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Welcome to the 7th week of the open course on Diffusion in Multicomponent Solids. This is 

28th lecture in the series. In this lecture, I have talked about energetics of formation of 

vacancies and divacancies. Although, I have not talked about other point defects such as 

interstitials and impurity atoms, similar treatment can be extended to the other point defects 

too. Point defects play important role in governing the phenomenon of diffusion. Vacancy is 

probably the most important point defect in the study of diffusion, because it acts as a vehicle 

for diffusion. Vacancies mediate the atomic jumps and hence guide the diffusion.  

In this class, we will discuss the energetics of vacancy formation. Similar treatment can be 

applied to other point defects including interstitials and impurity atoms. To start with, what is 

a vacancy? 
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A vacancy is just a vacant atomic site in a crystal or it is a regular atomic site with the atom 

missing from the site. Now it is easy to see that formation of a vacancy leads to increase in 

configurational entropy. For example, let us consider these two dimensional lattice in which 

atoms are arranged periodically. Now, if we have to arrange 𝑁𝑁 identical atoms on 𝑁𝑁 atomic 

sites, we know there is only one possible way because all the atoms are identical. Now, 

instead of 𝑁𝑁 atoms, let us say you have to arrange 𝑁𝑁 − 1 atoms and one vacancy on the 𝑁𝑁 

sites. Let us denote the vacancy by square. Now, obviously, there are 𝑁𝑁 different ways in 

which the vacancy can be placed on 𝑁𝑁 number of sites. 

Formation of a vacancy leads to increase in configurational entropy and because of the 

entropic reason vacancy is a stable point defect. Now, there is an increase in entropy, but at 

the same time to form a vacancy, the atomic bonds have to be broken. That means, there is 

also an increase in enthalpy. There has to be certain equilibrium concentration of vacancies at 

any given temperature and pressure. And this equilibrium concentration is achieved as a 

compromise between increase in entropy and increase in enthalpy because of the formation of 

the vacancies.  

In general, if we denote the Gibbs free energy of formation of vacancy or more particularly a 

monovacancy (because we are considering only one vacancy at a time for now) we denote it 

aΔ𝐺𝐺1𝑉𝑉, 1𝑉𝑉 denotes the Gibbs free energy of formation of monovacancy. It can be given as: 

Δ𝐺𝐺1𝑉𝑉 = 𝛥𝛥𝛥𝛥1𝑉𝑉 − 𝑇𝑇Δ𝑆𝑆1𝑉𝑉 



Now, this Δ𝑆𝑆1𝑉𝑉term includes two entropy terms. One is obviously, the configurational 

entropy, let us call it Δ𝑆𝑆1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and the other one is the vibrational entropy. Let us call it delta 

Δ𝑆𝑆1𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣: 

Δ𝑆𝑆1𝑉𝑉 = Δ𝑆𝑆1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + Δ𝑆𝑆1𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣 

 Now we can understand the configurational entropy. About the vibrational entropy, since the 

atom is missing from the vacancy site, the neighbouring atoms experience change in the 

mode of vibrations and it leads to a positive change in vibrational entropy. In general, if there 

are 𝑛𝑛 vacancies on the lattice we can write ΔG𝐼𝐼𝐼𝐼′  . The prime denotes the total change in Gibbs 

free energy due to formation of 𝑛𝑛 vacancies. It can be written as: 

𝛥𝛥𝛥𝛥1𝑉𝑉′ = 𝑛𝑛𝛥𝛥𝛥𝛥1𝑉𝑉 − 𝑇𝑇�𝑛𝑛𝛥𝛥𝛥𝛥1𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣� − 𝑇𝑇𝛥𝛥𝛥𝛥1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

Now it is easy to see that the enthalpy change per vacancy and the vibrational entropy change 

per vacancy are independent of the number of vacancies. For 𝑛𝑛 vacancies we multiply by 

number 𝑛𝑛, but the quantity Δ𝑆𝑆1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 depends on the number of vacancies. So, we need to 

express this Δ𝑆𝑆1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in terms of the number of vacancies, n. 

How do we go about finding the equilibrium vacancy concentration? We need to carefully 

create the vacancy thermodynamically in order to study the energetics of it. When I create the 

vacancy thermodynamically, it has to be a reversible process and the mass has to be 

conserved.  
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What we do in order to create a vacancy  is:  Let us consider this crystal and each atom is 

denoted by this cubic box here. We have to remove one atom from the interior and we cannot 

just let it evaporate, because then there will be loss of mass. what we do? We place it back on 

the surface. Now when we place it back on the surface, the number of open bonds on the 

surface should not change. So, the ideal location for placing the atom back onto the surface is 

at a surface step edge like the one shown here. If you place this atom back on the surface at a 

surface step edge, we can see it will conserve the number of open bonds on the surface.  

Here, we are conserving mass as well as number of open bonds on the surface. This is how 

we should create the vacancy in order to study its energetic. To create the vacancy, we are 

removing one atom from the interior, which means we are breaking 𝑍𝑍 number of bonds. 𝑍𝑍 

here is the coordination number. And when we place it back on the surface, roughly half of 

the bonds are recovered.  

So, it seems that the enthalpy of vacancy formation should be about half of the enthalpy of 

sublimation.  

𝛥𝛥𝛥𝛥1𝑉𝑉 =
1
2
𝛥𝛥𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆 

However, this is not true. Let us consider a couple of example: 

            𝛥𝛥𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆           
1
2
𝛥𝛥𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆      𝛥𝛥𝛥𝛥𝐼𝐼𝐼𝐼 

   𝑃𝑃𝑃𝑃         5.6 𝑒𝑒𝑒𝑒          2.8 𝑒𝑒𝑒𝑒      1.51 𝑒𝑒𝑒𝑒 

   𝐶𝐶𝐶𝐶         5.33 𝑒𝑒𝑒𝑒          1.66 𝑒𝑒𝑒𝑒      1.28 𝑒𝑒𝑒𝑒 

 First one is platinum, 𝛥𝛥𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆 for platinum is about 5.6 electron volt 1
2
𝛥𝛥𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆  is about 2.8 

electron volt but experimentally determined value for 𝛥𝛥𝛥𝛥𝐼𝐼𝐼𝐼, enthalpy of formation of a 

monovacancy for platinum is 1.51 electron volts. Similarly values are also given for Copper. 

So, we can see that 𝛥𝛥𝛥𝛥𝐼𝐼𝐼𝐼 < 1
2
𝛥𝛥𝛥𝛥𝑆𝑆𝑆𝑆𝑆𝑆. And the reason is, when we form a vacancy, there is an 

electronic and elastic rearrangement that the crystal experiences in the region surrounding the 

vacant site. Now, when we remove an atom from its regular site, the adjacent atoms tend to 

fall into that vacant site. The effective volume of a vacant site is not same as the effective 

volume of an atom in an otherwise perfect crystal. Similarly, the electronic charge density 

changes because of the removal of an atom from the metal. There will be electronic 

rearrangement in order to maintain the charge neutrality and because of that the enthalpy of 



monovacancy formation is actually less than half the enthalpy of sublimation. Swalin has 

discussed a nice model for this.  
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He considered the monovacancy formation in copper and he split the process in 6 different 

steps. In a metal, metal ions are held together at their regular lattice positions by the cloud of 

electrons. The first step he considered was sublimation of one copper ion from the interior. 

He denoted this as 𝐶𝐶𝐶𝐶+ from solid and the interior of the solid to 𝐶𝐶𝐶𝐶+ in gas state to infinity: 

𝐶𝐶𝐶𝐶(𝑆𝑆,𝑖𝑖𝑖𝑖𝑖𝑖)
+ → 𝐶𝐶𝐶𝐶(𝑔𝑔,∞)

+  

And once the copper ion is removed to maintain the charge neutrality, you need to remove 

one electron. So, the second step is sublimation of one electron from the interior. Electron 

from this interior of the solid to gaseous infinity: 



𝑒𝑒(𝑆𝑆,𝑖𝑖𝑖𝑖𝑖𝑖)
− → 𝑒𝑒(𝑔𝑔,∞)

−  

Then combining the electron with copper ion: 

𝐶𝐶𝐶𝐶(𝑆𝑆,𝑖𝑖𝑖𝑖𝑖𝑖)
+ + 𝑒𝑒(𝑆𝑆,𝑖𝑖𝑖𝑖𝑖𝑖)

− → 𝐶𝐶𝐶𝐶(𝑔𝑔,∞) 

 Copper ion at infinity plus electron at  infinity gives a copper atom at infinity. And then, 

putting that copper atom back on the surface. That is the copper at infinity is placed back on 

the solid surface: 

𝐶𝐶𝐶𝐶(𝑔𝑔,∞) → 𝐶𝐶𝐶𝐶(𝑆𝑆,𝑆𝑆𝑆𝑆) 

After this, a vacant site is created in the interior and there will be electronic relaxation as well 

as elastic relaxations. With these steps he estimated: 

𝛥𝛥𝛥𝛥1𝑉𝑉 𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶 ~ 1.33 𝑒𝑒𝑒𝑒 = 1.28 𝑒𝑒𝑒𝑒 

Where  1.28 𝑒𝑒𝑒𝑒 is the experimentally determined value. The gist is, once the vacancy is 

created, there will be electronic and elastic relaxations in the region around the vacant lattice 

site. Now, let us try to develop an expression for the equilibrium vacancy concentration in a 

metal.  
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Let us denote it as 𝑋𝑋1𝑉𝑉𝑒𝑒 . This denotes the equilibrium vacancy concentration. Let us consider 

there are 𝑁𝑁 number of atoms and 𝑛𝑛 number of vacancies on total of 𝑁𝑁 + 𝑛𝑛 lattice sites. And 

the Gibbs free energy change because of formation of 𝑛𝑛 vacancies, as we have seen earlier, 

would be: 

𝛥𝛥𝛥𝛥1𝑉𝑉′ = 𝑛𝑛𝛥𝛥𝛥𝛥1𝑉𝑉 − 𝑇𝑇�𝑛𝑛𝛥𝛥𝛥𝛥1𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣� − 𝑇𝑇𝛥𝛥𝛥𝛥1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

In order to get to the equilibrium number of vacancies, we need to differentiate with respect 

to 𝑛𝑛 and where the derivative of ΔG𝐼𝐼𝐼𝐼′  with respect to 𝑛𝑛 is zero that gives the equilibrium 

number of vacancies. Now, we first need to express this Δ𝑆𝑆1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in terms of the number 𝑛𝑛 

and that is easy to do. We can consider this as a mixture of 𝑁𝑁 number of atoms and 𝑛𝑛 number 

of vacancies. And the number of ways, let us denote it by Ω in which 𝑁𝑁 atoms and 𝑛𝑛 

vacancies can be arranged on 𝑁𝑁 + 𝑛𝑛  number of sites would be: 

Ω = 𝐶𝐶𝑛𝑛
(𝑁𝑁+𝑛𝑛)  

And this can be written as: 

Ω = 𝐶𝐶𝑛𝑛
(𝑁𝑁+𝑛𝑛) =

(𝑁𝑁 + 𝑛𝑛)!
𝑁𝑁!𝑛𝑛!

 

We know the Δ𝑆𝑆1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  would be given by Boltzmann’s equation: 

Δ𝑆𝑆1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑘𝑘𝑘𝑘𝑘𝑘 Ω 

Which becomes: 



Δ𝑆𝑆1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑘𝑘 lnΩ  = 𝑘𝑘 ln�
(𝑁𝑁 + 𝑛𝑛)!
𝑁𝑁!𝑛𝑛!

� 

Now, if we use Sterling's approximation, which states that for large values of 𝑥𝑥: 

ln 𝑥𝑥! = 𝑥𝑥 ln 𝑥𝑥 − 𝑥𝑥 

Both the numbers 𝑁𝑁 and small 𝑛𝑛 are large numbers here. So, we can use Sterling's 

approximation. Before that if we simplify this further, this will be: 

Δ𝑆𝑆1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑘𝑘 lnΩ = 𝑘𝑘𝑘𝑘𝑘𝑘 �
(𝑁𝑁 + 𝑛𝑛)!
𝑁𝑁!𝑛𝑛!

� = 𝑘𝑘𝑘𝑘𝑘𝑘(𝑁𝑁 + 𝑛𝑛)! − 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘! − 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘!  

And if you apply Sterling's approximation to each of this logarithmic term we get 

Δ𝑆𝑆1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑘𝑘[(𝑁𝑁 + 𝑛𝑛)𝑙𝑙𝑙𝑙( 𝑁𝑁 + 𝑛𝑛) − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑁𝑁𝑙𝑙𝑛𝑛𝑛𝑛] 

               = −𝑘𝑘 �𝑛𝑛 ln
𝑛𝑛

𝑁𝑁 + 𝑛𝑛
+ 𝑁𝑁 ln

𝑁𝑁
𝑁𝑁 + 𝑛𝑛

� 

Now both 𝑁𝑁 and 𝑛𝑛 are large numbers, but we should note that the 𝑛𝑛 is typically much lesser 

than 𝑁𝑁. The number of vacancies in a crystal are typically much less than the number of 

atoms present in the crystal at any temperature: 

𝑛𝑛 ≪ 𝑁𝑁    𝑠𝑠𝑠𝑠    
𝑁𝑁

𝑁𝑁 + 𝑛𝑛
~1 

 So, we can get rid of this second term here.  
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So, we will get Δ𝑆𝑆1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 equal to: 

Δ𝑆𝑆1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −𝑘𝑘 �𝑛𝑛 ln
𝑛𝑛

𝑁𝑁 + 𝑛𝑛
� 

Δ𝑆𝑆1𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −𝑘𝑘 𝑛𝑛 ln𝑋𝑋1𝑉𝑉 

 The term 𝑛𝑛
𝑁𝑁+𝑛𝑛

 is the site fraction of the vacancies given by 𝑋𝑋1𝑉𝑉. If you substitute back in our 

expression for  ΔG1𝑉𝑉′ , we get: 

ΔG1𝑉𝑉′ = 𝑛𝑛𝛥𝛥𝛥𝛥1𝑉𝑉 − 𝑇𝑇�𝑛𝑛Δ𝑆𝑆1𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣� + 𝑘𝑘𝑘𝑘 𝑛𝑛 ln𝑋𝑋1𝑉𝑉 

And to get to the equilibrium vacancy concentration, we differentiate ΔG1𝑉𝑉′  with respect to 𝑛𝑛, 

which should be equal to 0 for equilibrium concentration:  

𝑑𝑑ΔG𝐼𝐼𝐼𝐼
′

𝑑𝑑𝑑𝑑
= 0 = 𝛥𝛥𝛥𝛥1𝑉𝑉 − 𝑇𝑇Δ𝑆𝑆1𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑘𝑘𝑘𝑘 ln𝑋𝑋1𝑉𝑉𝑒𝑒  

We have denoted the equilibrium vacancy concentration more specifically as 𝑋𝑋1𝑉𝑉𝑒𝑒 . And if we 

rearrange we get the equilibrium vacancy concentration 𝑋𝑋1𝑉𝑉𝑒𝑒  to be equal to: 

𝑋𝑋1𝑉𝑉𝑒𝑒 = 𝑒𝑒𝑒𝑒𝑒𝑒 �
Δ𝑆𝑆1𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣

𝑘𝑘
� . 𝑒𝑒𝑒𝑒𝑒𝑒 �

−𝛥𝛥𝛥𝛥1𝑉𝑉
𝑘𝑘𝑘𝑘 � 

This is the expression for equilibrium vacancy concentration in terms of the enthalpy of 

formation of a monovacancy and the vibrational entropy change due to formation of a 

monovacancy.  Now, the first term Δ𝑆𝑆1𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣 is typically between 1 to 2 k, where k is the 

Boltzmann constant.  

Δ𝑆𝑆1𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣 = 1 𝑡𝑡𝑡𝑡 2 𝑘𝑘   (𝑘𝑘 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑛𝑛′𝑠𝑠  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 



The factor �Δ𝑆𝑆1𝑉𝑉
𝑣𝑣𝑣𝑣𝑣𝑣

𝑘𝑘
� will be typically between 2 to 5 and most of the time this is ignored. The 

main reason for this is that factor of 2 to 5 typically comes within the experimental errors. 

When we determine the vacancy concentrations experimentally, the experimentally errors 

involved are larger than this factor. So, typically you will see very often the first term is 

ignored and we write: 

𝑋𝑋1𝑉𝑉𝑒𝑒 = 𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝛥𝛥𝛥𝛥1𝑉𝑉
𝑘𝑘𝑘𝑘 � 

 Obviously, when we write 𝛥𝛥𝛥𝛥1𝑉𝑉 in terms of Joule per atom, this constant in the denominator 

here is K. But if we express the enthalpy of vacancy formation in terms of joule per mole, this 

should be replaced appropriately by the gas constant 𝑅𝑅. We can see the equilibrium vacancy 

concentration increases exponentially with temperature and near the melting point: 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑚𝑚    𝑋𝑋1𝑉𝑉𝑒𝑒  ~ 10−4 

If we consider one mole of the crystal, there are roughly 1023 atoms and there will be around 

1019 vacancies present in the crystal at equilibrium near the melting temperature.  

Now there can be multiple vacancies formed on adjacent lattice sites. These are referred to as 

vacancy clusters. If there are two adjacent vacancies it is denoted as divacancies, the three 

adjacent vacancies will form a trivacancy and on. Their concentration typically will be much 

smaller than the individual vacancies. However, the divacancies may become important. So, 

let us look into the energetics of divacancies. 



(Refer Slide Time: 23:15)  

 

 
  



 
A divacancy is nothing but a pair of vacancies on adjacent atomic sites. If we consider 

through purely statistical point of view, that means, if we ignore the binding energy between 

two adjacent vacancies, then the number of divacancies can be given as: 

𝑛𝑛2𝑉𝑉 = {𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝} × {𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑} 

First term here, the total number of pairs, can be given as number of bonds per atom times the 

total number of lattice sites, which in this case would be (𝑁𝑁 + 𝑛𝑛𝑣𝑣). 𝑛𝑛𝑣𝑣 is the number of 

individual vacancies. And since, we are counting each bond twice this way, we apply a factor 

of half. Now what is the probability that a given pair is a divacancy? That means, the first 

selected lattice site is a vacancy and also the next selected site is a vacancy. The probability 

that a given site is a vacancy is its concentration 𝑋𝑋1𝑉𝑉. So, this is simply 𝑋𝑋1𝑉𝑉2. So we get: 

𝑛𝑛2𝑉𝑉 =
1
2
𝑍𝑍(𝑁𝑁 + 𝑛𝑛𝑣𝑣) × 𝑋𝑋1𝑉𝑉2 

And the fraction of divacancies is given as: 

𝑋𝑋2𝑉𝑉 =
1
2
𝑍𝑍𝑋𝑋1𝑉𝑉2 

This is purely statistical that is ignoring binding between vacancies. However, there will 

always be a binding energy associated with two adjacent vacancies. And it is easy to see why, 

because to form the first vacancy, 𝑍𝑍 number of bonds have to be broken, but to form a 

vacancy on an adjacent lattice site, we need to break one less bond. So, this is a simple 

reason.  



Also, there will be other changes associated with the formation of second vacancies and there 

will be a binding energy associated with the formation of a second vacancy. Therefore, 𝛥𝛥𝛥𝛥2𝑉𝑉 

that is the enthalpy of formation of a divacancy will always be: 

𝛥𝛥𝛥𝛥2𝑉𝑉 < 2𝛥𝛥𝛥𝛥1𝑉𝑉 

The enthalpy of formation of a divacancy is not same as enthalpy of formation of two 

monovacancies. And 𝛥𝛥𝛥𝛥2𝑉𝑉 is typically given by: 

𝛥𝛥𝛥𝛥2𝑉𝑉 = 2𝛥𝛥𝛥𝛥1𝑉𝑉 − 𝐵𝐵2 

Here 𝐵𝐵2 indicates the binding energy of the divacancy. And 𝑋𝑋2𝑉𝑉 is given by: 

𝑋𝑋2𝑉𝑉 =
𝑍𝑍
2
𝑒𝑒𝑒𝑒𝑒𝑒 �

−𝛥𝛥𝛥𝛥2𝑉𝑉
𝑘𝑘𝑘𝑘 � 

OR 

  

𝑋𝑋2𝑉𝑉 =
𝑍𝑍
2
𝑒𝑒𝑒𝑒𝑒𝑒 �

𝐵𝐵2
𝑘𝑘𝑘𝑘�

𝑒𝑒𝑒𝑒𝑒𝑒 �
−2𝛥𝛥𝛥𝛥1𝑉𝑉
𝑘𝑘𝑘𝑘 � 

OR 

𝑋𝑋2𝑉𝑉 =
𝑍𝑍
2
𝑒𝑒𝑒𝑒𝑒𝑒 �

𝐵𝐵2
𝑘𝑘𝑘𝑘�

𝑋𝑋1𝑉𝑉2 

Now the question arises, if the enthalpy of formation of second vacancy is less than that for 

the formation of an individual mono vacancy, then why is the second vacancy not forming 

always adjacent to an existing vacancy? The answer again lies in the compromise between 

enthalpy and entropy. Although the formation of second vacancy adjacent to an existing 

vacancy requires less enthalpy but by doing this, by putting the second vacancy adjacent to an 

existing vacancy, we are also reducing the number of possible configuration in which the 

second vacancy can exist. And it causes a reduction in entropy. That is why the second 

vacancy will not always exist as a neighbour to an existing vacancy. In fact, the number of 

divacancies at equilibrium  are typically much less than the number of monovacancies. Let us 

look into an example that I have plotted for platinum.  



(Refer Slide Time: 29:44) 

 
Here I have plotted the log of concentration of monovacancies and divacancies for platinum. 

Enthalpy parameters are for the platinum are: 

𝛥𝛥𝛥𝛥1𝑉𝑉 = 1.32 𝑒𝑒𝑒𝑒 

and for divacancy, the binding energy is about: 

𝐵𝐵2 = 0.19 𝑒𝑒𝑒𝑒   

Using: 

𝛥𝛥𝛥𝛥2𝑉𝑉 = 2𝛥𝛥𝛥𝛥1𝑉𝑉 − 𝐵𝐵2 

We get: 

𝛥𝛥𝛥𝛥2𝑉𝑉 = 2.45 𝑒𝑒𝑒𝑒 

Obviously, the magnitude of the slope of log𝑋𝑋2𝑉𝑉 versus 1
𝑇𝑇
 should be larger than that for 

log𝑋𝑋1𝑉𝑉 versus 1
𝑇𝑇
. We can see at smaller temperatures or at larger values of 1

𝑇𝑇
, the difference 

between 𝑋𝑋1𝑉𝑉 and 𝑋𝑋2𝑉𝑉 is much large and the difference reduces as the temperature increases. 

If we consider two temperatures at 400 degree centigrade, the difference is about 9 order of 

magnitudes. 

As we go to 1760, which is very close to the melting point of platinum the difference is about 

3 orders of magnitude. The divacancy concentration becomes significant if at all only at very 

high temperatures close to the melting temperature. Typically at lower temperatures, the 

divacancies would not contribute much to the diffusion, although divacancies can diffuse 



very fast. But, these divacancies do play important role in quenched alloys. For example, the 

age-hardenable aluminium alloys during solutionizing are quenched from a very high 

temperature close to the melting temperature. Now at high temperature there is large fraction 

of divacancies and because of the quenching those fractions of divacancies are also retained 

at room temperature. It is generally not desirable that the ageing starts at room temperature, 

but because of these retained divacancies, and since the divacancies diffuse very fast, in many 

aluminium alloys the ageing will start at room temperature that is referred to as natural 

ageing and it is not desirable because the precipitates, which are formed during natural ageing 

do not give the best properties to the age hardened alloys.  

The divacancies at normal temperatures are not considerable, they do not contribute much to 

the diffusion. But at higher temperatures their fraction may become significant. We can apply 

similar treatment to higher vacancy clusters like trivacancies and higher order clusters.  As 

we increase the number of vacancies in a cluster, their contribution or their fraction would 

keep decreasing. It is only sufficient to consider monovacancies, which is very important and 

in some cases, the divacancies. Okay, that is all for this lecture. Thank you. 


