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Welcome to the 40th lecture in this open course on diffusion in multicomponent solids. In 

this lecture, I shall derive the relation between atomic mobility and diffusivity. In this process 

we will be introduced to thermodynamic factor. In the later part of this lecture, I will talk 

about diffusion under external driving force and derive the Nernst-Einstein equation. I shall 

also illustrate the application of this equation to the process of electromigration, that is, the 

process of diffusion under electric potential gradient.  

In last class, we discussed why chemical potential gradient is the fundamental driving force 

for diffusion. We also derived the equation for diffusion flux in terms of chemical potential 

gradient of a component and the chemical potential gradient of vacancies. So, flux of a  

component is related to the chemical potential gradient of different components through the 

kinetic coefficients 𝐿𝑖𝑗.  
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For example, in binary, we can write: 

𝐽𝐴 = −𝐿𝐴𝐴

𝜕𝜇𝐴

𝜕𝑥
− 𝐿𝐴𝐵

𝜕𝜇𝐵

𝜕𝑥
    𝑖𝑛  𝑏𝑖𝑛𝑎𝑟𝑦 𝐴 − 𝐵 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 



If the chemical potential gradient of vacancies is assumed to be zero or in other terms if there 

is no net vacancy flow then this cross kinetic coefficient term 𝐿𝐴𝐵 is absent and we can write: 

𝐽𝐴 = −𝐿𝐴

𝜕𝜇𝐴

𝜕𝑥
 

𝐿𝐴 here is the kinetic coefficient that relates the flux of component A with the chemical 

potential gradient of A. We have seen that 𝐿𝐴 can be given as: 

𝐿𝐴 =
𝐷∗𝐶𝐴

𝑘𝑇
 

Here 𝐷∗ is the Einstein’s diffusivity which was given by: 

𝐷∗ = (
1

6
𝛾𝜆2) = 𝑇𝑟𝑎𝑐𝑒𝑟 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 

this is also commonly known as tracer diffusivity and 𝐷∗ essentially characterises self-

diffusion or impurity diffusion under no concentration ingredient or a very minute 

concentration gradient respectively. Now, what is the physical significance of the kinetic 

coefficient 𝐿𝐴. It can be understood if we again take a look at the equation for flux and if we 

rearrange the term 𝐿𝐴 is nothing but: 

𝐿𝐴 = −
𝐽𝐴

𝜕𝜇𝐴

𝜕𝑥

 

and −
𝜕𝜇𝐴

𝜕𝑥
here is the driving force. The physical significance of 𝐿𝐴 is that it is nothing but the 

diffusion flux of a component per unit driving force.  

Many times we come across the term, atomic mobility, what is this atomic mobility? And 

what is its relation with the kinetic coefficient? Let us try to look into it now.  
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A few classes back if you remember we have seen the flux can be given as: 

𝐽𝐴 = 𝐶𝐴𝑉𝐴 

where 𝐶𝐴 is the concentration of A and 𝑉𝐴 represents the mean velocity of atoms of A. Now, 

this velocity can be considered to be proportional to the driving force and it is related to the 

driving force through the term called mobility. We can write: 

𝑉𝐴 = −𝑀𝐴

𝜕𝜇𝐴

𝜕𝑥
 

−
𝜕𝜇𝐴

𝜕𝑥
 is the driving force here and 𝑀𝐴 is the constant of the proportionality which is called as 

atomic mobility of A. Similar to the kinetic coefficient, if we rearrange, we know the physical 

significance of the term mobility. Just like kinetic coefficient was the diffusion flux per unit 



driving force, mobility is the velocity per unit driving force. 𝑀𝐴 is nothing but the velocity 

per unit driving force. If we substitute back for 𝑉𝐴 in the equation for 𝐽𝐴, we get: 

𝐽𝐴 = −𝑀𝐴𝐶𝐴

𝜕𝜇𝐴

𝜕𝑥
 

On comparing with a previous equation for flux we get: 

𝐿𝐴 = 𝑀𝐴𝐶𝐴 

So, the atomic mobility or kinetic coefficients represent essentially the same quantities. They 

are related through the concentration 𝐶𝐴. But the mobility is more general term and mobilities 

are also used to store the databases for interdiffusivities and diffusivities. Let us try to 

establish the relation between the mobility and the diffusivity terms that we use. Since we 

know: 

𝐿𝐴 =
𝐷∗𝐶𝐴

𝑅𝑇
 

If we consider a mole, then we can replace K with R and we can write: 

𝑀𝐴 =
𝐷∗

𝑅𝑇
  

The tracer diffusivity of A is related to the atomic mobility of A through the simple relation: 

𝐷∗ = 𝑀𝐴𝑅𝑇 

Again, this relation is applicable if we are considering a binary system and we are neglecting 

the net vacancy flow because if the net vacancy flow exists then we also have to consider the 

cross kinetic coefficient terms which means we also need to consider the cross mobility 

terms. Since we are using a single mobility to represent a single component here this is valid 

when there is no net vacancy flow or the chemical potential of vacancies is zero. 𝐷𝐴
∗  is the 

diffusion coefficient in negligible concentration gradient.  

What happens when there is concentration gradient present? In that case, we talk about 

interdiffusion or intrinsic diffusion or commonly it is also referred to as chemical diffusion 

which is characterised by chemical diffusion coefficients. Let us see the relation of mobilities 

and the chemical diffusion coefficient terms.  
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In presence of concentration gradient, we can write the equation for flux as: 



𝐽𝐴 = −𝐷𝐴

𝜕𝐶𝐴

𝜕𝑥
 

which in terms of chemical potential gradient is written as: 

𝐽𝐴 = −𝐷𝐴

𝜕𝐶𝐴

𝜕𝑥
= −𝐿𝐴

𝜕𝜇𝐴

𝜕𝑥
 

 or in terms of the atomic mobility, it is written as: 

𝐽𝐴 = −𝐷𝐴

𝜕𝐶𝐴

𝜕𝑥
= −𝐿𝐴

𝜕𝜇𝐴

𝜕𝑥
= −𝑀𝐴𝐶𝐴

𝜕𝜇𝐴

𝜕𝑥
 

Now, I need to relate the interdiffusivity term 𝐷𝐴 with the mobility 𝑀𝐴, which means I need 

to express 
𝜕𝜇𝐴

𝜕𝑥
 term in terms of 

𝜕𝐶𝐴

𝜕𝑥
. One point to be noted when I am writing this equation 

here is I am considering the diffusion flux with respect to a frame of reference which is fixed 

to a lattice plane. This is also referred to as Kirkendall frame of reference and we will talk 

about this frame of reference in more detail later. But at this point, remember that I am 

talking about the frame of reference which is fixed to a lattice plane. Diffusion is then 

referred to as intrinsic diffusion and this diffusivity 𝐷𝐴 is the intrinsic diffusivity of A. We 

know 𝜇𝐴 can be written as: 

𝜇𝐴 = 𝜇𝐴
𝑜 + 𝑅𝑇 ln 𝑎𝐴 

where 𝜇𝐴
𝑜 is the chemical potential of A in its standard state and typically, the standard state is 

taken as pure A and 𝜇𝐴
𝑜 refers to the molar Gibbs free energy of pure A in its stable state at 

the given temperature which should be constant. 𝑎𝐴 is the thermodynamic activity of A at the 

given composition. Now: 

𝜕𝜇𝐴

𝜕𝑥
=

𝜕𝜇𝐴

𝜕𝐶𝐴

𝜕𝐶𝐴

𝜕𝑥
 

and we know: 

𝐶𝐴 =
𝑋𝐴

𝑉𝑚
 

where 𝑉𝑚 is the molar volume and 𝑋𝐴 is the mole fraction of A in the solution. If we assume 

molar volume to be constant, this can be written as: 

𝜕𝜇𝐴

𝜕𝑥
= 𝑉𝑚

𝜕𝜇𝐴

𝜕𝑋𝐴

𝜕𝐶𝐴

𝜕𝑥
 



If you differentiate 𝜇𝐴 with respect to 𝑋𝐴 here, we get: 

𝜕𝜇𝐴

𝜕𝑋𝐴
= 𝑅𝑇 [

𝜕 ln 𝑎𝐴

𝜕𝑋𝐴
] 

and 𝑎𝐴 is nothing but: 

𝑎𝐴 = 𝛾𝐴𝑋𝐴 

where 𝛾𝐴 is the thermodynamic activity coefficient of A and 𝑋𝐴 is the mole fraction of A. 

This can be written as: 

𝜕𝜇𝐴

𝜕𝑋𝐴
= 𝑅𝑇 [

𝜕 ln 𝑎𝐴

𝜕𝑋𝐴
] = 𝑅𝑇 [

𝜕 ln 𝑋𝐴

𝜕𝑋𝐴
+

𝜕 ln 𝛾𝐴

𝜕𝑋𝐴
] 

 and if we substitute back for 
𝜕𝜇𝐴

𝜕𝑥
 in the equation for 𝐽𝐴 we get: 

𝐽𝐴 = −𝑀𝐴𝐶𝐴𝑉𝑚𝑅𝑇 [
𝜕 ln 𝑋𝐴

𝜕𝑋𝐴
+

𝜕 ln 𝛾𝐴

𝜕𝑋𝐴
]

𝜕𝐶𝐴

𝜕𝑥
 

Now: 

𝐶𝐴𝑉𝑚 = 𝑋𝐴 

and using this along with taking 𝑋𝐴 inside the derivatives we can write: 

𝐽𝐴 = −𝑀𝐴𝑅𝑇 [
𝜕 ln 𝑋𝐴

𝜕 ln 𝑋𝐴
+

𝜕 ln 𝛾𝐴

𝜕 ln 𝑋𝐴
]

𝜕𝐶𝐴

𝜕𝑥
= −𝑀𝐴𝑅𝑇 [1 +

𝜕 ln 𝛾𝐴

𝜕 ln 𝑋𝐴
]

𝜕𝐶𝐴

𝜕𝑥
 

This is nothing but simply: 

𝐽𝐴 = −𝐷𝐴

𝜕𝐶𝐴

𝜕𝑥
 

We compare the previous two equations to get the expression for intrinsic diffusivity 𝐷𝐴 in 

terms of the atomic mobility 𝑀𝐴 and they are related as: 

𝐷𝐴 = 𝑀𝐴𝑅𝑇 [1 +
𝜕 ln 𝛾𝐴

𝜕 ln 𝑋𝐴
] 

The intrinsic diffusivity is related to atomic mobility through this factor [1 +
𝜕 ln 𝛾𝐴

𝜕 ln 𝑋𝐴
]. When 

the solution is ideal, 𝛾𝐴 = 1 and then 𝐷𝐴 is simply: 

𝐷𝐴 = 𝑀𝐴𝑅𝑇 



 but in case of non-ideal solution 
𝜕 ln 𝛾𝐴

𝜕 ln 𝑋𝐴
 will have value other than 1 and we need to take into 

account this factor. This factor is commonly referred to as thermodynamic factor denoted as 

Φ. So Φ is equal to: 

Φ = 1 +
𝜕 ln 𝛾𝐴

𝜕 ln 𝑋𝐴
 

Based on Gibbs Duhem equation it is also easy to show in a binary system that: 

Φ = 1 +
𝜕 ln 𝛾𝐴

𝜕 ln 𝑋𝐴
= 1 +

𝜕 ln 𝛾𝐵

𝜕 ln 𝑋𝐵
 

and 𝐷𝐴 can be written as: 

𝐷𝐴 = 𝑀𝐴𝑅𝑇Φ 
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Now, if we are considering a dilute solution we know Henry’s law will be followed and: 

For dilute solution:   𝛾𝐴  →  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

and when I am considering dilute solution 𝐷𝐴 is nothing but 𝐷𝐴
∗: 

𝐷𝐴
∗ = 𝑀𝐴𝑅𝑇 

 The tracer diffusion coefficient is simply equal to 𝑀𝐴𝑅𝑇, this is what we have already 

derived. Again, this equation we have derived for a binary system. If we consider 

multicomponent system and if we consider net vacancy flow which is also called as vacancy 



wind effect then we have to take into account the cross mobility term and the relations will be 

more complicated. Let us now restrict our discussion only for binary and in absence of net 

vacancy flow.  

So, these relations give us the inter relations between the chemical diffusivity terms and more 

fundamental atomic mobility terms and these relations are important because they help us to 

relate the information that we obtain experimentally which is most of the time the tracer 

diffusivity or chemical diffusion coefficient to the more fundamental coefficients which are 

the atomic mobilities or the kinetic coefficients.  

We have considered the diffusion under chemical potential gradients. We will now look into 

what happens if there is an external driving force present and the diffusion is occurring in 

presence of an external driving force. What type of external driving forces can be present? It 

can be an electric field which is nothing but the gradient of electric potential or it can be a 

stress field which is nothing but the gradient of strain energy. It can be the gradient in 

temperature and on. Let us try to look into the diffusion when external driving force is 

present.  
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Earlier we have seen there are two contributions to any diffusion flux term. If we write 𝐽𝐴 as” 

𝐽𝐴 = −𝐷𝐴

𝜕𝐶𝐴

𝜕𝑥
+ 𝐶𝐴〈𝑣〉 

 the first contribution is from the Fickian term which is nothing but −𝐷𝐴
𝜕𝐶𝐴

𝜕𝑥
 and the second 

contribution is from the drift which is written as 𝐶𝐴〈𝑣〉. 𝐶𝐴 is the concentration of A and this 

𝑣 refers to the drift velocity. Now, let us consider the strain energy driving force which may 

be present. For example, consider the diffusion when strain energy exist in the alloy. We have 

to increase the Gibbs free energy of the alloy by appropriate amount equal to the strain 

energy and we can write: 

𝜇𝐴 = 𝜇𝐴
𝑜 + 𝑅𝑇 ln 𝑎𝐴 + 𝐸 

This can be easily seen if we draw the Gibbs free energy of a solution versus composition 

curve. Let us say on X axis we have 𝑋𝐵, left Y axis is 𝑋𝐴 = 1, Y axis we are denoting Gibbs 

free energy of solution and the curve may have a nature something like this.  

In the absence of strain energy if we want to find out the chemical potential we draw tangent 

to the curve at the desired composition and the intercept on 𝑋𝐴 = 1 axis yields the chemical 

potential of A which is nothing but 𝜇𝐴
𝑜 + 𝑅𝑇 ln 𝑎𝐴. Now, in presence of the strain energy, this 

curve will be shifted up and at the same composition the difference would be E. If we 

determine the chemical potential now, it has increased by amount E and we can write: 

𝜇𝐴 = 𝜇𝐴
𝑜 + 𝑅𝑇 ln 𝑎𝐴 + 𝐸 

If we write the equation for 𝐽𝐴 now, it will be: 



𝐽𝐴 = −𝑀𝐴𝐶𝐴

𝜕𝜇𝐴

𝜕𝑥
 

On following the previous steps it will be easy to show that: 

𝐽𝐴 = −𝑀𝐴𝑅𝑇Φ
𝜕𝐶𝐴

𝜕𝑥
− 𝑀𝐴𝐶𝐴

𝜕𝐸

𝜕𝑥
 

If we substitute for 𝑀𝐴 using: 

𝐷𝐴 = 𝑀𝐴𝑅𝑇Φ      ,     𝑀𝐴 =
𝐷𝐴

𝑅𝑇Φ 
 

we can write: 

𝐽𝐴 = −𝐷𝐴

𝜕𝐶𝐴

𝜕𝑥
+ 𝐶𝐴𝐷𝐴

(−𝑑𝐸/𝑑𝑥)

𝑅𝑇Φ
 

This (−𝑑𝐸/𝑑𝑥) is the gradient in strain energy is nothing but the driving force which we 

denote as 𝐹: 

𝐹 = −𝑑𝐸/𝑑𝑥 

Now, if we compare this equation with the equation that we wrote earlier, we can see the drift 

velocity is nothing but: 

〈𝑣〉 = 𝐷𝐴

𝐹

𝑅𝑇Φ
 

 In general we can write: 

〈𝑣〉

𝐷𝐴
=

𝐹

𝑅𝑇Φ
 

If we consider a dilute solution or an ideal solution, this takes the form: 

〈𝑣〉

𝐷𝐴
=

𝐹

𝑅𝑇
 

 This is the well-known Nernst - Einstein equation. What is the significance of this Nernst - 

Einstein equation? If you go back to the equation for flux, for defining the Fickian term, of 

course we need the diffusivity 𝐷𝐴 but to get the drift term also we need the diffusivity term 

𝐷𝐴. In other words, or in terms of Nernst – Einstein equation, the drift velocity is also 

governed by the diffusivity 𝐷𝐴 or the mobility 𝑀𝐴 in addition to the nature of the driving 



force 𝐹. It is obvious because both the Fickian flux as well as the drift will be fundamentally 

driven by the atomic jumps and atomic mobility would essentially occur in both of them. 

Again, I would like to point out when we derive this equation, I am considering the binary 

system and I am neglecting the net vacancy flow that is 𝜇𝑉 the chemical potential of vacancy 

is assumed to be zero. Now, let us look into the diffusion that occurs under a specific type of 

driving force which is industrially very important and it is the diffusion under electric 

potential gradient. It is also referred to as electromigration.  
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When I talk about electric field as the external driving force, 𝐹 is essentially: 

𝐹 = 𝑞∗𝐸 

The electric field is nothing but the gradient of electric potential (−
𝑑𝑉

𝑑𝑥
) and: 

q∗ = effective charge on the diffusing species 

For ionic compounds, this effective charge will be essentially a charge on the ions but in 

metals it is not actually the charge on the metal ions but it has to be determined 

experimentally. If we want to find out the drift velocity in presence of electric field or drift 

velocity for electromigration, we can use the Nernst – Einstein equation which tells me: 

〈𝑣〉

𝐷𝐴
=

𝐹

𝑅𝑇
=

𝑞∗𝐸

𝑅𝑇
 

Once I derive the equation for 𝐽𝐴 which is: 



𝐽𝐴 = −𝐷𝐴

𝜕𝐶𝐴

𝜕𝑥
+ 𝐶𝐴〈𝑣〉 

Or  

𝐽𝐴 = −𝐷𝐴

𝜕𝐶𝐴

𝜕𝑥
+ 𝐶𝐴𝐷𝐴

𝑞∗𝐸

𝑅𝑇
 

This tells me that the diffusion flux of A is governed not only by the concentration gradient 

but also by the electric field 𝐸 and it also tells me that in absence of any concentration 

gradient the species can experience large diffusion flux if the electric field is high. Now, this 

is very important. In most of the semiconductor chips, pure copper or pure aluminium is used 

as interconnect material. With ever decreasing feature sizes this interconnecting parts of 

copper or aluminium are having very small dimensions in nano meters, at which the electric 

field is very high and there will be the flux of atoms even in pure copper or pure aluminium.  

Now this is not desired, because if the atoms diffuse from one end to the other of the 

conductor, there will be accumulation of vacancies on one end which will lead to formation 

of voids and subsequently to the failure of the connector. On the other hand, the atoms are 

accumulating on the other side of the conductor and if may lead to undesired growth and it 

may lead to short circuiting. So, it is very important to control this electromigration in 

semiconductor chips. And there it is essential to work with flux equations like this.  

So, we have seen the equation for diffusion flux when both the concentration gradient and 

electric potential gradient exist. Now, let us try to look at what happens physically? Why 

there is a diffusion flux even when there is no concentration gradient or when both 

concentration gradient and electric potential gradients are present? Why there is a drift term 

associated with the electric potential gradient.  
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Let us try to look at it. Consider this sample in which I have shown different atomic planes 

here. In the absence of any electric potential gradient or any external driving force, these 

atoms are continuously vibrating and their jump frequency in forward or reverse direction are 

same. 𝛾+and 𝛾− are same. Now, consider if there is an electric potential gradient existing 

from left to right as shown here and the electrons are flowing from right to left.  

Now, as the electrons are flowing, they are colliding with the atoms and in this process, the 

electrons are transferring their momentum to the atoms. Because of this the jumps of atoms 

are biased in the direction of flow of electrons, so there will be more jumps per unit time 

from right to left as compared to from left to right even when there is no concentration 

gradient. Because of this 𝛾− that is the jump frequency towards left is not same as 𝛾+, that is 

the jump frequency towards the right. 

𝛾− ≠ 𝛾+ 

And infact: 

𝛾− > 𝛾+ 

Of course, there will be also an effect because of the interaction between the charges because 

electrons have negative charge and the ions will have positive or negative charge, but the 

effect because of momentum transfer from the electron is much more significant especially in 

metals.  

In ionic compounds, the momentum transfer is less and the effect because of the charge 

interaction is more, but in metals the effect because of the momentum transfer from electron 



is more. And because of this, the effective charge 𝑞∗  is not exactly same as the valance of the 

atom. In fact, it comes out to be much higher than the valance.  

For example, effective charge for carbon diffusion in alpha iron is minus 12, whereas for 

hydrogen in copper it is -20 : 

𝐶 𝑖𝑛 𝛼 − 𝐹𝑒 ∶    𝑞∗ = −12 

 𝐻 𝑖𝑛 𝐶𝑢 ∶   𝑞∗ = −20 

You can see this effective charge is much higher compared to the valance and that is because 

of this bias in the jumps because of the momentum transfer from the electrons. So. this is the 

nature of electromigration and why there is a drift as we understand physically. Now, there 

are various other driving forces also, we will not talk about all of those. In the next class, I 

will talk about non ideality as a driving force. For this class we will stop here. Thank you.  

 


