶𝑖(𝑏)

} 

by splitting the integral at the point of maximum. Now, the first integral here is nothing but 

this area 𝑎𝑏𝑔𝑒𝑎 and it has a negative value. Second integral will be the area 𝑏𝑔𝑓𝑑𝑏 it will 

have a positive value. 

𝐽𝑖(𝑑) =
1

2𝑡
{ ∫ (𝑥 − 𝑥𝑜)𝑑𝐶𝑖

𝐶𝑖(𝑏)

𝐶𝑖
−

+ ∫ (𝑥 − 𝑥𝑜)𝑑𝐶𝑖

𝐶𝑖(𝑑)

𝐶𝑖(𝑏)

} =
1

2𝑡
{−𝐴(𝑎𝑏𝑔𝑒𝑎) + 𝐴(𝑏𝑔𝑓𝑑𝑏)} 



There is a common area between the above two areas, 𝑏𝑔𝑒𝑐 that will get cancelled. So, we 

have: 

𝐽𝑖(𝑑) = 𝐴(𝑐𝑒𝑓𝑑𝑐) − 𝐴(𝑎𝑏𝑐𝑎) 

Since this two have different signs, we see that after maximum, the interdiffusion flux starts 

decreasing in magnitude here. What if the two areas are equal? : 

𝐽𝑖(𝑑) = 0   𝑖𝑓   𝐴(𝑐𝑒𝑓𝑑𝑐) = 𝐴(𝑎𝑏𝑐𝑎) 

The flux at point 𝑑 here would be 0. Beyond this point 𝑑, the magnitude of the positive area 

would increase, so the flux will become positive. It will keep increasing in the positive 

direction until the Matano plane position. Beyond Matano plane position again, the flux will 

start decreasing until it become 0 in the terminals. This is an interesting profile, it has a 

special feature in the interdiffusion flux profile. You can see, in this particular case, the flux 

is actually going to 0 within the diffusion zone this is called zero-flux plane (ZFP) for 

component 𝑖.  The ZFPs are special features because they indicate that there exist strong 

diffusional interactions. The existence of ZFP in the flux profile of a component in a multi-

component diffusion couple indicate that there are strong diffusional interactions or strong 

cross effects. This is also apparent form the development of uphill diffusion region here.  
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For example, from point 𝑏 𝑡𝑜 𝑑, you can see the flux is negative. That means in our 

convention, the component 𝑖 is diffusing from right to left. If you see between 𝑑 𝑡𝑜 𝑏, the 

component is actually moving up its concentration gradient. This is the uphill interdiffusion 



region developed for component 𝑖. This is again because of the strong diffusional interactions 

that can occur. 
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Let us see how. We know for the component 1, the interdiffusion flux is zero: 

𝐽1 = −�̃�11
3

𝜕𝐶1

𝜕𝑥
− �̃�12

3
𝜕𝐶2

𝜕𝑥
= 0 

Then we have: 

�̃�11
3

𝜕𝐶1

𝜕𝑥
= −�̃�12

3
𝜕𝐶2

𝜕𝑥
 

Which means the main term is equal to the cross term. This term characterises the effect of 

component 2 on the diffusion flux of 1. The first term characterises the effect of component 1 

on its own diffusion flux. At the zero-flux plane, both the effects are same. That means strong 

diffusional interactions exist in this region. In fact in a region, the component one is moving 

up its own gradient, which means the effect of cross term is more than the main term. This is 

the significance of zero flux planes and uphill diffusion region. 
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We can also see, on left side of ZFP, diffusion flux is negative. That is component is moving 

from right to left. On the right side, diffusion flux is positive that is the component is moving 

from left to right. So, there is a reversal of flux on either side of the zero-flux plane or ZFP. 

Also we know each composition plane is moving with time. Right? We derived the 

expression for velocity of composition plane earlier: 

𝑉(𝐶𝑖) =
𝑥

2𝑡
 

Each composition plane is moving with time. So, zero-flux plane is also moving with time. 

What happens, as the zero-flux plane composition is moving, we can see in the volume swept 

by the ZFP, there is a continuous reversal of the flux. Where initially the flux was negative, 

after certain time it will become positive. So, the component is changing direction of 

diffusion in the volume swept by the ZFP. The ZFPs are also very important when we are 

studying the diffusional interactions. We want the diffusion couples which should develop 

ZFPs uphill diffusion regions. 

Dayananda has studied such couples extensively by forming, isoactivity couples, that means a 

diffusion couple in which the thermodynamic activity of a component is same in both the 

terminal alloys to start with. In such couples the zero-flux planes are developed at a 

composition where the thermodynamic activity of that component is same as that in the two 

terminal alloys. This is how the nature of interdiffusion flux profiles look like.  
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I will talk about this formula again. So far, we integrated for the interdiffusion flux from left 

terminal alloys. Why not from right terminal alloys? In fact, we can integrate from any of the 

terminal, left or right, it should not matter. I will demonstrate how. 
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Again, consider this concentration profile, 𝐶𝑖
− concentration left terminal alloy, 

𝐶𝑖
+

concentration in the right terminal alloy. Suppose if you want to determine flux at point 𝑥. 

If we integrate from right, instead of left, what happens? We can write: 

∫ (𝑥 − 𝑥𝑜)𝑑𝐶𝑖

𝐶𝑖(𝑥)

𝐶𝑖
+

 



 By splitting this integral at the matano plane or the initial contact plane here. We can write: 

∫ (𝑥 − 𝑥𝑜)𝑑𝐶𝑖

𝐶𝑖(𝑥)

𝐶𝑖
+

= ∫ (𝑥 − 𝑥𝑜)𝑑𝐶𝑖

𝐶𝑖(𝑥𝑜)

𝐶𝑖
+

+ ∫ (𝑥 − 𝑥𝑜)𝑑𝐶𝑖

𝐶𝑖(𝑥)

𝐶𝑖(𝑥𝑜)

= 𝐴(𝑔𝑑𝑒𝑓) 

Now, this integral is nothing but: 

= 𝐴(𝑎𝑏𝑐𝑎) − 𝐴(𝑐𝑑𝑒𝑐) 

As we are integrating from right 𝑑𝐶𝑖 is positive because as going from right to left, 𝐶𝑖 is 

increasing (𝑥 − 𝑥𝑜) is also positive on the right side of the matano plane, so integral this has 

a positive sign. For second integral, (𝑥 − 𝑥𝑜) has changed its sign because it is now negative 

on the left side of the matano plane, but 𝑑𝐶𝑖 is still positive. So, second integral has a 

negative sign. The way we found matano plane, we know: 

𝐴(𝑎𝑏𝑐𝑎) − 𝐴(𝑔𝑐𝑓𝑔) 

We can write 𝑔𝑑𝑒𝑓 as: 

𝐴(𝑔𝑑𝑒𝑓) = 𝐴(𝑔𝑐𝑓𝑐) − 𝐴(𝑐𝑑𝑒𝑐) 

Area gdef is nothing but: 

𝐴(𝑔𝑑𝑒𝑓) = ∫ (𝑥 − 𝑥𝑜)𝑑𝐶𝑖

𝐶𝑖(𝑥)

𝐶𝑖
−

 

So, whether you integrate from left terminal or from right terminal, it should not matter. 
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We can modify the formula little bit for 𝐽𝑖(𝑥) as: 

𝐽𝑖(𝑥) =
1

2𝑡
∫ (𝑥 − 𝑥𝑜)𝑑𝐶𝑖

𝐶𝑖(𝑥)

𝐶𝑖
− 𝑜𝑟  𝐶𝑖

+

 

Now, once we find the interdiffusion flux, our next objective is to find the interdiffusion 

coefficients. What is the method used for that, we will see in the next class. 


