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Last class we went over experimental techniques for the determination of self and impurity 

diffusion coefficients. Now, next few classes we will talk about interdiffusion. We will study 

some of the techniques which are used for determining interdiffusion coefficients. We will 

start with binary systems and will also see how the interdiffusion coefficients are determined 

in ternary and higher order multicomponent systems.  
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Most commonly interdiffusion coefficients are determined using diffusion couple technique. 

In this, two alloys of different compositions are placed in contact with each other. They are 

held together by some kind of jig and this assembly is isothermally annealed at some 

temperature T at which we want to determine the interdiffusion coefficients. The annealing 

continues for the desired time so that good enough diffusion zone is developed which can be 

analysed for interdiffusion coefficients. At the end of the annealing, the diffusion couple is 

quenched from the annealing temperature. Quenching is essential in order to retain the 

concentration profiles and the microstructures that are developed at the desired temperature 

T. After quenching, the diffusion couple is cut parallel to the diffusion direction. One point 

has to be noted here is both the alloys are homogenous in the starting. Of course, they have 

different compositions, but each individual alloy block is homogeneous in composition itself.  



And for the accurate determination of interdiffusion coefficients, we work with single phase 

alloys and single phase diffusion couples. It means even after diffusion, no second phase is 

developed within the interdiffusion zone. And both sides of the couple have same crystal 

structure or the same phase.  

After sectioning, the surface is metallographically polished and the composition at each point 

is determined along the diffusion zone. Each composition point actually represents 

composition of the plane which is the plane going into the plane of board here. Determination 

of composition is typically done by electron probe micro analysis (EPMA) using wavelength 

dispersive spectroscopy (WDS) because it gives the most accurate micro composition. The 

experimental concentration profiles are further analysed for interdiffusion fluxes and 

interdiffusion coefficients.  

(Refer Slide Time: 3:44) 

 

Suppose we started with two different alloys A and B. Let us first consider binary alloys. So, 

just one concentration variable is sufficient to define the composition of each individual alloy 

block. To start with let us say alloy A had composition 𝐶𝐴
− and alloy B had the composition 

𝐶𝐴
+. After the diffusion annealing, there will be interdiffusion and a concentration gradient 

will be developed. Now, this composition profile as I said can be obtained by EPMA.  

The first issue here is how do we locate this initial contact plane? Initial contact plane is the 

plane of contact before the diffusion started. Ideally, if there is a good diffusion bonding, that 

has occurred between the two alloy blocks, this plane will not be physically distinguishable in 

the diffusion zone.  
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What we will see is only a concentration profile something like this. So, how do we identify 

this initial contact plane, where we assign 𝑥 = 0 which is our plane of reference. It is first 

important to find out that initial contact plane. How do we go about this? The simplest way 

is, to do the mass balance. Because we know the loss of A on the left side of this initial 

contact plane should be equal to the gain in A on the right side of this initial contact plane. 

Whatever A has diffused from left should appear on right. That is the simple principle that we 

use.  

If we consider a small volume element of width dx in the diffusion zone and if we consider 

unit cross sectional area, then the volume of this small element would be dx. We want to do 

the mass balance, loss on left side should be equal to gain on the right side. The loss in this 

case, if 𝐶 represents the composition or concentration of A and 𝑥 is the location of this 

volume element then the loss in this particular element would be (𝐶𝐴 − 𝐶𝐴
−)𝑑𝑥. And the loss 

will be from the left terminal all the way to the plane here 𝑥 = 0. Let us call this 𝑥𝑜 in terms 

of the coordinates that we have used for obtaining the profiles. If we integrate this from the 

left terminal alloy to the plane 𝑥𝑜, i.e. from −∞ 𝑡𝑜 𝑥𝑜 we will get the total loss..  

Now, remember when we talk about diffusion couple, most of the time we are dealing with 

the infinite diffusion couple. For interdiffusion analysis infact, we want infinite boundary 

conditions to be obeyed. It means diffusion will not penetrate all the way through the two 

terminals of the two alloy blocks. In essence, we can treat the left terminal as −∞ and the 

right terminal as +∞. And at the two terminals, the original concentrations will be 

maintained. The original concentrations where 𝐶𝐴
− at −∞ and 𝐶𝐴

+ at +∞. If we consider any 



volume element the gain similarly on the other side would be (𝐶𝐴 − 𝐶𝐴
+)𝑑𝑥 from 𝑥𝑜 to +∞. 

And there summation should be equal to 0.  

∫ (𝐶𝐴 − 𝐶𝐴
−)𝑑𝑥

𝑥𝑜

−∞

+ ∫ (𝐶𝐴 − 𝐶𝐴
+)𝑑𝑥

+∞

𝑥𝑜

= 0 
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Now, if we replace: 

𝑦 = (𝑥 − 𝑥𝑜) 

we will get: 

𝑑𝑦 = 𝑑𝑥 ,     𝐴𝑡 𝑥 = −∞ ,    𝑦 = −∞;   𝐴𝑡    𝑥 = +∞,     𝑦 = +∞ 



𝑥 = 𝑥𝑜 ,     𝑦 = 0 

With this substitution we can write: 

∫(𝐶𝐴 − 𝐶𝐴
−)𝑑𝑦

0

−∞

+ ∫ (𝐶𝐴 − 𝐶𝐴
+)𝑑𝑦

+∞

0

= 0 

To simplify this further, let us integrate by parts. For integration by parts, for the first 

integral, let us assume: 

𝑢 = 𝐶𝐴 − 𝐶𝐴
−  ,     𝑑𝑣 = 𝑑𝑦    

 Remember 𝐶𝐴 here indicates 𝐶𝐴 at the position 𝑥 that is being considered. We have: 

𝑑𝑢 = 𝑑𝐶𝐴     ,   𝑣 = 𝑦 

∫ 𝑢𝑑𝑣

𝑏

𝑎

= [𝑢𝑣]𝑎
𝑏 − ∫ 𝑣𝑑𝑢

𝑏

𝑎

 

We will get the first integral as: 

∫(𝐶𝐴 − 𝐶𝐴
−)𝑑𝑦

0

−∞

= [(𝐶𝐴 − 𝐶𝐴
−)𝑦]−∞

0 − ∫ 𝑦𝑑𝐶𝐴

0

−∞
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Similarly, for the second integral, we take: 

𝑢 = 𝐶𝐴 − 𝐶𝐴
+   , 𝑑𝑣 = 𝑑𝑦 



𝑑𝑢 = 𝑑𝐶𝐴     ,   𝑣 = 𝑦 

Using the integration by parts we have: 

∫ (𝐶𝐴 − 𝐶𝐴
+)𝑑𝑥

+∞

𝑥𝑜

= [(𝐶𝐴 − 𝐶𝐴
+)𝑦]0

+∞ − ∫ 𝑦𝑑𝐶𝐴

+∞

0

 

Adding both the equation we get: 

[(𝐶𝐴 − 𝐶𝐴
−)𝑦]−∞

0 − ∫ 𝑦𝑑𝐶𝐴

0

−∞

+ [(𝐶𝐴 − 𝐶𝐴
+)𝑦]0

+∞ − ∫ 𝑦𝑑𝐶𝐴

+∞

0

= 0 

At 𝑦 = −∞, 𝐶𝐴 = 𝐶𝐴
− and at 𝑦 = +∞, 𝐶𝐴 = 𝐶𝐴

+. This will give: 

∫ 𝑦𝑑𝐶𝐴

0

−∞

+ ∫ 𝑦𝑑𝐶𝐴

+∞

0

= 0 

Or 

∫ 𝑦𝑑𝐶𝐴

+∞

−∞

= 0 

If you substitute for 𝑦, we get: 

∫ (𝑥 − 𝑥𝑜)𝑑𝐶𝐴

+∞

−∞

= 0 

 And this is the equation that we use for locating the initial contact plane here from the 

experimental concentration profile. This was proposed by Matano. This plane 𝑥𝑜 is also 

referred to as Matano plane. Now, we need to know two points here. First, we obtained this 

equation independent of number of components. Which means, whether we are considering 

binary couple, ternary couple or quaternary couple, this should be applicable. But there is 

also other condition with it. We want to use Matano plane as the reference plane for finding 

out interdiffusion fluxes and interdiffusion coefficients. So. this plane has to be same for all 

the components. no matter which component we use for finding the location of Matano plane, 

we should get the same location. This is possible only if all the components have constant 

partial molar volumes. If the partial molar volume of the components is function of 

composition, then with diffusion there will be net expansion or shrinkage of the couple. And 

therefore, each individual component will yield different location of this plane. The second 



condition for this is that the partial molar volume should be independent of composition for 

each diffusing element.  

So, we got the reference plane. Now, what next? We need to find the interdiffusion 

coefficient from here. How do we go about this?  
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If we again write this equation, if we split this integral at 𝑥𝑜, we can write: 

∫ (𝑥 − 𝑥𝑜)𝑑𝐶𝐴

𝑥𝑜

−∞

+ ∫ (𝑥 − 𝑥𝑜)𝑑𝐶𝐴

+∞

𝑥𝑜

= 0 

And this integral is nothing but the area under the curve plotted onto the plane 𝑥𝑜. If we look 

at this figure here, the integral from −∞ to 𝑥𝑜, it is the area under the curve plotted on to this 



𝑥𝑜 let us call this area P. What should be the sign for this area? Remember 𝑥 − 𝑥𝑜 is negative 

on the left side and as we go from left to right 𝑑𝐶𝐴 is negative. So the sign should be positive.  

This integral from 𝑥𝑜 to +∞ is the area under the curve again plotted on to the Matano plane. 

It represents this area Q. And the sign of the area would be 𝑥 − 𝑥𝑜 is positive on the right side 

and 𝑑𝐶𝐴 is still negative, the sign would be negative.  

𝑃 − 𝑄 = 0 

It means area P on the left should be equal to area Q on the right. This is how we can locate 

the initial contact plane or which is also referred to as Matano plane. We have fixed the 

reference frame here with the assumption that partial molar volumes of all the individual 

components are independent of composition. Next, we need to find out the interdiffusion 

coefficient. That is our goal, main goal here.  
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lLet us consider this concentration profile again. Here, we have 𝐶𝐴
−  is concentration on left 

side, 𝐶𝐴
+ is concentration on the left terminal. And we know diffusion equation: 

(
𝜕𝐶

𝜕𝑡
)

𝑥
= − (

𝜕𝐽𝐴

𝜕𝑥
)

𝑡

 

When we are considering the practical system, the interdiffusion coefficient 𝐷̃ is function of 

composition. We have to write this right hand as: 

(
𝜕𝐶

𝜕𝑡
)

𝑥
= − (

𝜕𝐽

𝜕𝑥
)

𝑡

=
𝜕

𝜕𝑥
[𝐷̃

𝜕𝐶

𝜕𝑥
] 

 Since we are referring to component A, let us write: 

(
𝜕𝐶𝐴

𝜕𝑡
)

𝑥
= − (

𝜕𝐽𝐴

𝜕𝑥
)

𝑡

=
𝜕

𝜕𝑥
[𝐷̃

𝜕𝐶𝐴

𝜕𝑥
]                (1) 

Of course, we are referring to the binary interdiffusion here which needs only one 

interdiffusion coefficients for both component A and B. We need to solve this equation for 𝐷̃ 

and 𝐷̃ is varying with 𝑥. We will use the approach proposed by Boltzmann here. We know 

when 𝐷̃ was constant, we have solved this equation analytically. 𝐶 is a function of 
𝑥

√𝑡
: 

𝐶 = 𝐶 (
𝑥

√𝑡
)    𝑎𝑛𝑑    

𝑥

√𝑡
= 𝜆 

𝜆 is known as Boltzmann parameter. Boltzmann proposed that this should also be true when 

𝐷̃ is varying with composition. This has been actually proved in practical diffusion couple, in 

practical systems that is   is a function of 𝜆. What does that mean?  



If we anneal the same diffusion couple at the same temperature for 3 different times, we will 

get different composition profiles like this and if you track any the position of particular 

composition plane, let us say 𝐶𝐴 here for 3 different times in the diffusion zone, we can say: 

𝑥1

√𝑡1

=
𝑥2

√𝑡2

=
𝑥3

√𝑡3

= 𝜆(𝐶) 

Where 𝑥𝑖 is the position of the plane at time 𝑡𝑖. 𝜆 is constant for a given composition. We 

would transform this partial differential equation to ordinary differential equation using the 

Boltzmann transformation and by using this Boltzmann parameter 𝜆. Let us see how we do 

that. 

Since,  

𝜆 =
𝑥

√𝑡
 

𝜕𝜆

𝜕𝑥
=

1

√𝑡
    ,    

𝜕𝜆

𝜕𝑡
= −

𝑥

2𝑡√𝑡
 

Now, if we look at the left hand side of Eq. (1) we can write: 

(
𝜕𝐶

𝜕𝑡
)

𝑥
=

𝑑𝐶

𝑑𝜆
(

𝜕𝜆

𝜕𝑡
)

𝑥
= −

𝑥

2𝑡√𝑡

𝑑𝐶

𝑑𝜆
 

Note, we are writing the derivative of 𝐶 with respect to 𝜆 as ordinary derivative, because 𝐶 is 

just a function of 𝜆. Similarly,  

(
𝜕𝐶

𝜕𝑥
)

𝑡
=

𝑑𝐶

𝑑𝜆
(

𝜕𝜆

𝜕𝑥
)

𝑡
=

1

√𝑡

𝑑𝐶

𝑑𝜆
 

And if we substitute in the diffusion equation here, we will get: 

−
𝑥

2𝑡√𝑡

𝑑𝐶

𝑑𝜆
=

𝜕

𝜕𝑥
[𝐷̃

1

√𝑡

𝑑𝐶

𝑑𝜆
]

𝑡

=
𝑑

𝑑𝜆
[𝐷̃

1

√𝑡

𝑑𝐶

𝑑𝜆
]

𝑡

𝜕𝜆

𝜕𝑥
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On simplifying and substituting for 
𝜕𝜆

𝜕𝑥
 we will get: 

−
𝑥

2√𝑡

𝑑𝐶

𝑑𝜆
=

𝑑

𝑑𝜆
[𝐷̃

𝑑𝐶

𝑑𝜆
]

𝑡
 

 as we can take if you take 
1

√𝑡
 outside, it will get cancelled. If you multiply both sides by 𝑑𝜆, 

we end up getting: 

−
𝑥

2√𝑡
𝑑𝐶 = 𝑑 [𝐷̃

𝑑𝐶

𝑑𝜆
] 

Now, we substitute back for 
𝑑𝐶

𝑑𝜆
, we get from here: 

−
𝑥

2√𝑡
𝑑𝐶 = 𝑑 [𝐷̃

𝑑𝐶

𝑑𝜆
] = 𝑑 [√𝑡𝐷̃ (

𝜕𝐶

𝜕𝑥
)

𝑡
] 
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For the fixed diffusion annealing time, if we integrate both sides from the left terminal to the 

desired x, we can write: 

−
1

2√𝑡
∫ 𝑥𝑑𝐶

𝐶(𝑥)

𝐶−

= √𝑡𝐷̃ (
𝜕𝐶

𝜕𝑥
)

𝑡
 

 If we see on the left terminal alloy, the value of 𝐷̃ (
𝜕𝐶

𝜕𝑥
)

𝑡
= 0. And at 𝐶 at x, it should be 

equal to 𝐷̃ (
𝜕𝐶

𝜕𝑥
)

𝑡
 at that particular composition. 

𝜕𝐶

𝜕𝑥
 is the derivative of concentration profile.  
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And if we rearrange, we get the equation for 𝐷̃(𝑥) and since 𝐷 ̃is actually function of 𝐶 and 

𝐶 is varying with 𝑥 and that is why 𝐷 ̃ is varying with 𝑥. We should write appropriately as: 

𝐷̃(𝐶) =
−1

2𝑡 (
𝜕𝐶

𝜕𝑥
)

𝑡

∫ (𝑥 − 𝑥𝑜)𝑑𝐶

𝐶(𝑥)

𝐶−

 

Here we denote the reference plane as 𝑥𝑜.  This gives the equation for binary interdiffusion 

coefficient. Now, what is this integral again? It is nothing but the area under the curve.  

If we consider this concentration profile again, remember we were talking about the 

concentration of A and then we dropped the suffix, because we are considering the binary 

system here and for binary system to define any composition, we just need one concentration 

variable, 𝐶. Implicitly we are assuming here, it is 𝐶𝐴. To find out this integral is nothing but 

the area under the curve.  

If we want to find 𝐷̃ at some position 𝑥′. Then we evaluate this integral. That integral is 

nothing but the area under this curve drawn on to the Matano plane which is 𝑥𝑜 . This is 

nothing but the integral ∫ (𝑥 − 𝑥𝑜)𝑑𝐶
𝐶(𝑥)

𝐶− . Then we determine derivative of the concentration 

profile at this position which is the 
𝜕𝐶

𝜕𝑥
 and we know diffusion annealing time t. And we can 

find 𝐷̃ at this particular location and it corresponds to the composition which is there at this 

location, that is 𝐶𝑥.  

Now, it can be easily seen this we can apply at any plane in the diffusion zone. And we can 

find out interdiffusion coefficient at every composition that develops in a binary diffusion 

couple using this technique. This technique is commonly known as Boltzmann-Matano 

analysis. This is how we can get binary interdiffusion coefficient from a single diffusion 

couple experiment. We can determine interdiffusion coefficient at every single composition 

that is developed within the diffusion zone of that couple. Now, how do we extend this to 

ternary and higher order diffusion couples, that we will see in the next class. Thank you.    


