Diffusion in Multicomponent Solids
Professor Kaustubh Kulkarni
Department of Materials Science and Engineering,
Indian Institute of Technology, Kanpur
Lecture 39
Deriving Relation Between Diffusion Flux and Chemical Potential Gradients

Welcome to the 39th lecture in this open course on Diffusion in Multicomponent Solids. In

this lecture, 1 shall discuss the derivation of expression for the diffusion flux of a component

in terms of chemical potential gradients. We will see that for the substitutional diffusion by

vacancy mechanism, the flux of a component depends not only on its own chemical potential

gradient but also on the chemical potential gradients of other diffusing components.

It is said that gradient in chemical potential is the fundamental driving force for diffusion.

Today, we will see why it is so. We will try to derive the expression for diffusion flux under

the chemical potential gradients. We will use the simple kinetic theory for this derivation.

This type of equation has been derived long back by Seeds, Fisher, Hollomon and Turnbull

and by Bardeen.
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I will try to explain this theory in today’s conventional terms. We have seen the expression
for diffusivity:

D—1 A2

in which y is the successful jump frequency of an average atom and A is the jump distance.
Jump frequency term y involves two types of contributions: one is the number of times an
atom has energy equal to or greater than the activation energy for migration and second, the
probability that an adjacent site is vacant. So, second term belongs to the activation barrier

for vacancy formation.

In the absence of any driving force, at the regular atomic positions, the atoms are lying in a
potential energy well. In the first figure, if this is an atom A and it jumps on to the next site
let us call this V, there is no net change in the Gibbs free energy because of this jump. But in
order for this jump to occur, the atom has to cross this energy barrier which is known as
activation energy for migration AG,,. When there is a driving force present, the situation is
little bit different, the jumps are biased in a particular direction because if the atom jumps in
that particular direction, it causes decrease in Gibbs free energy. In presence of driving force,
this potential energy well configuration is a little bit different. This potential energy well
would look something like this. Let us say there is a driving force in the x direction. When
the atom jumps from this position into the next site here, we will see that it is associated with
decrease in Gibbs free energy and the decrease in Gibbs free energy is referred to as the

driving force.



Let us call the jJumps from left to right as forward jump and the jumps from right to left as
reverse jump of the atom. For the forward jump we can see the atom has to cross a lesser
energy barrier than reverse jump. For example, if the atom in this position wants to jump
back, it has to cross a bigger activation barrier than for the forward jump and because of the

symmetric condition, we can show that the activation barrier for the forward jump can be

f

written as AG,,, — ch and the activation barrier for reverse jump would be AG,,, + >

Now, the number of times an average atom has an energy equal to or greater than the
activation energy for migration per second can be denoted as y,. It is the jump frequency of
atom, this is in absence of driving force and this is only the migration part. You see the actual
jump frequency y will have the migration part as well as the vacancy formation part. In my

notation here:
Y4 = jump frequency of atom (migration part only)

¥4 is in the absence of any driving force. Obviously, when there is a driving force present like
here, the forward jump frequency y* will be different than the reverse jump frequency, y~. In

the absence of driving force, y, will be given as:

—AGm)

where v, is the debye frequency, the number of time atom vibrates per second. y* would be

given by:
AG,, —g
vyt =v,exp| — T
and y~ would be:
6+
Vo= Voexp| —

We can expand them further as:

yt =v,exp (— %) exp <L>



So y* becomes:

YT =vasexp (L)
2kT

and similarly y~ would be:

T

2kT
¥4 represents the jump frequency of atom A in absence of any driving force. The jump
frequency in the forward and reverse direction will be modified by this driving force f and
the driving force is usually a positive quantity and f will be given as —AG. AG is the
difference between the Gibbs free energy of this site and this site and it will include only the

non-ideal part, we will come back to it later. With this, we can use an approximation:

expx~1+x ifx«1

Now, in the expressions for y* and y~, f is usually much less than kT and we can use this

approximation. We can write:

)
+ — 7
14 _yA(1+2kT

- (1 _ L)
Vo= YAt T2kt
and the difference between the forward and reverse jump frequencies would be:
f
+ - — J
14 14 Ya %T

It will be clear why we got the expression for the difference between y* — y~ as we proceed,
We have now expressed the forward and reverse jump frequencies in terms of the driving
force and the jump frequency in absence of the driving force.

(Refer Slide Time: 10:18)






I Erar—)

. o
e S 0
NN s (mm‘%.) —@®

Toz 2[HT6 3 - 2]+ (%'-57) 56 —0O

-

¢ £
o 7 (0 )0 2 o 1 ()02 — O

Now, let us try to evaluate the diffusion fluxes in terms of these jump frequencies. Let us
consider two atomic planes, plane 1 and plane 2 and the distance between the two planes is A.
Each plane can be thought of surrounded by an element of volume A if we consider unit cross
sectional area. Let us say the number of atoms of A on plane 1 are N4 and the concentration

of the volume element around plane 1 is C,. We know:
NA = ACA

And if we consider that there is a concentration gradient from plane 1 to plane 2, then the

number of atoms on plane 2 would be:

dN,
(NA)plane 2 =Ny + AW

aa% is the gradient of number of atoms with respect to x. In terms of C, it can be written as:

aC,

(NA)plane 2= ACA + Az Ox

Now, we will be treating here the diffusion that occurs by vacancy mechanism. It is important
to know the vacancy concentrations on the two planes. If we express the vacancy

concentration of plane 1 as X;, and there is also a gradient in vacancy concentration, the

vacancy concentration on plane 2 would be:

(le)plane 2 =X+ 4 ox




With this, if you want to evaluate the interdiffusion flux across a plane that lies in the middle
of plane 1 and plane 2 we need to consider how many atoms are jumping from plane 1 to
plane 2 per unit times and how many atoms are jumping from plane 2 to plane 1 per unit time
and take the difference of the two. The difference will give me how many atoms of A are
crossing this plane at the middle per unit time per unit cross sectional area, that is the

diffusion flux across this plane in the middle of plane 1 and plane 2.

If 1 denote the number of atoms jumping from plane 1 to plane 2 per unit time as ji~*, that
depends on three tems: the jump frequency of atoms A and this | am considering again
including only the migration part times, once the atom has the required energy to jump, the
next site also has to be vacant. This will also depend upon the probability that the vacancy
exist on the adjacent site, or the vacancy concentration on plane 2 times the number of atoms
of A on plane 1. This would be equal to:

o = {jump frequency of atom A} X {X;, at 11} X {no.of atoms of A on I}

X
-1 _ o+ X, + 1V) AC
Ja Ya ( 1V Ax A

Similarly, j4~! would be given by the jump frequency of atoms A and this will be the reverse
jump frequency which is y, times the vacancy concentration on plane 1 times the number of

atoms on plane 2. So:

aC
=l = oy (AC 22 —A)
Ja Va4 |Ala + ox
The interdiffusion flux ], is given by the difference between 1 and 2:

doll sl X1y
Ja=jat =it =22 [VXCA ax —VYa X1V ax ] + d —va)XwCid  (3)
Now, it will be clear why we evaluated the difference between yf and y;, let denote this as
equation 3. On substituting for ¥, y; and their difference we will get:

Ja = Val? [(1 * 2£T) Ca a;(;V B (1 2£T) X (296;] T (ka) XiwCad (1)

Let us call this equation 4. We have got the equation for diffusion flux of A in terms of the
driving force f and the jump frequency y, in the absence of driving force and the gradient of

vacancy concentration as well as the concentration of A and A the jump length. This will be



true for any type of driving force and the specific expression we will try to derive for driving

force which is the chemical potential gradient.
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Let us try to see what form the driving force f takes when there is a chemical potential
gradient. For this, let us go back to this diagram of plane 1 and plane 2. When an atom A
jumps from plane 1 to plane 2, the number of atoms of A on plane 2 have increased by 1
whereas the number of vacancies on plane 2 have decreased by 1 and the reverse has
occurred in plane 1 that is the number of atoms of A on plane 1 has decreased 1 and the
number of vacancies on plane 1 has increased by 1. We know the increase in Gibbs free

energy when an atom is added to a homogenous alloy is the chemical potential of the atom.

We can similarly define the chemical potential of a vacancy. It is the change in Gibbs free
energy when an atom is removed from the interior and placed on to the surface in which
process one extra lattice site has been created. If there is a chemical potential gradient,
suppose let us say chemical potential of A is decreasing from plane 1 to plane 2, obviously
there will be a net decrease in Gibbs free energy and this will act as a driving force for

diffusion from plane 1 to plane 2.

If we consider a binary alloy of A and B and since we are considering the diffusion by
vacancy mechanism, let us also consider vacancy as one more species which is diffusing.
This is because by creation or destruction of vacancies, there is a change in number of lattice
sites. So we need to consider vacancy as one more species. We can write the total number of

species on any plane of lattice sites as:



N = NA + NB + NV
and the Gibbs free energy of this plane can be expressed as:
G = paNy + upNp + py Ny

Now, G can also be expressed as for any homogenous alloy as:
G = G°+ G*S —TAS™H

In this expression, G° is the Gibbs free energy before mixing. Last part represents the change
in Gibbs free energy if the mixing was ideal or this part is related to the change in
configurational entropy because of mixing. G*5 is the excess Gibbs free energy which is
basically the change in Gibbs free energy because of all the reasons other than the ideal
configurational entropy change. Now, when atom is jumping from 1 to 2, the driving force
associated with this jump will be related to the change in Gibbs free energy through the non-
ideal part only. As the atom of A jumps from 1 to 2, we can write change in Gibbs free

energy as:

o]

aGXS aGXSl laGXS aGXSl
ON, ONy| ., |9N, ONy |

XS

Now, the term denotes the change in excess Gibbs free energy because of addition of

0G

ONg4
aGXS
aNy

one atom of A, whereas the term denotes the change in Gibbs free energy because of

addition of one vacancy. Since the vacancy is jumping away from the plane at x + A that is
from plane 2 here, there is a negative sign attached to it. This total expression we can
simplify as:

A6 =25 N, " o,

d [0G*S aGXSl
Since f is simply —AG, we get the expression for f as:

B Aa aG*s  aG*s .
/= dx|dNy ONy ®)

It will be a long expression but we can approximately neglect any term in A which is greater
than 12. Now let us substitute for f from this equation denoted as equation 5, into equation 4

given below:



(Refer Slide Time: 24:48)

Fy\_ 0X f ac f
Ja = Val® [(1 + Zk_T) Ca a;V - (1 2kT) X1 a;] TYa (kT) XiwCat (4)

Since the term f involves the term lambda and there is already a term A2 outside the bracket,

A2, f will involve a term in A3 which we will neglect and this expression can be rewritten as:

2 [C Xy GCA] X O 1 0 [0G*S 9G*XS 6
Ja="Va ATy 1Va Yadivla kT 9x | 9N, N, (6)
Let us call this equation 6. Now, we can write this 21 term as le “ and similarly this

term second term also we can modify. So we can write the flux equatlon as:

X O dlnX,, dInC, 1 0 [dG*S 9G*S ;
Ja = Yakw Cal” |50 ox krox|an, oy ||
XS
Let us denote this as equation 7. Now let us try to find out the nature of and 06

dNy '
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From this equation, we can write:
G=G°+G* -T(klnQ)

We know for the mixing of A, B and vacancies, we can write:

N!

InQ=1In T,

Where N is the total number of atoms. This we have derived when we went over the

statistical model of mixing during our thermodynamic refresher.

It can be written simply as:



nQ=ln— o ———
= N INGI N,

= NlnN - NA lnNA - NB lnNB - NvlnNV
Now, if we take the derivative of G with respect to N,, which we know by definition is the
chemical potential of A, we get:

_9G _9G*S . dInQ
0N, 0N, N,

Ha
We have to calculate the derivative of In Q with respect to N,,.

d1lnQ d
aNA ZM(NIHN—NAIHNA —NBIHNB _Nvlan)

Ny and Ny are independent of Ny, hence the derivative of the Ny and N, with respect to N,

will be zero. So, we can write this as:

dIn Q)
dN,

=InN—-InN, = —-InX,

Since we know AI'V—A is the mole fraction of A or the atom fraction of A which is denoted by X,

we get the expression for 4 as:

0 XS
= kT InX
Ha an, + kT In Xy
With the similar logic we can write:
XS
. . . . . . aGxs aGXS .
X,y is the site faction of vacancies. And from here if you substitute for Wand S5 into
A |4
equation 7 , we will get:
,|0InXyy 9dInCy 1 0
Ja = YaX1w a2 ax  ox _ﬁa[:uA_lenXA_HV-l'lenXlV]

On simplifying we get the expression for J, as:

1 0 )
—— (g — HV) + YaX1yCyd

kT 0x

JdlnX dlnC
Ja = _)’AX1VCA)L2 - A]

0x 0x



Now, we know the mole fraction X, is given as:

X, = C4V,, where,
V, = molar volume
So:

dlnX, 0dInCy, 0dInV,
0x dx  0x

Substituting this relation in the flux equation we get the final expression:

d dlnV,
(ta — ty) + YaX1yCaA? axm

Ja= _VAX1VCAAZ%a
This is the general expression for interdiffusion flux under chemical potential gradient. You
can see there are 3 contributions here, one is form the chemical potential gradient of A, the
chemical potential gradient of vacancy and also from the change in molar volume with x. The
molar volume will change with x if the molar volume is a function of composition because

the composition is changing with x.

The first two terms here are basically the Fickian flux, the flux because of the chemical
potential gradient and the 3™ term here is the drift term associated with the change in molar
volume. Obviously, if the molar volume will change with composition there will be a volume
flow associated with the diffusion process and it will give rise to a drift and there will be a

contribution from drift to the diffusion flux of A.

Now, if we assume that the vacancy equilibrium is quickly attained at every plane, in other
words if there is no excess vacancy flow, then the chemical potential of vacancy is zero. Then
the only contribution will be from the chemical potential gradient of A and the molar volume
change. In addition, if V;, is assumed to be independent of composition, then the only

contribution will be from chemical potential gradient of A.

(Refer Slide Time: 35:45)
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We can write ], equal to:

1 0uy
= —Ya X1y CuA2 ———=
Ja Yad1vlag %T Ox
we can write this as:
1 dugy Uy
YaX ——=—L,—
]A A 1VCA/1 kT a A ax

So, we have derived the equation for diffusion flux of A in terms of the chemical potential
gradient of A and it is related to the chemical potential gradient of A through this term L,.
This is similar phenomenological type of equation that we used for flux as a function of
concentration gradient which were related through the interdiffusivity term. More
fundamentally, the diffusion is driven by chemical potential gradient. Now, this term L,
which is called kinetic coefficient can be obtained as if we equate these two sides:

1
Ly =V4X,yCsA? —
4 = Ya&ivlg %T

And if we look at this y,X;y, this is nothing but the y if we add the geometric factor,

corresponding to the specific type of lattice. For cubic this geometric factor is usually % So:

We know this is the Einstein’s diffusivity or which we call as tracer diffusivity.



1
D, = VAX1V/12 = g)’/lz

We can write this as:

_ DuCy
AT kT

The tracer diffusivity we know is essentially under negligible concentration gradient. When
there is no concentration gradient or negligible concentration gradient, we are talking about
the self or impurity diffusivity which is denoted by D; and is also referred to as tracer
diffusivity. So, we can express the kinetic coefficient in terms of the tracer diffusivity of
particular atom. Now let us look into more general case when there is a net vacancy flow. It is

bound to happen if:
D, # Dg
Dy is the tracer diffusivity of B. In that case, we have to consider % term also.

(Refer Slide Time: 38:43)
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Now, we know by Gibbs Duhem equation:

Opa Jup Ouy

XAW-FXBW-I_XIVW: 0

We can express the chemical potential gradient of vacancy in terms of the chemical potential

gradients of A and B. That would be:

Juy — X4 Oy _ Xp Oug
dx Xy 0x Xy Ox

If we substitute for % from here into this expression for J, and neglecting the dependence of

molar volume on composition, we will get the equation of the sort:

Ja = —L, Opa  Xa Ouy n Xp Oup
ox Xyy 0x Xy Ox

J4 can be expressed as a function of chemical potential gradients of both the components A

and B. We can in general express this as:

X4\ 0Ua Xp Oup
=—IL,(1 -
Ja A( +X1V) 0x 4 X,y 0x
s Oug
Ja=—Llaag = Lap 5~

The diffusion flux of A will be guided by chemical potential gradient of both A as well as B.
The relation with chemical potential gradient of A will be expressed through this main kinetic
coefficient L,,. And the contribution from the chemical potential gradient of B will be

expressed through this cross kinetic coefficient Lyz and this will be true whenever the



vacancy diffusion is involved or whenever we are considering substitutional diffusion by
vacancy mechanism because to more or less extent, there will always be a net vacancy flow

as long as D; # Dg. Only the relative contributions will keep changing depending upon the

difference between D; and Dj.
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Now, we did this for binary but this is in general true for an N component system in general.

We can express the diffusion flux of the component i as:

n

ou;

j=1

So, we have obtained Onsager’s relation for diffusion under chemical potential gradient. It is
important to note here that as long as the vacancy mechanism is involved in order to define
diffusion flux, we need both the main kinetic coefficient, L;; similar to L,4 here as well as the

cross Kinetic coefficient L;; when i is not equal to j, similar to L, here.

(Refer Slide Time: 43:00)
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One more point that I would like you to note here is that, the dependence of molar volume on

composition will also give rise to a contribution to the flux of A and it comes through the

aInv, . .
;xm. Only when we assume that the molar volume is independent of composition, we

can ignore the drift associated with the diffusion and that is why we define the volume fixed

term

frame of reference.

All right, so we derived the relation that expresses the diffusion flux of a component in terms
of its own chemical potential gradient and when there is a net vacancy flow, that is, when
there is a difference in the tracer diffusivities of different diffusing species. In that case the
contribution will also come from the chemical potential gradients of other components and in
general, the flux can be expressed by the Onsager type of relation. Thank you.



