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Welcome to the 39th lecture in this open course on Diffusion in Multicomponent Solids. In 

this lecture, I shall discuss the derivation of expression for the diffusion flux of a component 

in terms of chemical potential gradients. We will see that for the substitutional diffusion by 

vacancy mechanism, the flux of a component depends not only on its own chemical potential 

gradient but also on the chemical potential gradients of other diffusing components.  

It is said that gradient in chemical potential is the fundamental driving force for diffusion. 

Today, we will see why it is so. We will try to derive the expression for diffusion flux under 

the chemical potential gradients. We will use the simple kinetic theory for this derivation. 

This type of equation has been derived long back by Seeds, Fisher, Hollomon and Turnbull 

and by Bardeen.  
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I will try to explain this theory in today’s conventional terms. We have seen the expression 

for diffusivity: 

𝐷 =
1

6
𝛾𝜆2 

in which 𝛾 is the successful jump frequency of an average atom and 𝜆 is the jump distance. 

Jump frequency term 𝛾 involves two types of contributions: one is the number of times an 

atom has energy equal to or greater than the activation energy for migration and second, the 

probability that an adjacent site is vacant. So, second term belongs to the activation barrier 

for vacancy formation.  

In the absence of any driving force, at the regular atomic positions, the atoms are lying in a 

potential energy well. In the first figure, if this is an atom A and it jumps on to the next site 

let us call this V, there is no net change in the Gibbs free energy because of this jump. But in 

order for this jump to occur, the atom has to cross this energy barrier which is known as 

activation energy for migration ∆𝐺𝑚. When there is a driving force present, the situation is 

little bit different, the jumps are biased in a particular direction because if the atom jumps in 

that particular direction, it causes decrease in Gibbs free energy. In presence of driving force, 

this potential energy well configuration is a little bit different. This potential energy well 

would look something like this. Let us say there is a driving force in the x direction. When 

the atom jumps from this position into the next site here, we will see that it is associated with 

decrease in Gibbs free energy and the decrease in Gibbs free energy is referred to as the 

driving force.  



Let us call the jumps from left to right as forward jump and the jumps from right to left as 

reverse jump of the atom. For the forward jump we can see the atom has to cross a lesser 

energy barrier than reverse jump. For example, if the atom in this position wants to jump 

back, it has to cross a bigger activation barrier than for the forward jump and because of the 

symmetric condition, we can show that the activation barrier for the forward jump can be 

written as ∆𝐺𝑚 −
𝑓

2
 and the activation barrier for reverse jump would be ∆𝐺𝑚 +

𝑓

2
.  

Now, the number of times an average atom has an energy equal to or greater than the 

activation energy for migration per second can be denoted as 𝛾𝐴. It is the jump frequency of 

atom, this is in absence of driving force and this is only the migration part. You see the actual 

jump frequency 𝛾 will have the migration part as well as the vacancy formation part. In my 

notation here: 

𝛾𝐴 = 𝑗𝑢𝑚𝑝 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑎𝑡𝑜𝑚 (𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑡 𝑜𝑛𝑙𝑦) 

𝛾𝐴 is in the absence of any driving force. Obviously, when there is a driving force present like 

here, the forward jump frequency 𝛾+ will be different than the reverse jump frequency, 𝛾−. In 

the absence of driving force, 𝛾𝐴 will be given as: 

𝛾𝐴 = 𝜈𝑜 𝑒𝑥𝑝 (
−∆𝐺𝑚

𝑘𝑇
) 

where 𝜈𝑜 is the debye frequency, the number of time atom vibrates per second. 𝛾+ would be 

given by: 

𝛾+ = 𝜈𝑜 𝑒𝑥𝑝 (−
∆𝐺𝑚 −

𝑓
2

𝑘𝑇
) 

and 𝛾− would be: 

𝛾− = 𝜈𝑜 𝑒𝑥𝑝 (−
∆𝐺𝑚 +

𝑓
2

𝑘𝑇
) 

We can expand them further as: 

𝛾+ = 𝜈𝑜 𝑒𝑥𝑝 (−
∆𝐺𝑚

𝑘𝑇
) 𝑒𝑥𝑝 (

𝑓

2𝑘𝑇
) 

 



So 𝛾+ becomes: 

𝛾+ = 𝛾𝐴 𝑒𝑥𝑝 (
𝑓

2𝑘𝑇
) 

and similarly 𝛾− would be: 

𝛾− = 𝛾𝐴 𝑒𝑥𝑝 (−
𝑓

2𝑘𝑇
) 

𝛾𝐴 represents the jump frequency of atom A in absence of any driving force. The jump 

frequency in the forward and reverse direction will be modified by this driving force 𝑓 and 

the driving force is usually a positive quantity and 𝑓 will be given as −∆𝐺. ∆𝐺 is the 

difference between the Gibbs free energy of this site and this site and it will include only the 

non-ideal part, we will come back to it later. With this, we can use an approximation: 

exp x ≈ 1 + x       if x ≪ 1 

Now, in the expressions for 𝛾+ and 𝛾−, 𝑓 is usually much less than kT and we can use this 

approximation. We can write: 

𝛾+ = 𝛾𝐴 (1 +
𝑓

2𝑘𝑇
) 

𝛾− = 𝛾𝐴 (1 −
𝑓

2𝑘𝑇
) 

and the difference between the forward and reverse jump frequencies would be: 

𝛾+ − 𝛾− = 𝛾𝐴

𝑓

𝑘𝑇
 

It will be clear why we got the expression for the difference between 𝛾+ − 𝛾− as we proceed, 

We have now expressed the forward and reverse jump frequencies in terms of the driving 

force and the jump frequency in absence of the driving force. 

(Refer Slide Time: 10:18) 



 

 

 



 

Now, let us try to evaluate the diffusion fluxes in terms of these jump frequencies. Let us 

consider two atomic planes, plane 1 and plane 2 and the distance between the two planes is 𝜆. 

Each plane can be thought of surrounded by an element of volume 𝜆 if we consider unit cross 

sectional area. Let us say the number of atoms of A on plane 1 are 𝑁𝐴 and the concentration 

of the volume element around plane 1 is 𝐶𝐴. We know: 

𝑁𝐴 = 𝜆𝐶𝐴 

And if we consider that there is a concentration gradient from plane 1 to plane 2, then the 

number of atoms on plane 2 would be: 

(𝑁𝐴)𝑝𝑙𝑎𝑛𝑒 2 = 𝑁𝐴 + 𝜆
𝜕𝑁𝐴

𝜕𝑥
 

𝜕𝑁𝐴

𝜕𝑥
 is the gradient of number of atoms with respect to 𝑥. In terms of 𝐶𝐴 it can be written as: 

(𝑁𝐴)𝑝𝑙𝑎𝑛𝑒 2 = 𝜆𝐶𝐴 + 𝜆2
𝜕𝐶𝐴

𝜕𝑥
 

Now, we will be treating here the diffusion that occurs by vacancy mechanism. It is important 

to know the vacancy concentrations on the two planes. If we express the vacancy 

concentration of plane 1 as 𝑋1𝑉 and there is also a gradient in vacancy concentration, the 

vacancy concentration on plane 2 would be: 

(𝑋1𝑉)𝑝𝑙𝑎𝑛𝑒 2 = 𝑋1𝑉 + 𝜆
𝜕𝑋1𝑉

𝜕𝑥
 



With this, if you want to evaluate the interdiffusion flux across a plane that lies in the middle 

of plane 1 and plane 2 we need to consider how many atoms are jumping from plane 1 to 

plane 2 per unit times and how many atoms are jumping from plane 2 to plane 1 per unit time 

and take the difference of the two. The difference will give me how many atoms of A are 

crossing this plane at the middle per unit time per unit cross sectional area, that is the 

diffusion flux across this plane in the middle of plane 1 and plane 2.  

If I denote the number of atoms jumping from plane 1 to plane 2 per unit time as 𝑗𝐴
𝐼→𝐼𝐼, that 

depends on three tems: the jump frequency of atoms A and this I am considering again 

including only the migration part times, once the atom has the required energy to jump, the 

next site also has to be vacant. This will also depend upon the probability that the vacancy 

exist on the adjacent site, or the vacancy concentration on plane 2 times the number of atoms 

of A on plane 1. This would be equal to: 

𝑗𝐴
𝐼→𝐼𝐼 = {𝑗𝑢𝑚𝑝 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑎𝑡𝑜𝑚 𝐴} × {𝑋1𝑉 𝑎𝑡 𝐼𝐼} × {𝑛𝑜. 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠 𝑜𝑓 𝐴 𝑜𝑛 𝐼} 

𝑗𝐴
𝐼→𝐼𝐼 = 𝛾𝐴

+ (𝑋1𝑉 + 𝜆
𝜕𝑋1𝑉

𝜕𝑥
) 𝜆𝐶𝐴 

Similarly, 𝑗𝐴
𝐼𝐼→𝐼 would be given by the jump frequency of atoms A and this will be the reverse 

jump frequency which is 𝛾𝐴
− times the vacancy concentration on plane 1 times the number of 

atoms on plane 2. So: 

𝑗𝐴
𝐼𝐼→𝐼 = 𝛾𝐴

−𝑋1𝑉 (𝜆𝐶𝐴 + 𝜆2
𝜕𝐶𝐴

𝜕𝑥
) 

The interdiffusion flux 𝐽𝐴 is given by the difference between 1 and 2: 

𝐽𝐴 = 𝑗𝐴
𝐼→𝐼𝐼 − 𝑗𝐴

𝐼𝐼→𝐼 = 𝜆2 [𝛾𝐴
+𝐶𝐴

𝜕𝑋1𝑉

𝜕𝑥
− 𝛾𝐴

−𝑋1𝑉

𝜕𝐶𝐴

𝜕𝑥
] + (𝛾𝐴

+ − 𝛾𝐴
−)𝑋1𝑉𝐶𝐴𝜆      (3) 

Now, it will be clear why we evaluated the difference between 𝛾𝐴
+ and 𝛾𝐴

−, let denote this as 

equation 3. On substituting for 𝛾𝐴
+, 𝛾𝐴

− and their difference we will get: 

𝐽𝐴 = 𝛾𝐴𝜆2 [(1 +
𝑓

2𝑘𝑇
) 𝐶𝐴

𝜕𝑋1𝑉

𝜕𝑥
− (1 −

𝑓

2𝑘𝑇
) 𝑋1𝑉

𝜕𝐶𝐴

𝜕𝑥
] + 𝛾𝐴 (

𝑓

𝑘𝑇
) 𝑋1𝑉𝐶𝐴𝜆     (4) 

Let us call this equation 4. We have got the equation for diffusion flux of A in terms of the 

driving force 𝑓 and the jump frequency 𝛾𝐴 in the absence of driving force and the gradient of 

vacancy concentration as well as the concentration of A and 𝜆 the jump length. This will be 



true for any type of driving force and the specific expression we will try to derive for driving 

force which is the chemical potential gradient.  
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Let us try to see what form the driving force 𝑓 takes when there is a chemical potential 

gradient. For this, let us go back to this diagram of plane 1 and plane 2. When an atom A 

jumps from plane 1 to plane 2, the number of atoms of A on plane 2 have increased by 1 

whereas the number of vacancies on plane 2 have decreased by 1 and the reverse has 

occurred in plane 1 that is the number of atoms of A on plane 1 has decreased 1 and the 

number of vacancies on plane 1 has increased by 1. We know the increase in Gibbs free 

energy when an atom is added to a homogenous alloy is the chemical potential of the atom.  

We can similarly define the chemical potential of a vacancy. It is the change in Gibbs free 

energy when an atom is removed from the interior and placed on to the surface in which 

process one extra lattice site has been created. If there is a chemical potential gradient, 

suppose let us say chemical potential of A is decreasing from plane 1 to plane 2, obviously 

there will be a net decrease in Gibbs free energy and this will act as a driving force for 

diffusion from plane 1 to plane 2.  

If we consider a binary alloy of A and B and since we are considering the diffusion by 

vacancy mechanism, let us also consider vacancy as one more species which is diffusing. 

This is because by creation or destruction of vacancies, there is a change in number of lattice 

sites. So we need to consider vacancy as one more species. We can write the total number of 

species on any plane of lattice sites as: 



𝑁 = 𝑁𝐴 + 𝑁𝐵 + 𝑁𝑉 

and the Gibbs free energy of this plane can be expressed as: 

𝐺 = 𝜇𝐴𝑁𝐴 + 𝜇𝐵𝑁𝐵 + 𝜇𝑉𝑁𝑉 

Now, G can also be expressed as for any homogenous alloy as: 

𝐺 = 𝐺𝑜 + 𝐺𝑋𝑆 − 𝑇∆𝑆𝑚,𝑖𝑑 

In this expression, 𝐺𝑜 is the Gibbs free energy before mixing. Last part represents the change 

in Gibbs free energy if the mixing was ideal or this part is related to the change in 

configurational entropy because of mixing. 𝐺𝑋𝑆 is the excess Gibbs free energy which is 

basically the change in Gibbs free energy because of all the reasons other than the ideal 

configurational entropy change. Now, when atom is jumping from 1 to 2, the driving force 

associated with this jump will be related to the change in Gibbs free energy through the non-

ideal part only. As the atom of A jumps from 1 to 2, we can write change in Gibbs free 

energy as: 

∆𝐺 = [
𝜕𝐺𝑋𝑆

𝜕𝑁𝐴
−

𝜕𝐺𝑋𝑆

𝜕𝑁𝑉
]

𝑥+𝜆

− [
𝜕𝐺𝑋𝑆

𝜕𝑁𝐴
−

𝜕𝐺𝑋𝑆

𝜕𝑁𝑉
]

𝑥

 

Now, the term 
𝜕𝐺𝑋𝑆

𝜕𝑁𝐴
 denotes the change in excess Gibbs free energy because of addition of 

one atom of A, whereas the term 
𝜕𝐺𝑋𝑆

𝜕𝑁𝑉
 denotes the change in Gibbs free energy because of 

addition of one vacancy. Since the vacancy is jumping away from the plane at 𝑥 + 𝜆 that is 

from plane 2 here, there is a negative sign attached to it. This total expression we can 

simplify as: 

∆𝐺 = 𝜆
𝜕

𝜕𝑥
[
𝜕𝐺𝑋𝑆

𝜕𝑁𝐴
−

𝜕𝐺𝑋𝑆

𝜕𝑁𝑉
] 

Since 𝑓 is simply −∆𝐺, we get the expression for 𝑓 as: 

𝑓 = −𝜆
𝜕

𝜕𝑥
[
𝜕𝐺𝑋𝑆

𝜕𝑁𝐴
−

𝜕𝐺𝑋𝑆

𝜕𝑁𝑉
]     (5) 

It will be a long expression but we can approximately neglect any term in 𝜆 which is greater 

than 𝜆2.  Now let us substitute for 𝑓 from this equation denoted as equation 5, into equation 4 

given below:  
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𝐽𝐴 = 𝛾𝐴𝜆2 [(1 +
𝑓

2𝑘𝑇
) 𝐶𝐴

𝜕𝑋1𝑉

𝜕𝑥
− (1 −

𝑓

2𝑘𝑇
) 𝑋1𝑉

𝜕𝐶𝐴

𝜕𝑥
] + 𝛾𝐴 (

𝑓

𝑘𝑇
) 𝑋1𝑉𝐶𝐴𝜆    (4) 

Since the term 𝑓 involves the term lambda and there is already a term 𝜆2 outside the bracket, 

𝜆2. 𝑓 will involve a term in 𝜆3 which we will neglect and this expression can be rewritten as: 

𝐽𝐴 = 𝛾𝐴𝜆2 [𝐶𝐴

𝜕𝑋1𝑉

𝜕𝑥
− 𝑋1𝑉

𝜕𝐶𝐴

𝜕𝑥
] − 𝛾𝐴𝑋1𝑉𝐶𝐴𝜆2

1

𝑘𝑇

𝜕

𝜕𝑥
[
𝜕𝐺𝑋𝑆

𝜕𝑁𝐴
−

𝜕𝐺𝑋𝑆

𝜕𝑁𝑉
]    (6) 

Let us call this equation 6. Now, we can write this 
𝜕𝑋1𝑉

𝜕𝑥
 term as 𝑋1𝑉

𝜕 ln 𝑋1𝑉

𝜕𝑥
 and similarly this 

term second term also we can modify. So we can write the flux equation as: 

𝐽𝐴 = 𝛾𝐴𝑋1𝑉𝐶𝐴𝜆2 [
𝜕 ln 𝑋1𝑉

𝜕𝑥
−

𝜕 ln 𝐶𝐴

𝜕𝑥
−

1

𝑘𝑇

𝜕

𝜕𝑥
[
𝜕𝐺𝑋𝑆

𝜕𝑁𝐴
−

𝜕𝐺𝑋𝑆

𝜕𝑁𝑉
]]     (7) 

 Let us denote this as equation 7. Now let us try to find out the nature of 
𝜕𝐺𝑋𝑆

𝜕𝑁𝐴
 and 

𝜕𝐺𝑋𝑆

𝜕𝑁𝑉
.  
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From this equation, we can write: 

𝐺 = 𝐺𝑜 + 𝐺𝑋𝑆 − 𝑇(𝑘 ln Ω) 

We know for the mixing of A, B and vacancies, we can write: 

ln Ω = ln
𝑁!

𝑁𝐴! 𝑁𝐵! 𝑁𝑉!
 

 Where 𝑁  is the total number of atoms. This we have derived when we went over the 

statistical model of mixing during our thermodynamic refresher.  

It can be written simply as: 



ln Ω = ln
𝑁!

𝑁𝐴! 𝑁𝐵! 𝑁𝑉!
= 𝑁 ln 𝑁 − 𝑁𝐴 ln 𝑁𝐴 − 𝑁𝐵 ln 𝑁𝐵 − 𝑁𝑉 ln 𝑁𝑉 

Now, if we take the derivative of G with respect to 𝑁𝐴, which we know by definition is the 

chemical potential of A, we get: 

𝜇𝐴 =
𝜕𝐺

𝜕𝑁𝐴
=

𝜕𝐺𝑋𝑆

𝜕𝑁𝐴
− 𝑘𝑇

𝜕 ln Ω

𝜕𝑁𝐴
 

We have to calculate the derivative of ln Ω with respect to 𝑁𝐴. 

𝜕 ln Ω

𝜕𝑁𝐴
=

𝜕

𝜕𝑁𝐴

(𝑁 ln 𝑁 − 𝑁𝐴 ln 𝑁𝐴 − 𝑁𝐵 ln 𝑁𝐵 − 𝑁𝑉 ln 𝑁𝑉) 

𝑁𝐵 𝑎𝑛𝑑 𝑁𝑉 are independent of 𝑁𝐴, hence the derivative of the 𝑁𝐵 𝑎𝑛𝑑 𝑁𝑉 with respect to 𝑁𝐴 

will be zero. So, we can write this as: 

𝜕 ln Ω

𝜕𝑁𝐴
= ln 𝑁 − ln 𝑁𝐴 = − ln 𝑋𝐴 

 Since we know 
𝑁𝐴

𝑁
 is the mole fraction of A or the atom fraction of A which is denoted by 𝑋𝐴 

we get the expression for 𝜇𝐴 as: 

𝜇𝐴 =
𝜕𝐺𝑋𝑆

𝜕𝑁𝐴
+ 𝑘𝑇 ln 𝑋𝐴 

With the similar logic we can write: 

𝜇𝑉 =
𝜕𝐺𝑋𝑆

𝜕𝑁𝑉
+ 𝑘𝑇 ln 𝑋1𝑉 

𝑋1𝑉 is the site faction of vacancies. And from here if you substitute for 
𝜕𝐺𝑋𝑆

𝜕𝑁𝐴
 and 

𝜕𝐺𝑋𝑆

𝜕𝑁𝑉
 into 

equation 7 , we will get: 

𝐽𝐴 = 𝛾𝐴𝑋1𝑉𝐶𝐴𝜆2 [
𝜕 ln 𝑋1𝑉

𝜕𝑥
−

𝜕 ln 𝐶𝐴

𝜕𝑥
−

1

𝑘𝑇

𝜕

𝜕𝑥
[𝜇𝐴 − 𝑘𝑇 ln 𝑋𝐴 − 𝜇𝑉 + 𝑘𝑇 ln 𝑋1𝑉]] 

On simplifying we get the expression for 𝐽𝐴 as: 

𝐽𝐴 = −𝛾𝐴𝑋1𝑉𝐶𝐴𝜆2
1

𝑘𝑇

𝜕

𝜕𝑥
(𝜇𝐴 − 𝜇𝑉) + 𝛾𝐴𝑋1𝑉𝐶𝐴𝜆2 [

𝜕 ln 𝑋𝐴

𝜕𝑥
−

𝜕 ln 𝐶𝐴

𝜕𝑥
] 



Now, we know the mole fraction 𝑋𝐴 is given as: 

𝑋𝐴 = 𝐶𝐴𝑉𝑚   where, 

𝑉𝑚 = 𝑚𝑜𝑙𝑎𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 

So: 

𝜕 ln 𝑋𝐴

𝜕𝑥
−

𝜕 ln 𝐶𝐴

𝜕𝑥
=

𝜕 ln 𝑉𝑚

𝜕𝑥
 

Substituting this relation in the flux equation we get the final expression: 

𝐽𝐴 = −𝛾𝐴𝑋1𝑉𝐶𝐴𝜆2
1

𝑘𝑇

𝜕

𝜕𝑥
(𝜇𝐴 − 𝜇𝑉) + 𝛾𝐴𝑋1𝑉𝐶𝐴𝜆2

𝜕 ln 𝑉𝑚

𝜕𝑥
 

This is the general expression for interdiffusion flux under chemical potential gradient. You 

can see there are 3 contributions here, one is form the chemical potential gradient of A, the 

chemical potential gradient of vacancy and also from the change in molar volume with 𝑥. The 

molar volume will change with 𝑥 if the molar volume is a function of composition because 

the composition is changing with 𝑥.  

The first two terms here are basically the Fickian flux, the flux because of the chemical 

potential gradient and the 3rd term here is the drift term associated with the change in molar 

volume. Obviously, if the molar volume will change with composition there will be a volume 

flow associated with the diffusion process and it will give rise to a drift and there will be a 

contribution from drift to the diffusion flux of A.  

Now, if we assume that the vacancy equilibrium is quickly attained at every plane, in other 

words if there is no excess vacancy flow, then the chemical potential of vacancy is zero. Then 

the only contribution will be from the chemical potential gradient of A and the molar volume 

change. In addition, if 𝑉𝑚 is assumed to be independent of composition, then the only 

contribution will be from chemical potential gradient of A.  
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We can write 𝐽𝐴 equal to: 

𝐽𝐴 = −𝛾𝐴𝑋1𝑉𝐶𝐴𝜆2
1

𝑘𝑇

𝜕𝜇𝐴

𝜕𝑥
 

we can write this as: 

𝐽𝐴 = −𝛾𝐴𝑋1𝑉𝐶𝐴𝜆2
1

𝑘𝑇

𝜕𝜇𝐴

𝜕𝑥
= −𝐿𝐴

𝜕𝜇𝐴

𝜕𝑥
 

So, we have derived the equation for diffusion flux of A in terms of the chemical potential 

gradient of A and it is related to the chemical potential gradient of A through this term 𝐿𝐴. 

This is similar phenomenological type of equation that we used for flux as a function of 

concentration gradient which were related through the interdiffusivity term. More 

fundamentally, the diffusion is driven by chemical potential gradient. Now, this term 𝐿𝐴 

which is called kinetic coefficient can be obtained as if we equate these two sides: 

𝐿𝐴 = 𝛾𝐴𝑋1𝑉𝐶𝐴𝜆2
1

𝑘𝑇
 

And if we look at this 𝛾𝐴𝑋1𝑉, this is nothing but the 𝛾 if we add the geometric factor, 

corresponding to the specific type of lattice. For cubic this geometric factor is usually 
1

6
.  So: 

𝛾𝐴𝑋1𝑉𝜆2 =
1

6
𝛾𝜆2 

We know this is the Einstein’s diffusivity or which we call as tracer diffusivity.  



𝐷𝐴
∗ = 𝛾𝐴𝑋1𝑉𝜆2 =

1

6
𝛾𝜆2 

We can write this as: 

𝐿𝐴 =
𝐷𝐴

∗𝐶𝐴

𝑘𝑇
 

The tracer diffusivity we know is essentially under negligible concentration gradient. When 

there is no concentration gradient or negligible concentration gradient, we are talking about 

the self or impurity diffusivity which is denoted by 𝐷𝐴
∗  and is also referred to as tracer 

diffusivity. So, we can express the kinetic coefficient in terms of the tracer diffusivity of 

particular atom. Now let us look into more general case when there is a net vacancy flow. It is 

bound to happen if: 

𝐷𝐴
∗ ≠ 𝐷𝐵

∗  

𝐷𝐵
∗  is the tracer diffusivity of B. In that case, we have to consider 

𝜕𝜇𝑉

𝜕𝑥
 term also.  
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Now, we know by Gibbs Duhem equation: 

𝑋𝐴

𝜕𝜇𝐴

𝜕𝑥
+ 𝑋𝐵

𝜕𝜇𝐵

𝜕𝑥
+ 𝑋1𝑉

𝜕𝜇𝑉

𝜕𝑥
= 0 

 We can express the chemical potential gradient of vacancy in terms of the chemical potential 

gradients of A and B. That would be: 

𝜕𝜇𝑉

𝜕𝑥
= −

𝑋𝐴

𝑋1𝑉

𝜕𝜇𝐴

𝜕𝑥
−

𝑋𝐵

𝑋1𝑉

𝜕𝜇𝐵

𝜕𝑥
 

If we substitute for 
𝜕𝜇𝑉

𝜕𝑥
 from here into this expression for 𝐽𝐴 and neglecting the dependence of 

molar volume on composition, we will get the equation of the sort: 

𝐽𝐴 = −𝐿𝐴 [
𝜕𝜇𝐴

𝜕𝑥
+

𝑋𝐴

𝑋1𝑉

𝜕𝜇𝐴

𝜕𝑥
+

𝑋𝐵

𝑋1𝑉

𝜕𝜇𝐵

𝜕𝑥
] 

𝐽𝐴 can be expressed as a function of chemical potential gradients of both the components A 

and B. We can in general express this as: 

𝐽𝐴 = −𝐿𝐴 (1 +
𝑋𝐴

𝑋1𝑉
)

𝜕𝜇𝐴

𝜕𝑥
− 𝐿𝐴

𝑋𝐵

𝑋1𝑉

𝜕𝜇𝐵

𝜕𝑥
 

𝐽𝐴 = −𝐿𝐴𝐴

𝜕𝜇𝐴

𝜕𝑥
− 𝐿𝐴𝐵

𝜕𝜇𝐵

𝜕𝑥
 

The diffusion flux of A will be guided by chemical potential gradient of both A as well as B. 

The relation with chemical potential gradient of A will be expressed through this main kinetic 

coefficient 𝐿𝐴𝐴. And the contribution from the chemical potential gradient of B will be 

expressed through this cross kinetic coefficient 𝐿𝐴𝐵 and this will be true whenever the 



vacancy diffusion is involved or whenever we are considering substitutional diffusion by 

vacancy mechanism because to more or less extent, there will always be a net vacancy flow 

as long as 𝐷𝐴
∗ ≠ 𝐷𝐵

∗ . Only the relative contributions will keep changing depending upon the 

difference between 𝐷𝐴
∗ and 𝐷𝐵

∗ .  
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Now, we did this for binary but this is in general true for an 𝑁 component system in general. 

We can express the diffusion flux of the component 𝑖  as: 

𝐽𝑖 = − ∑ 𝐿𝑖𝑗

𝑛

𝑗=1

𝜕𝜇𝑗

𝜕𝑥
 

So, we have obtained Onsager’s relation for diffusion under chemical potential gradient. It is 

important to note here that as long as the vacancy mechanism is involved in order to define 

diffusion flux, we need both the main kinetic coefficient, 𝐿𝑖𝑖 similar to 𝐿𝐴𝐴 here as well as the 

cross kinetic coefficient 𝐿𝑖𝑗 when i is not equal to j, similar to 𝐿𝐴𝐵  here.  
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One more point that I would like you to note here is that, the dependence of molar volume on 

composition will also give rise to a contribution to the flux of A and it comes through the 

term 
𝜕 ln 𝑉𝑚

𝜕𝑥
. Only when we assume that the molar volume is independent of composition, we 

can ignore the drift associated with the diffusion and that is why we define the volume fixed 

frame of reference.  

All right, so we derived the relation that expresses the diffusion flux of a component in terms 

of its own chemical potential gradient and when there is a net vacancy flow, that is, when 

there is a difference in the tracer diffusivities of different diffusing species. In that case the 

contribution will also come from the chemical potential gradients of other components and in 

general, the flux can be expressed by the Onsager type of relation. Thank you.  

 


