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Lecture 03 
Application of Second Law and

Illustration of Intermixing as Irreversible process

So,  welcome  back.  In  last  class  we  went  over  the  first  law  and  second  law  of

thermodynamics. In this class, we would like to go over the application of second law in

order to analyze the irreversible processes and specifically we would see how the intermixing

or interdiffusion becomes an irreversible process because it causes increase in entropy.  

(Refer Slide Time: 0:47) 

So, just a quick refresher. The first law defines the state function called internal energy in

terms of heat effects and work effects. And the second law defined another state function

called entropy which is basically  
δ qreversible

T
, heat absorbed at constant temperature during a

reversible process divided by the temperature. So, the combined statement of first and second

law leads to the equation of state, which tells:

 dU=TdS−PdV

So, the second law helped us to define the criteria for equilibrium in terms of entropy or in

terms  of  internal  energy.  In  terms  of  entropy  we  say,  at  constant  U  and  V ,  entropy  is

maximized. At constant internal energy and volume, the equilibrium state corresponds to the

maximum entropy. So obviously, any process would occur if it causes an increase in entropy



or during a reversible process the entropy remains constant. We can also write during a small

change of state:

dS=
δq
T

+d Sirreversible

in which case  δq is the heat absorbed during the process and  d Sirreversible is some quantity

which is either 0 for a reversible process or has a positive value for an irreversible process.

So, what this basically tells me is that if during an irreversible process the heat absorbed is

lesser  compared  to  a  reversible  process.  Infact,  the  maximum heat  is  absorbed  during  a

reversible  process  and  correspondingly  the  maximum  work  is  done  during  a  reversible

process, which also tells me if we note the definition of entropy carefully, that:

dS=
δ qreversible

T

which means, we can analyze the entropy changes considering the heat effects only during

the reversible process. 

But,  entropy is  a state  function.  The entropy change for a given process is  always same

whether the process is reversible or irreversible, because S does not depend upon the path by

which the process is carried out. And because of that, we can replace any irreversible process

with  equivalent  sequence  of  reversible  processes  and analyze  the  entropy change for  the

reversible  processes.  So  we  can  know  the  entropy  during  an  irreversible  process.  This

basically also helps us to define the degree of irreversibility of the process. 

Let  us  consider  an  example.  What  are  different  irreversible  processes?  Diffusion  is  one

irreversible process. Most of the natural occurring processes are in fact irreversible processes.

So, there will be some entropy production. So, to what extent any process will continue?

Once the process starts, to what extent it will continue? Till there is an increase in entropy. If

we track the entropy as the process occurs, the process starts because there is an increase in

entropy. As the process occurs there is an increase in entropy and at some point the entropy

reaches maximum. At this point, the process will stop because that is the equilibrium state.

Because if the process continues beyond this point, it will cause a decrease in entropy which

is  not  allowed  by  the  second  law.  So,  depending  upon  the  degree  of  irreversibility,  the

magnitude of this d Sirreversible will change. So, for example, if the process is reversible then 



d Sirreversible=0

So, there is no production of entropy. If the process is irreversible, then d Sirreversible has some

positive  value  and  we  say  that  entropy  is  produced  because  of  the  irreversibility  of  the

process. Similarly, another extreme is when there is no heat effect and correspondingly there

is no work done and so entire change in entropy appears as the production of entropy - dS is

equal to d Sirreversible. This is an extreme case of irreversibility. Any other example of extreme

irreversibility or extremely irreversible process? 

Student: Paste out of a toothpaste

Professor:  So,  the expansion of an ideal  gas  against  vacuum is an extremely  irreversible

process, because that expansion is against  0 pressure. So, there is no work done, no heat

effects and so in this case dS is equal to d Sirreversible. 

(Refer Slide Time: 6:48) 

Let us try to analyze that.  The problem is, if  an ideal gas which is say at  1 atmospheric

pressure and 300 Kelvin, expands against vacuum to double its volume, what is the entropy

produced? Consider a container whose total volume is 2V. And let us say this container is

divided into 2 compartments with a thin wall. Each compartment has a volume V. In one of

the compartments, I have an ideal gas which is at 300 Kelvin and 1 atmospheric pressure, the

second compartment is vacuum. 

At some instant I allow the wall to move freely without friction then what should happen?

Because  of  the  pressure  difference,  the  gas  will  tend  to  expand  and  the  expansion  will



continue until the gas occupies the volume of entire container 2V. The gas will freely expand

against vacuum from V to 2V. So, this is the free expansion of ideal gas from V to 2V. We

have to analyze what is the entropy change during this process.

Let us plot this process on a P-V diagram. So, state 1 changes to state 2 by an irreversible

process, state 1 is basically 1 atmosphere and 300 Kelvin, state 2 we know the volume has

been doubled. So, V 2 is equal to 2V 1. Now, since there is a free expansion, there is no work

done, there is no external heat. So, the internal energy of ideal gas does not change. Internal

energy of an ideal gas is a function of only temperature. Since, there is no change in internal

energy, there is no change in temperature.

T 2  remains 300 kelvin. So, how do we evaluate the entropy change for this process? This is

an irreversible process that is why we denote this by a dotted line. So, we have to replace this

with a sequence of reversible processes which would bring about the same change of state.

So, you can select any combination of reversible processes. Here, let us say the first process

is from  1→a. So this is basically a reversible adiabatic process and the process continues

until the pressure reaches the value P2. 

So, P2 is equal to Pa, let us call this state a, and then the second step is the reversible isobaric

process  from  a→2.  So,  1→a is  a  reversible  adiabatic  process  and  a→2 is  a  reversible

isobaric process. So, let us try to figure out that P, T and V conditions for each of these states

1 , a and 2. We know P1 and T 1, so V 1 is obviously 
RT 1
P1

 if we are assuming 1 mole of ideal

gas. So,

V 1=
8.314×300

1.01325×105
=24.62 ltr

which is same as 24.62 ×10−3m3.

And V 2 is 2V 1. So, it is 49.24 liters. Now, as we go from state 1→2, we can write:

P1V 1

T 1
=
P2V 2
T 2

 Since, 

T 1=T 2



we can evaluate P2 as 

P2=
P1V 1

V 2

and if we substitute we get P2 is equal 0.5 atmosphere. Now, we need to know the conditions

at a, we know that a→2 is an isobaric process. So, basically Pa is equal to P2 which is 0.5

atmosphere and when 1→a is an reversible adiabatic path, the equation for which we know:

P1V 1
γ
=PaV a

γ

So, we have:

V a=(
P1
Pa

)
1/γ

V 1

γ=
CP

CV

C P is heat capacity at constant pressure and  CV  is heat capacity at constant volume. If we

assume monoatomic ideal gas, then C P=2.5R and CV=1.5 R 

γ=
5
3

With that V a comes out to be 37.12 liters. And using again ideal gas law, we can evaluate T a:

T a=
PaV a

R
=227.4 K

So,  now we have  evaluated  each  of  the  states.  We can  now try  to  analyze  the  entropy

changes. Let us first consider the process 1→a, which is reversible adiabatic process. So, we

can write the entropy change for 1→a:

∆S1→a=∫
δ qreversible

T

 And since this is an adiabatic process, we know:

δ qreversible=0



 So, 

∆S1→a=0

So, for any reversible adiabatic process, the entropy change is 0. And that is why all  the

reversible adiabatic processes are also referred to as isentropic processes. 

So,  the  entropy change from  1→2 is  only  because  of  this  process  a→2.  Let  us  try  to

calculate that. 

∆Sa→2=∫
a

2 δ qreversible
T

Now, if I apply first law for this process: 

dU=δq−δw=δq−PdV

This is a reversible process. So,

δq
T

=
dU
T

+( PT )dV

 We know:

dU=CV dT

and

P=
RT
V

Using the above two equations:

δq
T

=
CV dT

T
+( RV )dV

So:

∆Sa→2=∫
T a

T 2 CV dT

T
+∫
V a

V 2

( RV )dV

 (Refer Slide Time: 17:10) 



So, we have basically;

∆Sa→2=CV ln (
T 2
T a

)+Rln (
V 2
V a

)

We know all the values of T a, T 2, V a, V 2. On substitution these values:

∆Sa→2=5.76 Joule /Kelvin

So, the entropy change for the process 1→2 is the summation of that for 1→a  and that for

a→2. We know for 1→a  it is 0 and so:

∆S1→2=5.76 Joule /Kelvin

 This is basically the entropy change associated with free expansion of ideal gas to double its

volume. Now we would like to analyze the process of intermixing in this context, so I will

change this problem a little bit. 

(Refer Slide Time: 18:39) 



Consider  again  the  same container  with  a  thin  wall  in  between,  the  total  volume of  the

container  is 2V  and the wall divides the container into two compartments of equal volume

each of  V . Now, instead of vacuum in 1 compartment, I have two different gases in two

compartments.  Let  us  say  the  first  compartment  has  an  ideal  gas  A  and  the  second

compartment has another ideal gas B. Both are let us assume monatomic ideal gases. Both are

at same temperature, let us say T is equal to 300 Kelvin and P is equal to 1 atmosphere, the

same temperature and pressure in the other compartment. So, there is a little bit of change in

the problem. Now I have two gases in two compartments. And now at some instant suppose I

remove this thin wall then what should happen? We know by intuity that A and B will start

intermixing  with  each other  or  they  will  start  diffusing  into  each other  and as  the  time

progresses the inter diffusion will progress and the equilibrium state will be achieved when

there is a complete intermixing. 

If you look at the individual gases A and B, what is the initial condition? Consider gas A, the

initial condition is it is occupying volume V and the final condition after intermixing is it is

occupying volume 2V. So, before removing the wall the ideal gas A had only volume V to

occupy. After removing the wall now, ideal gas has volume 2V to occupy. So, the ideal gas A

will expand freely from volume V to 2V. 

This is similar to the problem that we solved, the free expansion of ideal gas. But there is one

more process here, the ideal guess B will also expand from V to 2V and so the total entropy

change because of intermixing will be 2 times. We have seen the change in entropy because

of free expansion of ideal gas to double its volume was 5.76 joules per Kelvin. So, that comes

out to be around 11.52 joules per Kelvin.



You can also analyze this process in a slightly different way, we know the equation of state in

terms of U  or S, so we know:

dU=TdS−PdV

So, if we write in terms of S, we write:

dS=( 1T )dU +( PT )dV

 Now, if you consider each of the gas, so let us say free expansion of ideal gas and we know

that the free expansion is associated with 0 work and so there is no change in internal energy.

So this term is basically 0. Hence,

dS=( PT )dV

If we substitute for P:

P=
RT
V

∆SA=∫
V

2V

( RTTV )dV=∫
V

2V

( RV )dV=Rln2=−Rln(0.5)

We can apply the same procedure for free expansion of B, we find out:

∆SB=Rln2=−Rln(0.5)

So, the total entropy change for intermixing would be:

∆Smix=−R (ln 0.5+ ln 0.5)

And if we notice the mole fractions of A and B after intermixing, there are total 2 moles 1

mole of each A and B total 2 moles, so the mole fraction of each is 0.5. So, we can write it in

terms of mole fraction :

∆Smix=−R (ln X A+ ln XB)

This is the entropy change for 2 moles of the gas. The mixture contains 2 moles of the ideal

gas A and B, so if we divide by 2 that will give me the molar entropy of mixing. 



∆Smix
molar

=−R (0.5 ln 0.5+0.5 ln 0.5)

We can write it as:

∆Smix
molar

=−R (X A ln X A+XB ln XB)

This  equation looks familiar,  I  hope you guys have studied this  before.  So,  we have the

equation for entropy of mixing for ideal gases. This is applicable for mixing of any number of

ideal gases. If we have let us say n number of gases:

∆Smix
molar

=−R∑
i=1

n

X i ln X i

And obviously,  we can  see  this  is  a  positive  quantity.  An intermixing  of  ideal  gases  is

accompanied by increase in entropy and that is why the intermixing becomes an irreversible

process. So, we considered this for ideal gases, mixing of ideal gases. What would change if I

consider mixing of real gases? Obviously,  the entropy of mixing will  not be same as we

calculated  for  ideal  gases,  why?  First  of  all  in  ideal  gas,  we  know  that  there  are  no

interactions  between  the  particles,  but  in  real  gases  there  are  interactions  between  the

particles. 

So, any two particles will attract each other if separated by some distance and if you try to

squeeze them together they will repel each other and because of these attractive and repulsive

forces, there are interactions. So, if you try to expand real gas, it will also require work to be

done against  this  inter  particle  forces.  So,  there  is  a  work  and heat  effect  involved.  We

analyzed entropy so far in terms of the heat effects at constant temperature. Now, let us try to

see what is the physical significance of entropy? Can anybody tell me what does entropy

physically mean?

Student: Physically entropy means randomness.

Professor: So entropy is basically randomness in the system. More the order in the system,

lesser will be its entropy. 

(Refer Slide Time: 27:29) 



So, the physical significance of entropy is randomness or disorder in the system. Now, this

randomness or disorder is on account of two factors. The first factor is called thermal entropy

and the thermal entropy arises because of randomness in the distribution of available energy

among the constituent  particles.  You know that  the constituent  particles  are  continuously

undergoing some motions - rotational, vibrational and translational. And with time the energy

of individual particle is changing, but as long as the temperature and volume is constant the

total internal energy is constant. But, the way this total energy is distributed among these

particles  is  continuously  changing.  Now that  means,  at  any given instant  there  are  large

number  of  ways  in  which  the  available  internal  energy  can  be  distributed  among  the

constituent particles and this gives rise to what is called as thermal entropy. 

The second part is the configurational entropy and this is because of the different number of

ways in which the constituent particles can be arranged in space. This can be easily seen in

solids. In solids basically the atomic positions are fixed. So, if you have only a pure element,

let us say there are no vacancies, then there is only one way in which all the atoms of A can

be arranged on the given number of lattice sites. We are assuming that all the atoms of A are

the same and indistinguishable. But suppose if I add a few atoms of B or if I replace few

atoms of A with another type of atoms B. Then now, I have again a large number of ways in

which this few atoms of B can be distributed among the total number of lattice sites. This is

called the configurational entropy. The total  entropy of the system is the sum of thermal

entropy and configurational entropy. 

Now with this, we can also see the intermixing process in, for example, solids. Suppose if I

keep two solids in contact with each other, let us say solid A and solid B and let us consider



only four atoms in each block. So, atoms A and atoms of B are denoted by this cross. If I put

them in contact with each other,  what should happen? We know that  A and B will  start

diffusing into each other. So over the time, more and more atoms will interchange. So, let us

say there is at first only one atom interchange. One atom of B comes into A and one atom of

A goes into B. 

Initially before this intermixing started, in how many number of ways these atoms can be

arranged? There is only one way because all the A atoms are indistinguishable, all the B

atoms are indistinguishable amongst themselves.  So, there is  only one number of way in

which these atoms can be arranged. Now, after the interchange, how many configurations are

available? There are four number of ways in which B can be arranged on side of A and one

atom of A can be arranged in four different ways on the sides of B. So there will be total 4

times 4 equal to 16 number of ways. 

If one more atom interchange, so now there are two atoms of B in A and two atoms of A in

B. So, what are the different number of configurations? So on each side, there are 6 different

configurations and if you combine it with the other side, there will be 6 times 6 is equal to 36

different ways. Now, if 3 atoms interchange. Again, each configuration is possible four times.

So, 4 times 4, 16 different ways.  When all of the atoms interchange, we have pure B on left,

pure A on right, so there is only one way in which this can be arranged. 

So, if you see as the interdiffusion starts we go from first to second configuration, the entropy

is increasing. As you go from second to third, there is a still increase in entropy. But as you

go from third to fourth, there is a decrease in entropy. So, the interdiffusion will proceed until

the entropy is maximized. In this case, you see that the composition is uniform throughout. If

any further interdiffusion or intermixing occurs, the entropy is decreasing. 

The interdiffusion  will  stop when the equilibrium state  is  reached and which here is  the

uniform composition throughout the mixture. Again this is valid for ideal mixing. By ideal

mixing  we  mean  there  are  no  interactions  between  the  atoms  or  more  correctly  the

interactions AA, BB and AB are all same. So, there is no preference of the sites. But in real

solutions, these interactions are different and so there will be some short range order and the

final equilibrium state may be different. 

More  accurately,  instead  of  composition  we  talk  about  chemical  potentials.  So,  the

interdiffusion  will  proceed  until  the  chemical  potentials  of  all  the  species  are  equalized



throughout the mixture. So, the chemical potential is the fundamental driving force for this

process of interdiffusion or intermixing. Any question? So we will stop here. Thank you. 


