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Defects Structures 

Welcome back. Today, we are going to go over two of the problems which appeared there in 

the last assignment. The first problem is related to finding out the average of cosine of angle 

between successive jumps in a BCC crystal structure. So, let us try to evaluate average of 

cos 𝜃𝑖,𝑖+1 in BCC.  
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Just a recap of how manning defined various jump frequencies of vacancy in a BCC 

structure. This is what we have already seen in one of the previous lectures. I have shown two 

adjacent BCC unit cells here. On the left side at the body centre here, the vacancy is located 

and our tagged atom X is at the leftmost corner here. Manning defined the frequencies as 

follows. Now, there are 8 nearest neighbour for the vacancies all of which lie on 8 corners of 

this cube. One of them is of course the tagged atom X and: 

𝜔2 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑎 𝑣𝑎𝑐𝑎𝑛𝑐𝑦 𝑤𝑖𝑡ℎ 𝑋 

Then, there are three nearest neighbour of the vacancy which are second nearest neighbour of 

the tagged atom and are denoted by number 2 here.  

𝜔1 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓  𝑣𝑎𝑐𝑎𝑛𝑐𝑦 𝑜𝑛 𝑁𝑁 𝑤𝑖𝑡ℎ 𝑎𝑛 𝑎𝑡𝑜𝑚 𝑜𝑛 2𝑛𝑑  𝑁𝑁 𝑜𝑓 𝑋 

Then, reverse frequency can be defined as: 



𝜔1
′ = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓  𝑣𝑎𝑐𝑎𝑛𝑐𝑦 𝑓𝑟𝑜𝑚 2𝑛𝑑  𝑁𝑁 𝑡𝑜 𝑁𝑁 𝑜𝑓 𝑋 

Then, there are third nearest neighbour and one fifth nearest neighbour which lie in the same 

cube, the frequency of exchange with them is denoted as 𝑘1.  

𝑘1 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓  𝑣𝑎𝑐𝑎𝑛𝑐𝑦 𝑓𝑟𝑜𝑚 𝑁𝑁 𝑜𝑓 𝑋 𝑡𝑜  3𝑟𝑑 𝑜𝑟 5𝑡ℎ   𝑁𝑁 𝑜𝑓 𝑋 

Then the vacancy can escape the 1st or 2nd coordination shell of X by jumping from the 2nd 

nearest neighbour on to the 4th nearest neighbour. 4th nearest neighbour does not actually lie 

in the 1st or 2nd coordination shell of X. It lies at the body centre of the next cube which is 

on the right hand side. I have shown it by number 4. So: 

𝑘2 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓  𝑣𝑎𝑐𝑎𝑛𝑐𝑦 𝑓𝑟𝑜𝑚 2𝑛𝑑  𝑁𝑁 𝑜𝑓 𝑋 𝑡𝑜  4𝑡ℎ   𝑁𝑁 𝑜𝑓 𝑋 

Remember in BCC, there is no common nearest neighbour for X and vacancy. The 1st 

coordination shell of vacancy is either the 2nd nearest neighbour or 3rd and 5th nearest 

neighbour of X. This is important as we go further and any other frequency is denoted as 𝜔𝑜. 

With this, let us try to evaluate 〈𝑐𝑜𝑠 𝜃𝑖,𝑖+1〉.  
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Let us redraw this BCC unit cell again and now in this cell I have shown the tagged atom at X 

at the body centre of this cube. Suppose the 1st jump of the atom X is from this site 𝑎 to X. 

the 1st jump of tagged atom X is from 𝑎 to X. The second jump of X maybe on one of the 

eight sites and those eight sites, the nearest neighbour of X can be divided into sites of the 

types 𝑎, 𝑏, 𝑐 𝑜𝑟 𝑑. 𝑎 is from where the X has just jumped during the 1st jump. So: 

2𝑛𝑑 𝑗𝑢𝑚𝑝𝑜𝑓 𝑋  𝑚𝑎𝑦 𝑏𝑒:    

             1) 𝑏𝑎𝑐𝑘 𝑜𝑛𝑡𝑜 𝑠𝑖𝑡𝑒 𝑎 ∶ 𝑐𝑜𝑠 𝜃𝑎 = −1 

                 2) 𝑜𝑛𝑡𝑜 𝑜𝑛𝑒 𝑜𝑓 3 𝑏 ∶ 𝑐𝑜𝑠 𝜃𝑏 = −
1

3
     

         3) 𝑜𝑛𝑡𝑜 𝑜𝑛𝑒 𝑜𝑓 3 𝑐 ∶ 𝑐𝑜𝑠 𝜃𝑐 = +
1

3
   

4) 𝑖𝑛𝑡𝑜 𝑑 ∶ 𝑐𝑜𝑠 𝜃𝑑 = 1        

If you want to evaluate average of 𝑐𝑜𝑠 𝜃𝑖,𝑖+1, this can be given as: 

〈𝑐𝑜𝑠 𝜃𝑖,𝑖+1〉 = ∑𝑃𝑆
𝑋 .

𝑍

𝑖=1

𝑐𝑜𝑠 𝜃𝑆 



 

𝑃𝑆
𝑋 is here is the probability that the 2nd jump of atom X is into the site S. 𝑐𝑜𝑠 𝜃𝑆  is the cosine 

of the angle between the 2nd jump vector and the 1st jump vector which was aX. Now there 

are 1a type of site, 3b types, 3c types and 1d type. 

We can expand this as: 

〈𝑐𝑜𝑠 𝜃𝑖,𝑖+1〉 = 𝐶 = −𝑃𝑎
𝑋 − 𝑃𝑏

𝑋 + 𝑃𝑐
𝑋 + 𝑃𝑑

𝑋 

This is because 𝑐𝑜𝑠 𝜃𝑎 = −1 for 1 a site,  there are 3b type of site and 𝑐𝑜𝑠 𝜃𝑏 = −
1

3
 for each, 

again 3 𝑐 types of sites for which 𝑐𝑜𝑠 𝜃𝑐 = +
1

3
 and there is only 1𝑑 site for which 𝑐𝑜𝑠 𝜃𝑑 =

1. Now, we need to evaluate this 𝑃𝑎
𝑋, 𝑃𝑏

𝑋 and on. This can further be written as: 

𝐶 = −𝑃𝑎
𝑋 − 𝑃𝑏

𝑋 + 𝑃𝑐
𝑋 + 𝑃𝑑

𝑋 = [−1 −1 +1 +1]

[
 
 
 
 
𝑃𝑎

𝑋

𝑃𝑏
𝑋

𝑃𝑐
𝑋

𝑃𝑑
𝑋]
 
 
 
 

= [−1 −1 +1 +1]. 𝑃(𝑆)
𝑋  

Now, we need to evaluate 𝑃(𝑆)
𝑋 . 𝑃(𝑆)

𝑋  is the probability that the atom X jumps into site S for its 

2nd jump. it can be written as 

𝑃(𝑆)
𝑋 = {𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑣𝑎𝑐𝑎𝑛𝑐𝑦 𝑎𝑟𝑟𝑖𝑣𝑒𝑠 𝑎𝑡 𝑋 𝑎𝑓𝑡𝑒𝑟 𝑖𝑡𝑠𝑒𝑙𝑓 𝑚𝑎𝑘𝑖𝑛𝑔 𝑛 𝑗𝑢𝑚𝑝𝑠}

× {𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑣𝑎𝑐𝑎𝑛𝑐𝑦 𝑤𝑖𝑡ℎ 𝑋} 

 



 

Now, let us recall this probability that the vacancy arrives at X after itself making 𝑛 jumps as 

𝑃𝑛(𝑆) and the probability of exchange of vacancy with X is 𝜔2 divided by total number of 

jumps per second that the vacancy can make. So: 

𝑃(𝑆)
𝑋 = 𝑃𝑛(𝑆).

𝜔2

𝜔2 + 3𝜔1 + 4𝑘1
 

Now, let us try to evaluate 𝑃𝑛(𝑆) for different types of sites. For example, 𝑃𝑛(𝑎) here is the 

probability that the vacancy after itself making 𝑛 jumps will arrive on site 𝑎. Remember, 

when I am talking about exchange of vacancy, Iam considering the same vacancy with which 

atom X has exchanged during the first jump. That vacancy itself can make number of jumps 

and arrive again on one of the nearest neighbour sites of X and the X can exchange with it 

again. Those are the correlated jumps which will contribute to 〈𝑐𝑜𝑠 𝜃𝑖,𝑖+1〉.  

If at any time, the vacancy goes far away and another vacancy comes as nearest neighbour of 

X, and then if X exchanges with that new vacancy then the correlation sequence with the first 

vacancy is broken. In this particular problem, to make it simple, we are assuming that the 

vacancy is considered as escaped if it leaves its first or second coordination shell. That 

means, the vacancy is assumed to be escaped if the vacancy is not on either 1st, 2nd, 3rd or 

5th nearest neighbour of X. Everywhere else if the vacancy jumps then we assume that the 

vacancy has escaped.  

(Refer Slide Time: 15:41) 



 

 

Similarly, if from the outside vacancy arrives at any of the sites on first or second 

coordination shell of X, it will be taken as a random vacancy jump. For vacancy to exist at 𝑎 

after 𝑛 number of jumps, the vacancy should have been on one of the nearest neighbours of 

𝑎 after 𝑛 − 1 jumps. Okay, I have redrawn the BCC cell here. But now I have also shown all 

of the nearest neighbour sites of 𝑎 because we want to evaluate 𝑃𝑛(𝑎). After 𝑛 − 1 jumps, the 

vacancy should have been on one of these nearest neighbours of 𝑎 and on its nth jump the 

vacancy will exchange with 𝑎. Now this nth jump maybe of 𝜔1
′  type of jump or 𝑘1 type of 

jump. 𝜔1
′  type of jump is the jump from second nearest neighbour of X to the nearest 

neighbour of X. The 𝑘1 type jump is the jump from 3rd or 5th nearest neighbour of X to the 

nearest neighbour of X. I have shown three second nearest of X here by number 2, third 

nearest neighbour by number 3 and the 5th nearest neighbour of X by number 5 here.  



Let us consider these different types of jumps one by one. We consider 𝜔1
′  types of jumps 

and let us consider any of the nearest neighbour site of 𝑎 which is 2𝑛𝑑 nearest neighbour of 

𝑋. Now, 𝑃𝑛(𝑎) can be written as: 

𝑃𝑛(𝑎)

= {𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑣𝑎𝑐𝑎𝑛𝑐𝑦 𝑖𝑠 𝑜𝑛 𝑁𝑁 𝑜𝑓 𝑎 𝑎𝑓𝑡𝑒𝑟 (𝑛 − 1)𝑗𝑢𝑚𝑝𝑠}

× {𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑣𝑎𝑐𝑎𝑛𝑐𝑦 𝑚𝑎𝑘𝑒𝑠 𝑎 𝜔1
′  𝑜𝑟 𝑘1 𝑡𝑦𝑝𝑒 𝑗𝑢𝑚𝑝 𝑑𝑢𝑟𝑖𝑛𝑔 𝑛𝑡ℎ 𝑗𝑢𝑚𝑝} 

Let us first evaluate the 𝜔1
′  type of jump that is from the second nearest neighbour and then 

the 𝑘1 type of jump. Let us consider this atom 2 here which is the second nearest neighbour 

atom of 𝑋. Now, for the vacancy to exist on this site, after the 𝑛 − 2 jump, the vacancy 

should have been on one of the nearest neighbour sites of 2. Remember, after 𝑛 − 2 jumps, 

now the vacancy can only be on either this 𝑎 site or one of these two 𝑏 sites or on 𝑐 site 

because the other four nearest neighbour of this atom 2 are outside the 1st and the 2nd 

coordination shell of X and we are not considering those because if the vacancy jumps from 

there, then it would be a random vacancy jump and will not be a part of this correlation 

effect. The only sites that the vacancy should have occupied after 𝑛 − 2 jumps are either 𝑎 or 

one of the two 𝑏 or c. This we can write as: 

𝑃𝑛(𝑎) = 𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐 

where 𝑃(𝑛−2),𝑆 denotes the probability that the vacancy arrives at site 𝑆 after 𝑛 − 2 jumps. 

Now we consider each of these type 2 site here. After 𝑛 − 2 jump, the vacancy should have 

been either on 𝑎 or these two 𝑏 or on 𝑐 and also for this 2 here, the vacancy after 𝑛 − 2 jumps 

should have been either on a or these two 𝑏 or on 𝑐. So, we can multiply by 3 as follows: 

𝑃𝑛(𝑎) =  3[𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐] 

It should be multiplied by the probability that the vacancy exchanges with the type 2 atom on 

its (𝑛 − 1)𝑠𝑡jump. This will be the jump from the nearest neighbour of X to the second 

nearest neighbour of X. So, this will be an 𝜔1 type of jump and the probability of that would 

be: 
𝜔1

𝜔2+3𝜔1+4𝑘1
. So: 

𝑃𝑛(𝑎) =  3[𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]
𝜔1

𝜔2 + 3𝜔1 + 4𝑘1
 

 



For its nth jump, vacancy has to jump from this type 2 to 𝑎 and this is a jump from second 

nearest neighbour to the nearest neighbour, it is an 𝜔1
′  type of jump. When the vacancy is on 

2, it can either make a jump on to the one of the four nearest neighbours of X or it will make 

a jump on to one of the fourth nearest neighbour of X which are not shown in this figure. 

Those will be 𝑘2 type of jumps, so the probability of 𝜔1
′  type of jump would be 

𝜔1
′

4𝜔1
′ +4𝑘2

.  

𝑃𝑛(𝑎) = 3[𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]
𝜔1

𝜔2 + 3𝜔1 + 4𝑘1
.

𝜔1
′

4𝜔1
′ + 4𝑘2

 

Now, the vacancy after 𝑛 − 1 jump could have been on the third nearest neighbour, that is, 

on one of these three type 3 sites. Let us first consider this type 3 site here first. After 𝑛 − 1 

jump, the vacancy should have been on one of the nearest neighbours of this 3 atom only 2 of 

which that is 𝑎 𝑎𝑛𝑑 𝑏 lie on the 1st and 2nd coordination shell of X here. The others will be 

outside it and we will not consider those. This would give: 𝑃(𝑛−2),𝑎 + 𝑃(𝑛−2),𝑏.  

𝑃𝑛(𝑎) = 3[𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]
𝜔1

𝜔2 + 3𝜔1 + 4𝑘1
.

𝜔1
′

4𝜔1
′ + 4𝑘2

+ [𝑃(𝑛−2),𝑎 + 𝑃(𝑛−2),𝑏] 

Then, for another type 3 atom after 𝑛 − 2 jump, vacancy should have been either on this 𝑎 or 

on this 𝑏. Similarly for the the third 3 type atom. So we get: 

𝑃𝑛(𝑎) = 3[𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]
𝜔1

𝜔2 + 3𝜔1 + 4𝑘1
.

𝜔1
′

4𝜔1
′ + 4𝑘2

+ [𝑃(𝑛−2),𝑎 + 𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑎 + 𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑎 + 𝑃(𝑛−2),𝑏] 

times the probability that on the 𝑛 − 1  jump, the vacancy exchanges from, let us say this 

type a to type 3 atom. This is a jump from nearest neighbour on to the 3rd nearest neighbour, 

so this is a 𝑘1 type of jump. The probability of that would be 
𝑘1

𝜔2+3𝜔1+4𝑘1
 and on 𝑛 − 1   

jump, the vacancy has to exchange from this 3 to 𝑎. Now this is from 3rd nearest neighbour 

to a nearest neighbour. This would be counted in any other kind of jump, this is basically a 

random jump because other jumps are much away from atom X and so the probability of 

jump from type 3 atom to any of the nearest neighbour is 1/8th because there are 8 nearest 

neighbour, this should be multiplied by 1/8th here.  



𝑃𝑛(𝑎) = 3[𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]
𝜔1

𝜔2 + 3𝜔1 + 4𝑘1
.

𝜔1
′

4𝜔1
′ + 4𝑘2

+ [𝑃(𝑛−2),𝑎 + 𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑎 + 𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑎

+ 𝑃(𝑛−2),𝑏]
𝑘1

𝜔2 + 3𝜔1 + 4𝑘1
.
1

8
 

Now, there is one more nearest neighbour of 𝑎 which is type 5 or the 5th nearest neighbour of 

𝑋. Now, for the vacancy to be at type 5 after 𝑛 − 1 jump, it should have been on 𝑎 only after 

𝑛 − 2 jump because that is the only nearest neighbour of type 5 which lies in first or second 

coordination shell of 𝑋. Any other vacancy would have been a lost vacancy and those will not 

be considered. For this we can write as: 

𝑃𝑛(𝑎) = 3[𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]
𝜔1

𝜔2 + 3𝜔1 + 4𝑘1
.

𝜔1
′

4𝜔1
′ + 4𝑘2

+ [𝑃(𝑛−2),𝑎 + 𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑎 + 𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑎

+ 𝑃(𝑛−2),𝑏]
𝑘1

𝜔2 + 3𝜔1 + 4𝑘1
.
1

8
+ 𝑃(𝑛−2),𝑎 

This will be a 𝑘1 type of jump, probability will be: 

𝑘1

𝜔2 + 3𝜔1 + 4𝑘1
 

times 
1

8
 which will finally give: 

𝑃𝑛(𝑎) = 3[𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]
𝜔1

𝜔2 + 3𝜔1 + 4𝑘1
.

𝜔1
′

4𝜔1
′ + 4𝑘2

+ [𝑃(𝑛−2),𝑎 + 𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑎 + 𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑎

+ 𝑃(𝑛−2),𝑏]
𝑘1

𝜔2 + 3𝜔1 + 4𝑘1
.
1

8
+ 𝑃(𝑛−2),𝑎.

𝑘1

𝜔2 + 3𝜔1 + 4𝑘1
.
1

8
 

 

Let us define a factor 𝑓2 as: 

𝑓2 =
𝜔1𝜔1

′

(𝜔2 + 3𝜔1 + 4𝑘1)4(𝜔1
′ + 𝑘2)

 

And 𝑓3 𝑎𝑠: 



𝑓3 =
𝑘1

8(𝜔2 + 3𝜔1 + 4𝑘1)
 

Let us now consider 𝑃𝑛(𝑏) that is the probability that the vacancy arrives at site 𝑏 after itself 

making 𝑛 jumps.  
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I have shown type 𝑏 site, let us consider this type 𝑏 site here, I have also shown all the nearest 

neighbour of this type 𝑏 site here out of which there are three 2nd second nearest neighbour 

of X denoted by number 2, 3 third nearest neighbour of X which are shown by number 3 and 

one fifth nearest neighbour that is shown by number 5 here. 1st type of jump if we consider 

for 𝑏, we can write, 𝑃𝑛(𝑏) is equal to, the jump from second nearest neighbour to the nearest 

neighbour. This will be an 𝜔1
′  type of jump and for being on type 2 site after 𝑛 − 1 jump, the 

vacancy should have been either on 𝑎 𝑜𝑟  𝑡𝑤𝑜 𝑏 𝑠𝑖𝑡𝑒𝑠 𝑜𝑟  𝑜𝑛𝑒 𝑐 site after 𝑛 − 1 jumps. We 

can write: 

𝑃𝑛(𝑏) = [𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]𝑓2 

If we consider another type 2 site, again after 𝑛 − 2  jump, the vacancy should have been on 

either these two 𝑏 sites or on this 𝑎 site or on this 𝑐 site. So: 

𝑃𝑛(𝑏) = [𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]𝑓2 + [𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]𝑓2 

If I consider third type 2 site, then the vacancy after 𝑛 − 2   jumps should have been either on 

this site 𝑏 or one of these two sites 𝑐 or on site d. This would be: 

𝑃𝑛(𝑏) = [𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]𝑓2 + [𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]𝑓2

+ [𝑃(𝑛−2),𝑏 + 2𝑃(𝑛−2),𝑐 + 𝑃(𝑛−2),𝑑]𝑓2 

Then, lets consider the third nearest neighbour type of sites. After 𝑛 − 2  jumps, the vacancy 

should have been either on 𝑎 𝑜𝑟 𝑏, this should be: 



𝑃𝑛(𝑏) = [𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]𝑓2 + [𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]𝑓2

+ [𝑃(𝑛−2),𝑏 + 2𝑃(𝑛−2),𝑐 + 𝑃(𝑛−2),𝑑]𝑓2 + [𝑃(𝑛−2),𝑎 + 𝑃(𝑛−2),𝑏]𝑓3 

For second type 3, the vacancy should have been on either this 𝑏 or this c: 

𝑃𝑛(𝑏) = [𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]𝑓2 + [𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]𝑓2

+ [𝑃(𝑛−2),𝑏 + 2𝑃(𝑛−2),𝑐 + 𝑃(𝑛−2),𝑑]𝑓2 + [𝑃(𝑛−2),𝑎 + 𝑃(𝑛−2),𝑏]𝑓3

+ [𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]𝑓3 

For last type 3, the vacancy should have been either on this 𝑏 or this c: 

𝑃𝑛(𝑏) = [𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]𝑓2 + [𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]𝑓2

+ [𝑃(𝑛−2),𝑏 + 2𝑃(𝑛−2),𝑐 + 𝑃(𝑛−2),𝑑]𝑓2 + [𝑃(𝑛−2),𝑎 + 𝑃(𝑛−2),𝑏]𝑓3

+ [𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]𝑓3 + [𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]𝑓3 

For 5th nearest neighbour site, after 𝑛 − 2 jump, the vacancy could have been only on site 𝑏 

here because any other jump would have been a random jump because it would be from 

outside the coordination shells of 𝑋, this would be: 

𝑃𝑛(𝑏) = [𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]𝑓2 + [𝑃(𝑛−2),𝑎 + 2𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]𝑓2

+ [𝑃(𝑛−2),𝑏 + 2𝑃(𝑛−2),𝑐 + 𝑃(𝑛−2),𝑑]𝑓2 + [𝑃(𝑛−2),𝑎 + 𝑃(𝑛−2),𝑏]𝑓3

+ [𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]𝑓3 + [𝑃(𝑛−2),𝑏 + 𝑃(𝑛−2),𝑐]𝑓3 + [𝑃(𝑛−2),𝑏]𝑓3 

On simplifying we can write: 

𝑃𝑛(𝑎) = [3𝑃(𝑛−2),𝑎 + 6𝑃(𝑛−2),𝑏 + 3𝑃(𝑛−2),𝑐 + 0𝑃(𝑛−2),𝑑]𝑓2

+ [4𝑃(𝑛−2),𝑎 + 3𝑃(𝑛−2),𝑏 + 0𝑃(𝑛−2),𝑐 + 0𝑃(𝑛−2),𝑑]𝑓3 

𝑃𝑛(𝑏) = [2𝑃(𝑛−2),𝑎 + 5𝑃(𝑛−2),𝑏 + 4𝑃(𝑛−2),𝑐 + 𝑃(𝑛−2),𝑑]𝑓2

+ [𝑃(𝑛−2),𝑎 + 4𝑃(𝑛−2),𝑏 + 2𝑃(𝑛−2),𝑐 + 0𝑃(𝑛−2),𝑑]𝑓3 

Now for 𝑐 and 𝑑 type, we can apply the similar treatment and in fact, we can get it by 

applying this inverted symmetry here because this cube is has an inverted symmetry about 

point 𝑋. whatever we apply for a and 𝑏 type sites, by inverted symmetry, we can apply to 

type 𝑐 and 𝑑  sites. Now, we can also get the equations for 𝑃𝑛(𝑐) and 𝑃𝑛(𝑑)and we can write 

those in the form of matrices.  



[
 
 
 
𝑃𝑛(𝑎)

𝑃𝑛(𝑏)

𝑃𝑛(𝑐)

𝑃𝑛(𝑑)]
 
 
 

= 𝑓2 [

3 6 3 0
2 5 4 1
1 4 5 2
0 3 6 3

]

[
 
 
 
𝑃(𝑛−2),𝑎

𝑃(𝑛−2),𝑏

𝑃(𝑛−2),𝑐

𝑃(𝑛−2),𝑑]
 
 
 

+ 𝑓3 [

4 3 0 0
1 4 2 0
0 2 4 1
0 0 3 4

]

[
 
 
 
𝑃(𝑛−2),𝑎

𝑃(𝑛−2),𝑏

𝑃(𝑛−2),𝑐

𝑃(𝑛−2),𝑑]
 
 
 

 

Observe, that the the last two rows of 4x4 matrixwas obtained by inversion from the first two 

rows.  
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We can write this as: 

𝑃𝑛 = 𝑄1𝑃(𝑛−2) + 𝑄2𝑃(𝑛−2) = 𝑄𝑃(𝑛−2) 

Where: 

𝑄1 = 𝑓2 [

3 6 3 0
2 5 4 1
1 4 5 2
0 3 6 3

]      𝑎𝑛𝑑     𝑄2 = 𝑓3 [

4 3 0 0
1 4 2 0
0 2 4 1
0 0 3 4

] 

Let us  go back to the equation for 𝐶 where: 

𝐶 = [−1 −1 +1 +1]. 𝑃(𝑆)
𝑋  

 and we got: 



𝑃(𝑆)
𝑋 = 𝑃𝑛(𝑆).

𝜔2

𝜔2 + 3𝜔1 + 4𝑘1
 

We can denote a term 𝑓1 as: 

𝑓1 = [−1 −1 +1 +1]
𝜔2

𝜔2 + 3𝜔1 + 4𝑘1
 

And can write 𝐶 as: 

𝐶 = [−1 −1 +1 +1]
𝜔2

𝜔2 + 3𝜔1 + 4𝑘1
𝑃𝑛 

So 𝐶 is equal to: 

𝐶 = 𝑓1𝑃𝑛 

Now, we can write 𝑃𝑛as: 

𝑃𝑛 = 𝑄𝑃(𝑛−2) 

Now 𝑃(𝑛−2) can be expressed as: 

𝑃(𝑛−2) = 𝑄𝑃(𝑛−4) 

So this becomes: 

𝑃𝑛 = 𝑄𝑃(𝑛−2) = 𝑄2𝑃(𝑛−4) 

 and if we continue this, we would get: 

𝑃𝑛 = 𝑄𝑃(𝑛−2) = 𝑄2𝑃(𝑛−4) = ⋯ . . 𝑄𝑛/2𝑃𝑜 

𝑃𝑜 here is the probability matrix that the vacancy exist at site 𝑆 after zero jump, that is right 

after the first jump of 𝑋. And we know right after the first jump, the vacancy exist at 𝑎. So. 

𝑃𝑜 of only 𝑎 is equal to 1 and 𝑃𝑜 of all other sites should be 0. The matrix 𝑃𝑜 essentially is: 

𝑃𝑜 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑒𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒 𝑜𝑓 𝑣𝑎𝑐𝑎𝑛𝑐𝑦 𝑎𝑡 𝑆 𝑎𝑓𝑡𝑒𝑟 0 𝑗𝑢𝑚𝑝𝑠 𝑜𝑓 𝑣𝑎𝑐𝑎𝑛𝑐𝑦

= [

1
0
0
0

] 

In the equation of 𝑃𝑛,we can replace 
𝑛

2
with m and we can write: 

𝑃𝑛 = 𝑄𝑚𝑃𝑜 



Now when we write the expression for 𝐶, we are writing 𝑓1𝑃𝑛 but 𝑛 can vary from 1 to 

infinity because for some atom, the vacancy will arrive after making two jumps for some 

atoms it will arrive after making 10 jumps, for some atoms it will arrive after making 1000 

jumps and we have to consider all such correlations and 𝑛 has to vary from 1 to infinity. This 

we have to take actually summation for 𝑛 equal to 1 to infinity.  

We can write expression for 𝐶 as: 

𝐶 = ∑ 𝑓1.

∞

𝑛=1

𝑄𝑚𝑃𝑜 

Now, let us try to evaluate what is 𝑓1𝑄
𝑚. If we first evaluate 𝑓1𝑄, that is going to be: 

𝑓1𝑄 =
𝜔2

𝜔2 + 3𝜔1 + 4𝑘1

[−1 −1 1 1] {𝑓2 [

3 6 3 0
2 5 4 1
1 4 5 2
0 3 6 3

] + 𝑓3 [

4 3 0 0
1 4 2 0
0 2 4 1
0 0 3 4

]} 

Because 

𝑄 = 𝑄1 + 𝑄2 

 On simplifying we get: 

𝑓1𝑄 =
𝜔2

𝜔2 + 3𝜔1 + 4𝑘1

[−1 −1 1 1][4𝑓2 + 5𝑓3] 

Again this is nothing but 𝑓1, so we get: 

𝑓1𝑄 = [4𝑓2 + 5𝑓3]. 𝑓1 

So we can write: 

𝑓1𝑄
2 = [4𝑓2 + 5𝑓3]

2. 𝑓1 

……      𝑓1𝑄
𝑚 = [4𝑓2 + 5𝑓3]

𝑚. 𝑓1  

 

if we substitute in this series, we get equation for 𝐶 as: 

𝐶 = ∑[4𝑓2 + 5𝑓3]
𝑚. 𝑓1𝑃𝑜

∞

𝑚=1

 

As 𝑛 is a very large number, we replaced 
𝑛

2
 by 𝑚.  



If we evaluate 𝑓1𝑃𝑜, this should be: 

𝑓1𝑃𝑜 =
𝜔2

𝜔2 + 3𝜔1 + 4𝑘1

[−1 −1 1 1] [

1
0
0
0

] =
−𝜔2

𝜔2 + 3𝜔1 + 4𝑘1
 

 and we will end up getting: 

𝐶 =
−𝜔2

𝜔2 + 3𝜔1 + 4𝑘1
∑[4𝑓2 + 5𝑓3]

𝑚

∞

𝑛=1
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Now this series we can approximate as: 

∑[4𝑓2 + 5𝑓3]
𝑚

∞

𝑛=1

=
1

1 − 4𝑓2 − 5𝑓3
 

If we substitute for 𝑓2 and 𝑓3 and simplify, we will get the expression for 𝐶 which is nothing 

but 〈𝑐𝑜𝑠 𝜃𝑖,𝑖+1〉for BCC as: 

𝐶 = 〈𝑐𝑜𝑠 𝜃𝑖,𝑖+1〉 =
−𝜔2

𝜔2 + 3𝜔1 + 3.375𝑘1 −
𝜔1𝜔1

′

(𝜔1
′ + 𝑘2)

 

which can also be written as: 



𝐶 =
−𝜔2

𝜔2 + 2𝜔1 + 3.375𝑘1 +
𝜔1𝑘2

(𝜔1
′ + 𝑘2)
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The second expression is the one which was derived by Manning. Note, there is a little bit of 

correction in Manning’s paper this should have been 𝜔1
′  there. Okay, this is the expression 

for 〈𝑐𝑜𝑠 𝜃𝑖,𝑖+1〉 in a BCC lattice. Now let us look into the second problem. In this problem, 

the probability of a vacancy starting at 𝑎 and returning to one of 𝑎, 𝑏, 𝑐, 𝑑  or 𝑒 sites is given 

which are respectively: 

𝑎:        𝛼 

𝑏:        𝛽 

𝑐:        𝛾 
𝑑:        𝛿 
𝑒:        𝜀 

 We have to find out the probability that a vacancy starting at one of the 𝑏 sites returns to 𝑎, 

𝑏, 𝑐, 𝑑 or 𝑒 type of site. To evaluate this, because of the symmetry we can reorient our cube 

which is shown here such that our 𝑏 site now becomes an 𝑎 site and we redistribute the other 

nearest neighbours of X in the types 𝑎, 𝑏, 𝑐, 𝑑  and 𝑒. Let us call the new orientation as types 

𝑎1, 𝑏1, 𝑐1 𝑎𝑛𝑑 𝑑1. Let us say this site 𝑏 is now type a1, I have shown the new distribution 

with the yellow colour here. The 4 𝑏 sites are each represented by 𝑏1, the two 𝑐 sites are 𝑐1 

c1, the four 𝑑  sites are 𝑑1 𝑑1 𝑑1 𝑎𝑛𝑑 𝑑1 and then 𝑒 site is located here.  



Now the probability that a vacancy starting at site 𝑏 returns to 𝑎 is same as probability of a 

vacancy starting at 𝑎1 and returning to a 𝑏1 type of site which should be equal to 𝛽 and the 

probability of a vacancy stating at 𝑏 returning to one of the 𝑏 sites should be equal to the 

probability of a vacancy starting at a1 and returning to either one of the four 𝑏1types of sites 

which are originally 𝑎 𝑏 𝑐 𝑎𝑛𝑑 𝑑. This probability should be: 𝛼 + 𝛽 + 𝛾 + 𝛿 

Vacancy starting at 𝑏 and returning to one of the 𝑐 sites is same as vacancy starting at a1 and 

returning to either 𝑏1 and 𝑑1, which is 𝛽 + 𝛿 and vacancy starting at 𝑏 site and returning to 

one of the 𝑑  sites is same as vacancy starting at 𝑎1 and returning to either 𝑏1 type, 𝑐1 type, 

𝑑1 type or 𝑒1 type.  

This should be equal to 𝛽 + 𝛾 + 𝛿 + 𝜀 and vacancy starting at 𝑏 and returning to an e site is 

same at vacancy starting at 𝑎1 and returning to 𝑑1. this should be equal to 𝛿. Now this is 

ho`w we can find the new probabilities. 

𝑎:        𝛽 

𝑏:        𝛼 + 𝛽 + 𝛾 + 𝛿 

𝑐:       𝛽 + 𝛿 
𝑑:        𝛽 + 𝛾 + 𝛿 + 𝜀 

𝑒:         𝛿 

Where is this useful? Remember when we derived the expression for correlation factor for 

FCC, we considered any vacancy moving out of the nearest neighbour coordination shell of 

the tagged atom as being escaped. But there is a finite probability that vacancy will return to 

anyone of the nearest neighbour site of X after making 𝑛 jumps and it can return from 2nd 

coordination shell or 3rd or 4th or even from a far distance and if we want to be more 

accurate in calculating the correlation factor, then we need to know these probabilities. Once 

we know these probabilities, we can find the correlation factor more accurately and there we 

will need to convert from one starting position of the vacancy to another starting position 

based upon the knowledge of one set of probabilities. There this would be useful. These are 

the two problems we solved today. Thank you.  

 


