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Welcome into the 8th week of the open course on Diffusion in Multicomponent Solids. This is 

the 33rd lecture in the series. In this lecture, we will discuss the theory of random walk of 

particles. We will show that root mean squared displacement of a large ensemble of particles, 

making random walk is proportional to the square root of the number of jumps an average 

particle has made. So far we have seen the significance and applicability of diffusivity term 

which is defined as a phenomenological coefficient. In next two classes, we will try to 

understand the theoretical significance of this term diffusivity. The unit of diffusion 

coefficient is meter square per second. So, it indicates some kind of rate, specifically, the rate 

at which the compositional front travels. But why the unit is meter square per second and not 

meter per second? We will get answer for this question in next two classes.  

Fick’s Law came into existence in 1855. But it was not until 1905 that the theoretical 

significance of this term diffusivity was established. It happened when Einstein developed the 

theory of random walk around 1905. What is random walk to do with diffusion? Let us first 

try to understand what is random walk. We know at any temperature above 0 Kelvin, atoms 

or molecules of a substance continuously undergo thermal motions.  



In solids, this thermal motion is in the form of vibrations. The atoms vibrate about their mean 

position continuously and the energy of vibration keeps changing. The way the available 

energy is distributed among all the atoms keeps changing continuously with time. In liquids 

and gases, the particles undergo translational motion. So, if you track any one particle it is 

undergoing a translational motion. It is moving from one position to another until it collides 

with another particle. After the collision, the particle will change its direction and now would 

move in new direction. Now this motion will occur again until the particle hits with another 

particle. Again, upon the collision, it will change its direction and this will continue. So, we 

say each particle is undergoing a random walk.  
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If we track a particle in a liquid or gas, let us say it starts from a position A, it moves in a 

particular direction until it hits another particle. After the collision, it changes its direction of 

travel, moves in another direction, until it again hits with another particle. Then it changes its 

direction and this continues. And in some time  𝑡𝑡, the particle has made some net 

displacement. After let us say 5 such jumps, the particle has made a net displacement from A 

to B. Let us call this 𝑅𝑅�⃗ . Now obviously, the net displacement 𝐴𝐴𝐴𝐴�����⃗  is the summation of all the 

displacement vectors corresponding to these individual jumps from 1 to 5. If a particle makes 

𝑛𝑛 jumps and each jump vector is denoted as 𝑟𝑟𝑖𝑖, then we can write: 

𝑅𝑅�⃗ = 𝑟𝑟1 + 𝑟𝑟2 + 𝑟𝑟3 … . . +𝑟𝑟𝑛𝑛 = ��̅�𝑟𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 



Now, if we consider an ensemble of particles, which is located at 𝑥𝑥 = 0 initially, each 

particle will undergo random walk and will make some net displacement in certain amount of 

time. The particles will randomly move in all directions and each jump of the particle or each 

jump vector is random, which means each jump is independent of its previous jump in both 

direction and magnitude. Because of the random walk, this particle distribution will slowly 

spread in space with time. Now if we want to track, how much this distribution has spread in 

certain amount of time, what is the right parameter that we should use? One of the option is 

obviously the average displacement of all the atoms. It is denoted as 𝑅𝑅�⃗  in triangular bracket: 

〈𝑅𝑅�⃗ 〉 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑛𝑛𝑎𝑎𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎𝑛𝑛𝑡𝑡𝑑𝑑 𝑜𝑜𝑜𝑜 𝑎𝑎𝑑𝑑𝑑𝑑 𝑎𝑎𝑡𝑡𝑜𝑜𝑑𝑑𝑑𝑑 

This is also referred to as net displacement of an average atom. Now if the particles are 

undergoing truly random walk, then the average net displacement would be 0. If we look at 

this particle ensemble and if we track the front after certain time, we would see this front is 

growing. We will see that this distribution is spreading isotropically. That means if you have 

a particle which has made a net displacement 𝑅𝑅𝚤𝚤���⃗ , there is almost certain chance that there 

would be another particle, which has made an equal and opposite net displacement, 𝑅𝑅𝚥𝚥���⃗ . And 

they will cancel each other. Since we are dealing with a large number of particles, it would 

happen that the average net displacement will be 0: 

〈𝑅𝑅�⃗ 〉 = 0 

 So, obviously the average net displacement of all atoms is not a good parameter to work 

with. Then, what is the right parameter that we should use? As we will see later, Einstein 

realized that it is the Mean Squared Displacement or MSD in short. And it will be denoted as: 

〈𝑅𝑅2〉 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑑𝑑𝑠𝑠𝑠𝑠𝑎𝑎𝑟𝑟𝑎𝑎𝑑𝑑 𝑜𝑜𝑜𝑜 𝑛𝑛𝑎𝑎𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎𝑛𝑛𝑡𝑡𝑑𝑑 𝑜𝑜𝑜𝑜 𝑎𝑎𝑑𝑑𝑑𝑑 𝑎𝑎𝑡𝑡𝑜𝑜𝑑𝑑𝑑𝑑 

Let us try to find out the expression for Mean Squared Displacement. If we consider any one 

particle which has undergone 𝑛𝑛 jumps, we have the expression: 

𝑅𝑅�⃗ = ��̅�𝑟𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

 (Refer Slide Time: 09:56) 



 

 

For a particular particle 𝑅𝑅2 would be: 

𝑅𝑅2 = 𝑅𝑅�⃗ .𝑅𝑅�⃗  

which I can write as: 

𝑅𝑅2 = 𝑅𝑅�⃗ .𝑅𝑅�⃗ = (𝑟𝑟1 + 𝑟𝑟2 + 𝑟𝑟3 … . . +𝑟𝑟𝑛𝑛). (𝑟𝑟1 + 𝑟𝑟2 + 𝑟𝑟3 … . . +𝑟𝑟𝑛𝑛) 

If we expand this, we get: 

𝑅𝑅2 = (𝑟𝑟1. 𝑟𝑟1 + 𝑟𝑟1. 𝑟𝑟2 + 𝑟𝑟1. 𝑟𝑟3 + ⋯… . . +𝑟𝑟1. 𝑟𝑟𝑛𝑛−2 + 𝑟𝑟1. 𝑟𝑟𝑛𝑛−1 + 𝑟𝑟1. 𝑟𝑟𝑛𝑛)

+ (𝑟𝑟2. 𝑟𝑟1 + 𝑟𝑟2. 𝑟𝑟2 + 𝑟𝑟2. 𝑟𝑟3 + ⋯… . . +𝑟𝑟2. 𝑟𝑟𝑛𝑛−2 + 𝑟𝑟2. 𝑟𝑟𝑛𝑛−1 + 𝑟𝑟2. 𝑟𝑟𝑛𝑛)

+ (𝑟𝑟3. 𝑟𝑟1 + 𝑟𝑟3. 𝑟𝑟2 + 𝑟𝑟3. 𝑟𝑟3 + ⋯… . . +𝑟𝑟3. 𝑟𝑟𝑛𝑛−2 + 𝑟𝑟3. 𝑟𝑟𝑛𝑛−1 + 𝑟𝑟3. 𝑟𝑟𝑛𝑛)

+ ⋯… … . +(𝑟𝑟𝑛𝑛. 𝑟𝑟1 + 𝑟𝑟𝑛𝑛. 𝑟𝑟2 + 𝑟𝑟𝑛𝑛. 𝑟𝑟3 + ⋯… . . +𝑟𝑟𝑛𝑛. 𝑟𝑟𝑛𝑛−2 + 𝑟𝑟𝑛𝑛. 𝑟𝑟𝑛𝑛−1 + 𝑟𝑟𝑛𝑛. 𝑟𝑟𝑛𝑛) 



Now we can simplify this expression by writing it in terms of summations.  we can start with 

the diagonal terms. If we take all the diagonal terms, we see they are of the form 𝑟𝑟𝑖𝑖 . 𝑟𝑟𝑖𝑖. Now 

let us consider the non-diagonal terms. We see this is a symmetric matrix about the diagonal. 

So the off-diagonal terms are similar. So, we can consider one side of the diagonal and just 

double it.  

So, we can write: 

𝑅𝑅2 = �𝑟𝑟𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

+ 2�𝑟𝑟1

𝑛𝑛

𝑗𝑗=2

. 𝑟𝑟𝑗𝑗 + 2�𝑟𝑟2

𝑛𝑛

𝑗𝑗=3

. 𝑟𝑟𝑗𝑗 + ⋯… . +2 � 𝑟𝑟𝑛𝑛−2

𝑛𝑛

𝑗𝑗=𝑛𝑛−1

. 𝑟𝑟𝑗𝑗 + 2�𝑟𝑟𝑛𝑛−1

𝑛𝑛

𝑗𝑗=𝑛𝑛

. 𝑟𝑟𝑗𝑗 

Now for further simplification, if you write in terms of double summation: 

𝑅𝑅2 = �𝑟𝑟𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

+ 2� � 𝑟𝑟𝑖𝑖

𝑛𝑛

𝑗𝑗=𝑖𝑖+1

. 𝑟𝑟𝑗𝑗

𝑛𝑛−1

𝑖𝑖=1

 

We can write expression for 𝑅𝑅2 as: 

𝑅𝑅2 = �𝑟𝑟𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

+ 2� � 𝑟𝑟𝑖𝑖

𝑛𝑛

𝑗𝑗=𝑖𝑖+1

𝑟𝑟𝑗𝑗

𝑛𝑛−1

𝑖𝑖=1

cos𝜃𝜃𝑖𝑖,𝑗𝑗  

𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗 are the magnitudes of the 𝑑𝑑𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ jump vectors and: 

𝜃𝜃𝑖𝑖,𝑗𝑗 = 𝑎𝑎𝑛𝑛𝑎𝑎𝑑𝑑𝑎𝑎 𝑏𝑏𝑎𝑎𝑡𝑡𝑏𝑏𝑎𝑎𝑎𝑎𝑛𝑛 𝑑𝑑𝑡𝑡ℎ 𝑎𝑎𝑛𝑛𝑑𝑑 𝑗𝑗𝑡𝑡ℎ 𝑗𝑗𝑠𝑠𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑑𝑑𝑡𝑡𝑜𝑜𝑟𝑟 

If you look at the above summation, we are considering each jump vector and taking its dot 

product with every jump vector that occurred after it. If for example, a particle making let us 

say 5 number of jumps, so: 

𝑅𝑅52 = �𝑟𝑟𝑖𝑖2
5

𝑖𝑖=1

+ 2{𝑟𝑟1. 𝑟𝑟2 + 𝑟𝑟1. 𝑟𝑟3 + 𝑟𝑟1. 𝑟𝑟4 + 𝑟𝑟1. 𝑟𝑟5 + 𝑟𝑟2. 𝑟𝑟3 + 𝑟𝑟2. 𝑟𝑟4 + 𝑟𝑟2. 𝑟𝑟5 + 𝑟𝑟3. 𝑟𝑟4 + 𝑟𝑟3. 𝑟𝑟5

+ 𝑟𝑟4. 𝑟𝑟5} 

as we have to take dot product of every jump vector with the jump vector that occurred after 

it. Now we need to know angle between each jump vector and every other jump vector that 

occurred after it. For example: 

𝜃𝜃2,4 = 𝑎𝑎𝑛𝑛𝑎𝑎𝑑𝑑𝑎𝑎 𝑏𝑏𝑎𝑎𝑡𝑡𝑏𝑏𝑎𝑎𝑎𝑎𝑛𝑛 𝑟𝑟2 𝑎𝑎𝑛𝑛𝑑𝑑 𝑟𝑟4 



Now, we have to evaluate the cosine of the angle 𝜃𝜃2,4. We have to do this for all the pairs of 

the jump vectors. If we consider the case of solid, this expression becomes a little bit simpler. 

And the reason being, in solids all the jump lengths are equal.  
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That is: 

𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑗𝑗 = ⋯𝑟𝑟𝑛𝑛 = 𝜆𝜆 

If we write the expression for solids 𝑅𝑅2 will be: 

𝑅𝑅2 = 𝑛𝑛𝜆𝜆2 + 2𝜆𝜆2� � cos 𝜃𝜃𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑗𝑗=𝑖𝑖+1

𝑛𝑛−1

𝑖𝑖=1

 



Since all jump vectors are same, we have 𝜆𝜆2 term. And that simplifies this as: 

𝑅𝑅2 = 𝑛𝑛𝜆𝜆2 + 2𝜆𝜆2� � cos 𝜃𝜃𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑗𝑗=𝑖𝑖+1

𝑛𝑛−1

𝑖𝑖=1

= 𝑛𝑛𝜆𝜆2 �1 +
2
𝑛𝑛
� � cos𝜃𝜃𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑗𝑗=𝑖𝑖+1

𝑛𝑛−1

𝑖𝑖=1

� 

Now this is for one particle. We need the average of square of net displacements of all the 

particles. So, we need to evaluate 〈𝑅𝑅𝑛𝑛2〉. Here subscript 𝑛𝑛 denotes that each particle has 

undergone 𝑛𝑛 jumps. If we try to evaluate this, we will get the expression as: 

〈𝑅𝑅𝑛𝑛2〉 = 𝑛𝑛𝜆𝜆2 �1 +
2
𝑛𝑛
� � 〈cos 𝜃𝜃𝑖𝑖,𝑗𝑗〉

𝑛𝑛

𝑗𝑗=𝑖𝑖+1

𝑛𝑛−1

𝑖𝑖=1

� 

Now, let us try to understand what is this average 〈cos𝜃𝜃𝑖𝑖,𝑗𝑗〉? So, we consider each pair of 

jump 𝑑𝑑 and 𝑗𝑗, we consider this pair for each atom. Evaluate cos𝜃𝜃𝑖𝑖,𝑗𝑗 for each atom and take the 

average of it. That is this average 〈cos𝜃𝜃𝑖𝑖,𝑗𝑗〉 and then we sum it over all 𝑑𝑑 and 𝑗𝑗. If I consider 

𝑟𝑟1 and 𝑟𝑟5, I need to know 𝜃𝜃1,5 for one atom. Then I evaluate cos 𝜃𝜃1,5 for all the atoms and then 

take the average. That gives me 〈cos 𝜃𝜃1,5〉 and we do this for every pair of the atom.  

Now, this can further be simplified. If we are considering a true random walk, that is the atom 

is free to jump randomly in the solid then: 

〈cos 𝜃𝜃𝑖𝑖,𝑗𝑗〉 = 0     𝑜𝑜𝑜𝑜𝑟𝑟 𝑡𝑡𝑟𝑟𝑠𝑠𝑎𝑎 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑𝑜𝑜𝑑𝑑 𝑏𝑏𝑎𝑎𝑑𝑑𝑤𝑤 

Why? Because here we are considering a large number of atoms. If we consider a pair of 

particular jumps 𝑑𝑑 and 𝑗𝑗, for every 𝑟𝑟𝑖𝑖 and 𝑟𝑟𝑗𝑗 that 1 atom undergoes, there is almost a certain 

chance that you will find another atom, which has made 𝑑𝑑𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ jump such that its 𝑟𝑟𝑖𝑖.𝑟𝑟𝑗𝑗 is 

exactly equal and opposite to the first atom. And they will cancel out each other since we are 

considering large number of atoms and a truly random walk problem.  

For example, let us consider the jumps on (1 1 1) plane of an FCC crystal. Let us consider 2 

atoms, atom-1 and atom-2. Then: 

                       𝑎𝑎𝑡𝑡𝑜𝑜𝑑𝑑 − 1       𝑎𝑎𝑡𝑡𝑜𝑜𝑑𝑑 − 2 

�𝑑𝑑𝑡𝑡ℎ                𝑂𝑂𝐴𝐴�����⃗                 𝑂𝑂𝐴𝐴�����⃗  � 

�𝑗𝑗𝑡𝑡ℎ                𝐴𝐴𝐴𝐴�����⃗                 𝐴𝐴𝐴𝐴�����⃗ � 



Atom-1 makes a jump from site O to A as 𝑑𝑑𝑡𝑡ℎ jump, which is 𝑂𝑂𝐴𝐴�����⃗  and  𝑗𝑗𝑡𝑡ℎ  jump is to B, let us 

call this 𝐴𝐴𝐴𝐴�����⃗ . For another atom, 𝑑𝑑𝑡𝑡ℎ  jump vector is 𝑂𝑂𝐴𝐴�����⃗  and another jump vector is  𝐴𝐴𝐴𝐴�����⃗ . And 

we see that: 

𝑂𝑂𝐴𝐴�����⃗ .𝐴𝐴𝐴𝐴�����⃗ = −𝑂𝑂𝐴𝐴�����⃗ .𝐴𝐴𝐴𝐴�����⃗  

In solids, angles between the jumps are restricted because the coordination shell is fixed in a 

solid. The atoms can jump only on the particular sites and in FCC case, for any pair of 𝑑𝑑𝑡𝑡ℎ   

and 𝑗𝑗𝑡𝑡ℎ jump,  the average for true random walk will be: 

〈cos 𝜃𝜃𝑖𝑖,𝑗𝑗〉 = 0      
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We can very simply write this expression: 

𝑀𝑀𝑀𝑀𝑀𝑀,    〈𝑅𝑅𝑛𝑛2〉 = 𝑛𝑛𝜆𝜆2 

Or if we write root mean square: 

𝑅𝑅𝑜𝑜𝑜𝑜𝑡𝑡 𝑑𝑑𝑎𝑎𝑎𝑎𝑛𝑛 𝑑𝑑𝑠𝑠𝑠𝑠𝑎𝑎𝑟𝑟𝑎𝑎𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎𝑛𝑛𝑡𝑡,    �〈𝑅𝑅𝑛𝑛2〉 = √𝑛𝑛𝜆𝜆 

What it tells me is that root mean square displacement is proportional to square root of the 

number of jumps and not to the number of jumps: 

𝑅𝑅𝑀𝑀𝑀𝑀 ∝ √𝑛𝑛 



And this is important because if we consider an individual particle making 𝑛𝑛 jumps, it might 

have travelled a large total distance but the net displacement will be much lower, because the 

net displacement will be proportional to √𝑛𝑛.  

Here, we can consider a good example, which is given by Paul Shewmon in his book. If we 

consider the problem of carburizing, typically the carburizing times employed are of few 

hours to obtain a case depth of few 100s of microns. Let us consider 3 hours of carburizing 

time which is roughly: 

3 ℎ𝑟𝑟𝑑𝑑 ≈ 104 𝑑𝑑𝑎𝑎𝑑𝑑 

 and each carbon atom makes about 1010 jumps per second. In 3 hours, total number of 

jumps an average carbon atom will make: 

∴  𝑛𝑛 = 104 × 1010 = 1014 𝑗𝑗𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 

Now, the jump distance in case of carbon is around 0.1 nanometre, which is: 

𝜆𝜆 ≈ 0.1 𝑛𝑛𝑑𝑑 = 1 × 10−10 𝑑𝑑 

 If we just wrongly consider that root mean squared displacement would be proportional to 𝑛𝑛, 

then the distance travelled in 3 hours by an average atom would be: 

10−10 × 1014 = 104 𝑑𝑑 = 10 𝐾𝐾𝑑𝑑 

But typically, we see the case depth that we get in 3 hours is about 600-700 𝜇𝜇𝑑𝑑. Although the 

case depth is not the total distance or the total penetration of carbon atoms in the steel. The 

total penetration would be larger than that, about 1 mm or so which can easily be obtained 

because the root mean squared displacement is proportional to √𝑛𝑛.  

We can write the RMS displacement of an average carbon atom as: 

𝑅𝑅𝑀𝑀𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎𝑛𝑛𝑡𝑡 = �1014 × 10−10 = 10−3𝑑𝑑 

It is around 1 millimetre which is consistent with what we observe in practice.  

So, we got an important result that the root mean squared displacement is proportional to 

square root of the number of jumps that an average atom has made. Okay, we will stop here, 

thank you. 


