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Welcome to the 34th lecture of the open course on Diffusion in Multicomponent Solids. In 

this lecture, I have presented the derivation of Einstein’s equation, which is also known as 

Einstein-Smoluchowski Equation. This equation established the physical significance of the 

diffusivity term as a measure of Mean Square Displacement per unit time.   

We are going over the theory of Random walk. In the last class, we derived the expression for 

mean square displacement of a large number of particles, when each particle makes 𝑛𝑛 jumps. 

Why do we need this mean square displacement and how is it related to the term diffusivity? 

We will see it today.  
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We consider an ensemble of large number of particles at 𝑥𝑥 = 0, 𝑡𝑡 = 0. Now these particles 

are undergoing random walk and this distribution will spread in space with time. If we track 

the individual particles, each particle would have made some net displacements in time 𝑡𝑡. if 

we define this net displacement as 𝑅𝑅�⃗ and if we write: 

𝑅𝑅�⃗ = 𝑋𝑋𝚤𝚤̂ + 𝑌𝑌𝚥𝚥̂ + 𝑍𝑍𝑘𝑘� 

then 𝑋𝑋,𝑌𝑌,𝑍𝑍 are the projections of 𝑅𝑅�⃗  on x, y and z axis respectively. If we consider the x 

direction, the projection here would be 𝑋𝑋. And 𝑅𝑅2 would be given as: 

𝑅𝑅2 = 𝑋𝑋2 + 𝑌𝑌2 + 𝑍𝑍2 

Einstein defined a function 𝜙𝜙 of Δ, 𝜏𝜏 such that: 



𝜙𝜙(Δ, 𝜏𝜏) = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ℎ𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥
− 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 Δ 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝜏𝜏 

In today’s convention, we would like to write it as: 

𝜙𝜙(𝑋𝑋, 𝜏𝜏) 

where the 𝑋𝑋 is the projection of the net displacement vector 𝑅𝑅�⃗  on the x axis. 𝜙𝜙(X, 𝜏𝜏) is the 

probability that a particle has increased its x coordinate by 𝑋𝑋 in small time interval 𝜏𝜏. Now, 

what is this 𝜙𝜙(𝑋𝑋, 𝜏𝜏)?  

To understand this, if we consider that at 𝑡𝑡 = 0, there were 𝑛𝑛 particles at 𝑥𝑥 = 0 then the 

number of particles at plane 𝑥𝑥 = 𝑋𝑋 after time 𝜏𝜏 would be given by 𝑛𝑛 times the probability that 

a particle travels a distance whose projection is this 𝑋𝑋 in time interval 𝜏𝜏, 𝑛𝑛𝜙𝜙(𝑋𝑋, 𝜏𝜏) 

Let us consider plane of concentration at x, let us denote it as 𝐶𝐶(x) and if you want to find out 

the concentration at x at a time 𝑡𝑡 + 𝜏𝜏, in terms of 𝐶𝐶(𝑥𝑥 − 𝑋𝑋, 𝑡𝑡), that can be expressed as: 

𝐶𝐶(𝑥𝑥, 𝑡𝑡 + 𝜏𝜏) = � 𝐶𝐶(𝑥𝑥 − 𝑋𝑋, 𝑡𝑡)
∞

−∞

𝜙𝜙(𝑋𝑋, 𝜏𝜏)𝑑𝑑𝑑𝑑 

This is simply the balance equation. Now we can expand this 𝐶𝐶(𝑥𝑥, 𝑡𝑡 + 𝜏𝜏) as: 

𝐶𝐶(𝑥𝑥, 𝑡𝑡 + 𝜏𝜏) = 𝐶𝐶(𝑥𝑥, 𝑡𝑡) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜏𝜏 +
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑡𝑡2

𝜏𝜏2

2
+ ⋯ 

 And inside the integral, we can similarly expand: 

𝐶𝐶(𝑥𝑥 − 𝑋𝑋, 𝑡𝑡) = 𝐶𝐶(𝑥𝑥, 𝑡𝑡) −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑋𝑋 +
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

𝑋𝑋2

2
+ ⋯ 

That would give: 

𝐶𝐶(𝑥𝑥, 𝑡𝑡 + 𝜏𝜏) = � �𝐶𝐶(𝑥𝑥, 𝑡𝑡) −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑋𝑋 +
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

𝑋𝑋2

2
+ ⋯�

∞

−∞

𝜙𝜙(𝑋𝑋, 𝜏𝜏)𝑑𝑑𝑑𝑑 

Now we are considering very small interval 𝜏𝜏. on the left hand side of this equation, we can 

ignore the terms involving 𝜏𝜏2 and onwards. We can write approximately left hand side as:  

𝐶𝐶(𝑥𝑥, 𝑡𝑡) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜏𝜏 



And as 𝜏𝜏 → 0, most of the distribution would tend to be segregated towards 𝑥𝑥 = 0. So, on the 

right hand side we can ignore the terms higher than 𝑋𝑋2. We can write: 

𝐶𝐶(𝑥𝑥, 𝑡𝑡) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜏𝜏 = � �𝐶𝐶(𝑥𝑥, 𝑡𝑡) −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑋𝑋 +
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

𝑋𝑋2

2 �
∞

−∞

𝜙𝜙(𝑋𝑋, 𝜏𝜏)𝑑𝑑𝑑𝑑 

At any given position of 𝑥𝑥 and at any time 𝑡𝑡, we can take these terms 𝐶𝐶(𝑥𝑥, 𝑡𝑡), 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

  

outside the integral as they are fixed. Then we can write: 

𝐶𝐶(𝑥𝑥, 𝑡𝑡) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜏𝜏 = 𝐶𝐶(𝑥𝑥, 𝑡𝑡) � 𝜙𝜙(𝑋𝑋, 𝜏𝜏)𝑑𝑑𝑑𝑑
∞

−∞

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝑋𝑋
∞

−∞

𝜙𝜙(𝑋𝑋, 𝜏𝜏)𝑑𝑑𝑑𝑑 +
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

�
𝑋𝑋2

2

∞

−∞

𝜙𝜙(𝑋𝑋, 𝜏𝜏)𝑑𝑑𝑑𝑑 

Now what should be the value of this integral? Remember 𝜙𝜙 is the probability that a particle 

has increased its x coordinate by 𝑋𝑋 in time interval 𝜏𝜏. If we take the summation of these 

probabilities over all possible values of 𝑋𝑋, the first integral should be 1. What about second 

integral? 

Let us consider 𝑁𝑁 particles, In time interval 𝜏𝜏 let us say out of 𝑁𝑁, 𝑁𝑁1 have increased their x 

coordinate by 𝑋𝑋1, 𝑁𝑁2 have increased their x coordinate by 𝑋𝑋2 and on. If we write the average 

of 𝑋𝑋𝑛𝑛, that should be equal to: 

〈𝑋𝑋𝑛𝑛〉 =
𝑁𝑁1𝑋𝑋1𝑛𝑛 + 𝑁𝑁2𝑋𝑋2𝑛𝑛 + ⋯

𝑁𝑁
 

Now this term 𝑁𝑁1
𝑁𝑁

 is the fraction of particles which have increased their x coordinate by 𝑋𝑋1. In 

other words, it is the probability that a particle has increased its x coordinate by 𝑋𝑋1 in small 

time interval 𝜏𝜏. So, we can write this as: 

〈𝑋𝑋𝑛𝑛〉 =
𝑁𝑁1𝑋𝑋1𝑛𝑛 + 𝑁𝑁2𝑋𝑋2𝑛𝑛 + ⋯

𝑁𝑁
= 𝑋𝑋1𝑛𝑛𝜙𝜙(𝑋𝑋1, 𝜏𝜏) + 𝑋𝑋2𝑛𝑛𝜙𝜙(𝑋𝑋2, 𝜏𝜏) + ⋯ 

And if 𝑋𝑋 varies continuously, we can write this as an integral: 

〈𝑋𝑋𝑛𝑛〉 = � 𝑋𝑋𝑛𝑛
∞

−∞

𝜙𝜙(𝑋𝑋, 𝜏𝜏)𝑑𝑑𝑑𝑑 

This gives me the values of other two integrals in the equation: 



𝐶𝐶(𝑥𝑥, 𝑡𝑡) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜏𝜏 = 𝐶𝐶(𝑥𝑥, 𝑡𝑡) � 𝜙𝜙(𝑋𝑋, 𝜏𝜏)𝑑𝑑𝑑𝑑
∞

−∞

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� 𝑋𝑋
∞

−∞

𝜙𝜙(𝑋𝑋, 𝜏𝜏) +
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

�
𝑋𝑋2

2

∞

−∞

𝜙𝜙(𝑋𝑋, 𝜏𝜏) 

So, 

� 𝑋𝑋
∞

−∞

𝜙𝜙(𝑋𝑋, 𝜏𝜏) = 〈𝑋𝑋〉 

〈𝑋𝑋〉 is the average of x projections of net displacements of all the atoms. Similarly, 

�
𝑋𝑋2

2

∞

−∞

𝜙𝜙(𝑋𝑋, 𝜏𝜏) =
〈𝑋𝑋2〉

2
 

〈𝑋𝑋2〉 is the mean square displacement of all the atoms. So we can write: 

𝐶𝐶(𝑥𝑥, 𝑡𝑡) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜏𝜏 = 𝐶𝐶(𝑥𝑥, 𝑡𝑡) −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

〈𝑋𝑋〉 +
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

〈𝑋𝑋2〉
2

 

Or: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
〈𝑋𝑋2〉
2𝜏𝜏

𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

−
〈𝑋𝑋〉
𝜏𝜏
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
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Again as we have seen before, for a true random walk problem the mean displacement of all 

atoms should be 0 because for every atom that has made a net displacement, let us say 𝑅𝑅�⃗ 𝑖𝑖, 



there would be another atom which has made an exactly equal and opposite displacement; 𝑅𝑅�⃗𝑗𝑗. 

And: 

𝑅𝑅�⃗ 𝑖𝑖 = 𝑅𝑅�⃗𝑗𝑗 

So the average of net displacements of all atoms should be 0: 

〈𝑋𝑋〉 = 0 

We get: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
〈𝑋𝑋2〉
2𝜏𝜏

𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

 

This looks familiar. This is similar to the diffusion equation with diffusivity 𝐷𝐷 being written 

as: 

𝐷𝐷 =
〈𝑋𝑋2〉
2𝜏𝜏

       (1) 

Now, this we are considering in one particular direction. For a true random walk problem and 

for an isotropic cubic lattice where the distribution is spreading isotropically we can write: 

〈𝑋𝑋2〉 = 〈𝑌𝑌2〉 = 〈𝑍𝑍2〉 

So, we can write the mean square displacement as: 

〈𝑅𝑅2〉 = 〈𝑋𝑋2〉 + 〈𝑌𝑌2〉 + 〈𝑍𝑍2〉 

Further we can write: 

〈𝑋𝑋2〉 =
〈𝑅𝑅2〉

3
 

 And if we substitute here, we get 𝐷𝐷 for an isotropic cubic lattice as: 

𝐷𝐷 =
〈𝑅𝑅2〉
6𝜏𝜏

      (2) 

And this is the equation that Einstein derived in 1905. It is called as Einstein relation, both 

Eq. (1) or (2), any of this. Simultaneously but independently, Smoluchowski also derived the 

similar equation. So, it is more commonly referred to as Einstein-Smoluchowski relation. 

And this clearly establishes the physical significance of the term diffusivity. Now what is it, 

if you want to describe the physical significance?  



(Refer Slide Time: 17:19) 

 

The diffusivity is the mean square displacement of an average atom per unit time and that is 

the physical significance of diffusivity which was established by this Einstein-Smoluchowski 

relation. Now remember when we defined this function 𝜙𝜙(𝑋𝑋, 𝜏𝜏), we made an assumption 

while deriving this equation. And the assumption was that the function 𝜙𝜙 is independent of 𝑥𝑥 

and 𝑡𝑡. In a way we assume that the diffusivity is constant and the mobility is constant. It does 

not change with 𝑥𝑥 and 𝑡𝑡 which means this expression for diffusivity is valid for absence of 

any concentration gradient or in presence of very small concentration gradient. So, this 

expression is valid for self-diffusivity or impurity diffusion.  

But it is not valid for the case of diffusion under strong concentration gradient or in other 

words, not valid for inter diffusion. We have seen that for interdiffusion we need more than 

one diffusion coefficient because there are multiple concentration gradients.  

So, this is the physical significance of the term diffusivity. Now we can make a substitution. 

In the last class, we derived the expression for mean square displacement. Mean square 

displacement was given as: 

〈𝑅𝑅2〉 = 𝑛𝑛𝜆𝜆2 

where each particle has made 𝑛𝑛 jumps. Now if: 

𝛾𝛾 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

then 𝛾𝛾 is the number of jump an average atom makes per second. In time interval 𝜏𝜏 the total 

number of jumps made by an average atom would be: 



𝑛𝑛 = 𝛾𝛾𝜏𝜏 

 We can write: 

〈𝑅𝑅2〉 = 𝛾𝛾𝜏𝜏𝜆𝜆2 

And if we substitute in the Einstein-Smoluchowski relation, we get: 

𝐷𝐷 =
𝛾𝛾𝜏𝜏𝜆𝜆2

6𝜏𝜏
=

1
6
𝛾𝛾𝜆𝜆2 

for any cubic lattice.  So, we get the same equation that we got a few classes back, based 

upon the simple jump frequency model. The point to take away is the Einstein-Smoluchowski 

relation established the physical significance or the theoretical meaning for the term 

diffusivity. The diffusivity is a measure of mean square displacement per unit time. And that 

is why the unit of diffusivity is 𝑚𝑚2/𝑠𝑠𝑠𝑠𝑠𝑠.  

The mean displacement is not a good measure, but mean square displacement is. And we say 

mean square displacement per unit time, that is the diffusivity in 𝑚𝑚2/𝑠𝑠𝑠𝑠𝑠𝑠. Thank you. 


