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Welcome to the 36th lecture of the open course on Diffusion in Multicomponent Solids. In 

this lecture I have illustrated the determination of correlation factor in FCC crystal for 

diffusion of an atom by vacancy mechanism. I have followed the three frequency model of 

Lidiard and Leclaire for this.  

Last class we derived the expression for Correlation Factor for a cubic material. Today, we 

will try to apply the expression to evaluate correlation factor in an FCC lattice particularly for 

the diffusion of a substitutional atom by vacancy mechanism. 
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We got the expression for Correlation Factor as: 

𝑓𝑓 =
1 + 𝐶𝐶
1 − 𝐶𝐶

 

Where: 

𝐶𝐶 = 〈cos 𝜃𝜃𝑖𝑖,𝑖𝑖+1〉 

𝐶𝐶 is nothing but the average of cosines of successive jumps for all the atoms. Let us try to 

evaluate this for FCC. In order to look into the jumps of a tagged atom in FCC let us try to 

draw the FCC lattice in a little bit different way just because it is more convenient through 



our perspective. Let us consider the stacking of (100) plane of FCC by drawing two FCC unit 

cells side by side as shown in black in the figure. We can also represent the FCC lattice by 

considering violet coloured unit cell, but now we are putting atoms on the centres of all the 

edges and one atom at the body centre of this cube. Now, why this is more convenient for us? 

Because, if we consider the jump vector 𝑎𝑎𝑎𝑎����⃗ , then we can divide the atoms in different classes. 

The atoms in each class making the same angle with the jump vector 𝑎𝑎𝑎𝑎����⃗ . For example, one 

class contains only one atom 𝑎𝑎 and it makes an angle of 180° with 𝑎𝑎𝑎𝑎����⃗ , the other class 

contains 4 atoms of type 𝑏𝑏 and they make an angle of 120° with 𝑎𝑎𝑎𝑎����⃗  then, we have type 𝑐𝑐 

which make an angle 90°, type 𝑑𝑑 making an angle of 60° and type 𝑒𝑒 making an angle of 0°. 

Now, let us consider the first jump of our tagged atom. A tagged atom is the atom that we are 

tracking. Remember that we derive the expression for mean square displacement for a large 

number of atoms. When we are tracking an atom and it’s jump then we are calling it a tagged 

atom. The first jump of the tagged atom is let us say from 𝑎𝑎 to 𝑥𝑥 now, our tagged atom is at 

position 𝑥𝑥 and the vacancy has gone to position 𝑎𝑎. Let us say 𝑖𝑖𝑡𝑡ℎ jump is from 𝑎𝑎 to 𝑥𝑥. So: 

(𝑖𝑖 + 1)𝑡𝑡ℎ 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑋𝑋) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏𝑏𝑏 
 

1) 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡 𝑎𝑎:     𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖,𝑖𝑖+1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑎𝑎 = −1   

2) 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏:  𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑏𝑏 = −
1
2

 

3) 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐:  𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐 = 0 

4) 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑:  𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑑𝑑 =
1
2

 

5) 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒:  𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑒𝑒 = 1 
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If you want to evaluate the average of cos 𝜃𝜃𝑖𝑖,𝑖𝑖+1 we can write it as: 

〈cos 𝜃𝜃𝑖𝑖,𝑖𝑖+1〉 =
𝑁𝑁𝑎𝑎𝑥𝑥 cos 𝜃𝜃𝑎𝑎 + 4𝑁𝑁𝑏𝑏𝑥𝑥 cos𝜃𝜃𝑏𝑏 + 2𝑁𝑁𝑐𝑐𝑥𝑥 cos 𝜃𝜃𝑐𝑐 + 4𝑁𝑁𝑑𝑑𝑥𝑥 cos𝜃𝜃𝑑𝑑 + 𝑁𝑁𝑒𝑒𝑥𝑥 cos𝜃𝜃𝑒𝑒

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

Where 𝑁𝑁𝑖𝑖𝑥𝑥 represent number of 𝑥𝑥 atoms that make a jump onto site 𝑖𝑖. Factor in the second 

term of right hand side means there are four such sites. Remember, when we evaluate the 

average of cos 𝜃𝜃𝑖𝑖,𝑖𝑖+1 and we have a large number of atoms we are tracking each of the 𝑥𝑥 atom 

for its 𝑖𝑖 and (𝑖𝑖 + 1)𝑡𝑡ℎ jump, evaluate the cos𝜃𝜃 and take the average of it. So, we need the 

number of each type of jumps that the 𝑥𝑥 atom makes.  



𝑁𝑁𝑎𝑎𝑥𝑥

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 is nothing but the fraction of total number of atoms which make the jump onto a site of 

type 𝑎𝑎 and this is nothing but the probability that the atom 𝑥𝑥 will make its second jump back 

to 𝑎𝑎. Let us denote it as 𝑃𝑃𝑎𝑎𝑥𝑥. Similarly, 𝑃𝑃𝑏𝑏𝑥𝑥 is the probability that atom 𝑥𝑥 makes its (𝑖𝑖 + 1)𝑡𝑡ℎ  

jump to a site of the type 𝑏𝑏 and so on. So: 

〈cos𝜃𝜃𝑖𝑖,𝑖𝑖+1〉 = −𝑃𝑃𝑎𝑎𝑥𝑥 − 2𝑃𝑃𝑏𝑏𝑥𝑥 + 0𝑃𝑃𝑐𝑐𝑥𝑥 + 2𝑃𝑃𝑑𝑑𝑥𝑥 + 𝑃𝑃𝑒𝑒𝑥𝑥 

Now, we need to find the probability 𝑃𝑃(𝑠𝑠)
𝑥𝑥  : 

𝑃𝑃(𝑠𝑠)
𝑥𝑥 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖 (𝑖𝑖 + 1)𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑡𝑡𝑡𝑡 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆 

Now, what is this probability 𝑃𝑃(𝑠𝑠)
𝑥𝑥 ? If the atom 𝑥𝑥 here has to make a jump onto any of the sites 

let us say on to site 𝑏𝑏 for example, then the vacancy has to be on site 𝑏𝑏 and we are 

considering the correlation effect. When we were considering random walk, the summation 

of cos𝜃𝜃 was 0, so the only contribution to the summation of cos 𝜃𝜃 is from the correlated 

jumps. So, we are considering only correlated jumps. That means we are considering the 

exchanges of atom 𝑥𝑥 with the same vacancy. In our case the vacancy is now at position 𝑎𝑎. 

This vacancy itself can make 𝑛𝑛 number of jumps and come back to any of the nearest 

neighbour of 𝑥𝑥 before 𝑥𝑥 has already exchanged second time and then if the same vacancy 

exchange with this 𝑥𝑥 it is a correlated jump. It is because now 𝑥𝑥 is exchanging successively 

with the same vacancy. 

If 𝑥𝑥 exchanges with a different vacancy before this vacancy at a comes back to one of the 

nearest neighbour sites then, the correlation effect is lost or we say that vacancy is lost and 

the second jump of 𝑥𝑥 was again a random jump because the fresh vacancy has arrived 

randomly and it has already exchanged with the fresh vacancy. So, we need to only consider 

the exchanges of 𝑥𝑥 with the same vacancy. Since the activation energy for the diffusion of a 

vacancy is much lower, the vacancy itself would make a large number of jumps before the 𝑥𝑥 

again exchanges with it. So we need to find the probability that after making 𝑛𝑛 jumps the 

vacancy at 𝑎𝑎 comes back to anyone of this 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒 type of sites. 

Now, 𝑃𝑃𝑏𝑏𝑥𝑥 for example, is the probability that the atom 𝑥𝑥 on its (𝑖𝑖 + 1)𝑠𝑠𝑠𝑠 jump exchanges with 

the same vacancy, which had arrived at b. 𝑃𝑃𝑏𝑏𝑥𝑥 is nothing but the probability that the vacancy 

after 𝑛𝑛 − 1 jumps of its own has arrived at site 𝑏𝑏 times the probability that on its 𝑛𝑛𝑡𝑡ℎ jump the 

vacancy exchanges with x. 
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We can write 𝑃𝑃(𝑠𝑠)
𝑥𝑥  as: 

𝑃𝑃(𝑠𝑠)
𝑥𝑥 = (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑜𝑜 𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)

× (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑥𝑥) 

Let us denote this as: 

𝑃𝑃(𝑠𝑠)
𝑥𝑥 = 𝑃𝑃𝑛𝑛(𝑠𝑠)𝑓𝑓1 

Now, we need to define the exchange frequency of the vacancy in order to get the probability 

that the vacancy exchanges with x. 
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If you come back to this lattice here, the vacancy at 𝑎𝑎 can either exchange with 𝑥𝑥 itself or it 

can exchange with one of these four 𝑏𝑏 atoms which are also the nearest neighbour of 𝑥𝑥 or it 

can exchange with other solvent atoms which are not the nearest neighbour of x. So, we can 

define at least three different types of frequencies when the atom 𝑥𝑥 is a different type of atom 

or when it is an impurity. 

It is because the frequency of exchange with the impurity atom is not same as the frequency 

of exchange of the vacancy with a solvent atom. Again, the frequency of exchange with 

solvent atoms may not be the same for two different cases one with the solvent atom which is 

seated at one of the 𝑏𝑏 sites because, these 𝑏𝑏 sites are also the nearest neighbour of 𝑥𝑥 and there 

may be an impurity solvent atom binding. The frequency of exchange of the solvent atom at 

𝑏𝑏 is not same as the frequency of exchange with other solvent atoms which are not nearest 

neighbour of x. So, we define three types of frequencies here. 
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𝜔𝜔2 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑋𝑋 

𝜔𝜔1 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑋𝑋 

𝑘𝑘1 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎 𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑋𝑋 

Now, if we go back to this lattice there is only one atom with which vacancy can make an 𝜔𝜔2 

type of jump, there are four sites onto which the vacancy can make an 𝜔𝜔1 type of jump and 

the remaining 7 sites which are nearest neighbour of the vacancy are the ones onto which the 

vacancy can make a 𝑘𝑘1 type of jump. With this, the probability that the vacancy exchanges 

with x, 𝑓𝑓1,  can be expressed as: 

𝑓𝑓1 =
𝜔𝜔2

𝜔𝜔2 + 4𝜔𝜔1 + 7𝑘𝑘1
 

Similarly, 𝑓𝑓2 can be expressed as: 

𝑓𝑓2 =
𝜔𝜔1

𝜔𝜔2 + 4𝜔𝜔1 + 7𝑘𝑘1
 

This is the probability that the vacancy exchanges with a solvent atom which is also a nearest 

neighbour of 𝑥𝑥. Let us call 𝑓𝑓3 as the probability that the vacancy exchanges with a solvent 

atom which is not a nearest neighbour of x: 

𝑓𝑓3 =
𝑘𝑘1

𝜔𝜔2 + 4𝜔𝜔1 + 7𝑘𝑘1
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Now, once we define this let us come back to evaluation of the second factor here that is 

𝑃𝑃𝑛𝑛(𝑠𝑠). 𝑃𝑃𝑛𝑛(𝑠𝑠) is again the probability that the vacancy comes back to S after itself making 𝑛𝑛 

jumps. 
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To get the value of 𝑃𝑃𝑛𝑛(𝑠𝑠)we can write this as the probability that the vacancy after making 

𝑛𝑛 − 1 jump comes to a site which is nearest neighbour of S times the probability that the 

vacancy on its 𝑛𝑛𝑡𝑡ℎ jump exchanges with the atom on S: 



𝑃𝑃𝑛𝑛(𝑠𝑠)

= (𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑛𝑛 − 1) 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎 𝑁𝑁𝑁𝑁 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑆𝑆)
× �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑆𝑆 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑡𝑡ℎ 𝑗𝑗𝑗𝑗𝑚𝑚𝑝𝑝� 

We know the second part of the probability that the vacancy exchanges with atom at S would 

be 𝑓𝑓2 because this jump would be an 𝜔𝜔1 type of jump as this is a solvent atom which is 

nearest neighbour to atom 𝑥𝑥 and the first probability we can write it as 𝑃𝑃(𝑛𝑛−1)(𝑠𝑠): 

𝑃𝑃𝑛𝑛(𝑠𝑠) = 𝑃𝑃(𝑛𝑛−1)(𝑠𝑠) × 𝑓𝑓2 

Now, to proceed further we will make an assumption that any vacancy which makes a 𝑘𝑘1 type 

of jump is lost permanently. It means if the vacancy makes a 𝑘𝑘1 type of jump then, we are not 

considering it anymore for the correlation. In other words we are assuming that if a vacancy 

makes a 𝑘𝑘1 type of jump then the probability that it will arrive back on one of the nearest 

neighbour sites of 𝑥𝑥 would be much less than the probability that a fresh vacancy would 

randomly arrive at the nearest neighbour of x. Because of this assumption we will have to 

only consider the jumps of the vacancy which are on the nearest neighbour of x. So, we need 

to only consider the 𝜔𝜔1 type of jumps of the vacancy before the 𝜔𝜔2 type of jump occurs. If 

the vacancy makes a 𝑘𝑘1 type of jump, then the correlation ends there, so the next vacancy 

which comes near to 𝑥𝑥 is a random vacancy. 
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In order to visualize properly let us draw this FCC cube again here. We need to consider only 

those jumps of the vacancy which are onto the nearest neighbour of x. If we want to evaluate 



𝑃𝑃𝑛𝑛(𝑠𝑠) that is the probability that the vacancy after making 𝑛𝑛 jumps will arrive at site a then, it 

is the probability that the vacancy after 𝑛𝑛 − 1 jumps will arrive at any one of the common 

nearest neighbour sites of 𝑥𝑥 and here, the common nearest neighbours of a and 𝑥𝑥 are 4 𝑏𝑏 type 

of sites. This would be: 

𝑃𝑃𝑛𝑛(𝑎𝑎) = 4𝑃𝑃(𝑛𝑛−1)(𝑏𝑏) × 𝑓𝑓2 

 Similarly for 𝑃𝑃𝑛𝑛(𝑏𝑏), if we consider any 𝑏𝑏 atom here, the nearest neighbour of 𝑏𝑏 and 𝑥𝑥 contain 

one 𝑎𝑎 site, one 𝑏𝑏 type of site, one 𝑐𝑐 site and one 𝑑𝑑 site. So, this would be: 

𝑃𝑃𝑛𝑛(𝑏𝑏) = �𝑃𝑃(𝑛𝑛−1)(𝑎𝑎) + 𝑃𝑃(𝑛𝑛−1)(𝑏𝑏) + 𝑃𝑃(𝑛𝑛−1)(𝑐𝑐) + 𝑃𝑃(𝑛𝑛−1)(𝑑𝑑)�𝑓𝑓2 

Similarly for 𝑃𝑃𝑛𝑛(𝑐𝑐), if we consider any 𝑐𝑐 atom, the common nearest neighbour between 𝑐𝑐 and 

𝑥𝑥 are 2 𝑏𝑏 atoms and 2 𝑑𝑑 atom. This should give: 

𝑃𝑃𝑛𝑛(𝑐𝑐) = �2𝑃𝑃(𝑛𝑛−1)(𝑏𝑏) + 2𝑃𝑃(𝑛𝑛−1)(𝑑𝑑)�𝑓𝑓2 

For 𝑃𝑃𝑛𝑛(𝑑𝑑), considering any 𝑑𝑑 atom, it is nearest neighbours that are common nearest 

neighbour to 𝑥𝑥 are b, c, 𝑑𝑑 and e. We have: 

𝑃𝑃𝑛𝑛(𝑑𝑑) = �𝑃𝑃(𝑛𝑛−1)(𝑏𝑏) + 𝑃𝑃(𝑛𝑛−1)(𝑐𝑐) + 𝑃𝑃(𝑛𝑛−1)(𝑑𝑑) + 𝑃𝑃(𝑛𝑛−1)(𝑒𝑒)�𝑓𝑓2 

And for 𝑒𝑒 atom, the common nearest neighbour of 𝑒𝑒 and 𝑥𝑥 are all 4 𝑑𝑑 types of sites. This 

would be: 

𝑃𝑃𝑛𝑛(𝑒𝑒) = 4𝑃𝑃(𝑛𝑛−1)(𝑑𝑑)𝑓𝑓2 

If we write this in the form of a matrix, we will see: 

⎣
⎢
⎢
⎢
⎢
⎡
𝑃𝑃𝑛𝑛(𝑎𝑎)
𝑃𝑃𝑛𝑛(𝑏𝑏)
𝑃𝑃𝑛𝑛(𝑐𝑐)
𝑃𝑃𝑛𝑛(𝑑𝑑)
𝑃𝑃𝑛𝑛(𝑒𝑒)⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
0 4 0 0 0
1 1 1 1 0
0 2 0 2 0
0 1 1 1 1
0 0 0 4 0⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝑃𝑃(𝑛𝑛−1)(𝑎𝑎)
𝑃𝑃(𝑛𝑛−1)(𝑏𝑏)
𝑃𝑃(𝑛𝑛−1)(𝑐𝑐)
𝑃𝑃(𝑛𝑛−1)(𝑑𝑑)
𝑃𝑃(𝑛𝑛−1)(𝑒𝑒)⎦

⎥
⎥
⎥
⎥
⎤

𝑓𝑓2 
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If we call the matrix on the left hand side as 𝑃𝑃𝑛𝑛, 5 𝑥𝑥 5 matrix including factor 𝑓𝑓2 as: 

𝑄𝑄 =

⎣
⎢
⎢
⎢
⎡
0 4 0 0 0
1 1 1 1 0
0 2 0 2 0
0 1 1 1 1
0 0 0 4 0⎦

⎥
⎥
⎥
⎤

.𝑓𝑓2 

And column matrix on right hand side as 𝑃𝑃(𝑛𝑛−1). So: 

𝑃𝑃𝑛𝑛 = 𝑄𝑄𝑃𝑃(𝑛𝑛−1) 

With the similar logic we can express 𝑃𝑃(𝑛𝑛−1) as: 



𝑃𝑃(𝑛𝑛−1) = 𝑄𝑄𝑃𝑃(𝑛𝑛−2) 

So, we can write this as: 

𝑃𝑃𝑛𝑛 = 𝑄𝑄𝑃𝑃(𝑛𝑛−1) = 𝑄𝑄2𝑃𝑃(𝑛𝑛−2) = 𝑄𝑄3𝑃𝑃(𝑛𝑛−3) 

and if we keep writing this we can write: 

𝑃𝑃𝑛𝑛 = 𝑄𝑄𝑛𝑛𝑃𝑃0 

Where 𝑃𝑃0 is the probability matrix that the vacancy will be at the site 𝑆𝑆 after making no jump. 

Now, after making 0 jump means we are considering the same situation which we stated with 

and we know after the first jump of 𝑥𝑥 the vacancy is at 𝑎𝑎. The probability that there would be 

a vacancy after the vacancy had made 0 jump is 1 for site 𝑎𝑎 and will be 0 for all other sites. 

We can write this matrix 𝑃𝑃0 as simply: 

𝑃𝑃0 =

⎣
⎢
⎢
⎢
⎡
1
0
0
0
0⎦
⎥
⎥
⎥
⎤
 

∵  𝑃𝑃0(𝑎𝑎) = 1 

And: 

𝑃𝑃0(𝑠𝑠) = 0   ,    𝑠𝑠 = 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, 𝑒𝑒 

Now, let us try to work on it further. In the expression for 𝐶𝐶: 

〈cos𝜃𝜃𝑖𝑖,𝑖𝑖+1〉 = −𝑃𝑃𝑎𝑎𝑥𝑥 − 2𝑃𝑃𝑏𝑏𝑥𝑥 + 0𝑃𝑃𝑐𝑐𝑥𝑥 + 2𝑃𝑃𝑑𝑑𝑥𝑥 + 𝑃𝑃𝑒𝑒𝑥𝑥 

if we substitute back the probabilities in terms of 𝑃𝑃𝑛𝑛(𝑠𝑠) we get: 

𝐶𝐶 = ��−𝑃𝑃𝑛𝑛(𝑎𝑎) − 2𝑃𝑃𝑛𝑛(𝑏𝑏) + 0𝑃𝑃𝑛𝑛(𝑐𝑐) + 2𝑃𝑃𝑛𝑛(𝑑𝑑) + 𝑃𝑃𝑛𝑛(𝑒𝑒)�𝑓𝑓1

∞

𝑛𝑛=0

 

Remember, this 𝑛𝑛 may be different because some vacancies may just make two jumps and 

come back, some vacancies will make 10 jumps and come back, some vacancies will make 

1000 jumps and come back. So 𝑛𝑛 has to vary from 0 to infinity and we take this as a 

summation. 
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We will get: 

𝐶𝐶 = �𝑓𝑓1[−1 −2 0 2 1]
∞

𝑛𝑛=0

𝑃𝑃𝑛𝑛 

Now, let us denote matrix 𝑚𝑚 as: 

𝑚𝑚 = 𝑓𝑓1[−1 −2 0 2 1] 

So, we have: 

𝐶𝐶 = �𝑚𝑚
∞

𝑛𝑛=0

𝑃𝑃𝑛𝑛 

 

and we know 𝑃𝑃𝑛𝑛 can be expressed as: 

𝑃𝑃𝑛𝑛 = 𝑄𝑄𝑛𝑛𝑃𝑃𝑜𝑜 

This should be equal to: 

𝐶𝐶 = �𝑚𝑚
∞

𝑛𝑛=0

𝑃𝑃𝑛𝑛 = �𝑚𝑚
∞

𝑛𝑛=0

𝑄𝑄𝑛𝑛𝑃𝑃𝑜𝑜 

Let us try to evaluate the value of 𝑚𝑚𝑄𝑄𝑛𝑛. 
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Let us first try to evaluate the value of 𝑚𝑚𝑚𝑚. We will get: 

𝑚𝑚𝑚𝑚 = 𝑓𝑓1[−1 −2 0 2 1]

⎣
⎢
⎢
⎢
⎡
0 4 0 0 0
1 1 1 1 0
0 2 0 2 0
0 1 1 1 1
0 0 0 4 0⎦

⎥
⎥
⎥
⎤
𝑓𝑓2 

On solving: 

𝑚𝑚𝑚𝑚 = 𝑓𝑓2. 𝑓𝑓1[−2 −4 0 4 2] = 2𝑓𝑓2.𝑓𝑓1[−1 −2 0 2 1] 

and again this matrix and 𝑓𝑓1 is nothing but what we defined as matrix 𝑚𝑚. So, we get: 

𝑚𝑚𝑚𝑚 = 2𝑓𝑓2𝑚𝑚 

𝑚𝑚𝑄𝑄2 = 𝑚𝑚𝑚𝑚.𝑄𝑄 = 2𝑓𝑓2(𝑚𝑚𝑚𝑚) = (2𝑓𝑓2)2𝑚𝑚 



If we write 𝑚𝑚𝑄𝑄𝑛𝑛 that should be equal to: 

𝑚𝑚𝑄𝑄𝑛𝑛 = (2𝑓𝑓2)𝑛𝑛𝑚𝑚 

And, if we substitute back in the expression for𝐶𝐶 we get: 

𝐶𝐶 = �𝑚𝑚
∞

𝑛𝑛=0

𝑃𝑃𝑛𝑛 = �𝑚𝑚
∞

𝑛𝑛=0

𝑄𝑄𝑛𝑛𝑃𝑃𝑜𝑜 = �(2𝑓𝑓2)𝑛𝑛𝑚𝑚
∞

𝑛𝑛=0

𝑃𝑃𝑜𝑜 

Again, if you evaluate 𝑚𝑚𝑃𝑃𝑜𝑜 that should be equal to: 

𝑚𝑚𝑃𝑃𝑜𝑜 = 𝑓𝑓1[−1 −2 0 2 1]

⎣
⎢
⎢
⎢
⎡
1
0
0
0
0⎦
⎥
⎥
⎥
⎤

= −𝑓𝑓1 

and 𝐶𝐶 becomes: 

𝐶𝐶 = −𝑓𝑓1�(2𝑓𝑓2)𝑛𝑛
∞

𝑛𝑛=0

= −𝑓𝑓1 ×
1

1 − 2𝑓𝑓2
 

and if we substitute for 𝑓𝑓1 and 𝑓𝑓2 as defined earlier: 

𝑓𝑓1 =
𝜔𝜔2

𝜔𝜔2 + 4𝜔𝜔1 + 7𝑘𝑘1
      ,       𝑓𝑓2 =

𝜔𝜔1
𝜔𝜔2 + 4𝜔𝜔1 + 7𝑘𝑘1

 

If, we substitute we get  : 

𝐶𝐶 = 〈cos𝜃𝜃𝑖𝑖,𝑖𝑖+1〉 =
− 𝜔𝜔2
𝜔𝜔2 + 4𝜔𝜔1 + 7𝑘𝑘1

1 − 2𝜔𝜔1
𝜔𝜔2 + 4𝜔𝜔1 + 7𝑘𝑘1

 

and if we substitute in the expression for correlation factor which we know: 

𝑓𝑓 =
1 + 𝐶𝐶
1 − 𝐶𝐶

=
2𝜔𝜔1 + 7𝑘𝑘1

2𝜔𝜔2 + 2𝜔𝜔1 + 7𝑘𝑘1
 

So, we get expression for correlation factor in FCC for the diffusion of substitutional atom by 

vacancy mechanism. Now, for self-diffusion this expression can be simplified because for 

self-diffusion there is no binding involved between the impurity and vacancy and all the jump 

frequencies of the vacancy should be same, which means for self-diffusion: 

𝜔𝜔1 = 𝜔𝜔2 = 𝑘𝑘1 



and if we substitute these equalities in previous expression of 𝑓𝑓 we get: 

𝑓𝑓 = 0.818 

which is very close to the most accurate determination of correlation factor in FCC which is: 

𝑓𝑓 = 0.78145 

Now, there is a difference between the most accurately determined value and the value that 

we determined here and this difference is because of our simplistic assumption. We assumed 

that any vacancy that made a 𝑘𝑘1 type of jump is permanently lost. So, we did not consider 

that vacancy in the correlation effect if it made a 𝑘𝑘1 type jump. But in reality the vacancy can 

go on to the second coordination shell of the tagged atom and still come back. Similarly, it 

can go onto the third coordination shell and come back from there and on. Since we ignored 

those jumps we get a little bit different values here, but still we could roughly estimate the 

correlation factor for FCC even with this simplistic assumption.  

So, this was for FCC, we will also see how we can estimate the correlation factor for other 

cubic structure like BCC or diamond cubic, that would be in the next class. Thank you. 

 


