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Welcome to 27th lecture in the open course on Diffusion in Multicomponent Solids. In this 

lecture, we will go over one more boundary value problem with periodic boundary 

conditions. In this problem, initial concentration profile is represented by a square wave type 

of pattern, and we will solve the diffusion equation by separation of variables.  

Last class we talked about homogenization problem. We solved the diffusion equation for 

periodic boundary condition pertaining to the homogenization. The initial condition there was 

that the concentration profile initially was sinusoidal type of wave. We just had one equation 

for 𝐶𝐶 at 𝑥𝑥 and 𝑡𝑡 equal to 0.  

Today, we will solve another problem in which we will solve the diffusion equation for 

periodic boundary condition. Here the initial profile is little different, we will deal with 

square wave type of profile to begin with.  
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The problem is a steel of eutectoid composition was found to have the lamellar spacing of 

pearlite to be 2𝑙𝑙. So, the period here is 2𝑙𝑙, the average thickness of each cementite layer is 



2ℎ. This steel was heated to 850 ℃ for austenitization which proceeded by diffusion of 

carbon atoms from cementite into austenite.  

Assuming that the transformation from ferrite to austenite does not take much time, derive 

the equation for concentration profile of carbon developed in a pearlite colony during the 

austenitization. You can assume square wave type initial profile in pearlite with 0 % carbon 

in ferrite before the dissolution starts. Assume no discontinuity of concentration at the 

interface.  

So, we have a eutectoid steel here. The eutectoid microstructure basically is composed of 

alternate layers of ferrite and cementite, which is shown here in this figure. In this figure the 

hatched area is a cementite layer and the other layer is the ferrite layer. This is the profile to 

start with, the concentration of carbon in ferrite is 0. And the concentration in the cementite, 

let us denote it is as a 𝐶𝐶𝜀𝜀.  

Now we are dealing with pearlite spacing of 2𝑙𝑙, the period here is 2𝑙𝑙 and each cementite layer 

has a thickness of 2ℎ. If we consider our 𝑥𝑥 = 0 at the center of any of the cementite layer, 

then the two edges of this cementite layer would be 𝑥𝑥 = −ℎ and 𝑥𝑥 = +ℎ, and since the 

period is 2l, the center of the two adjacent ferrite layer will be 𝑥𝑥 = −𝑙𝑙, and 𝑥𝑥 = +𝑙𝑙.  

Now this problem is little bit simplified here because this is actually a multiphase diffusion 

problem. We are having cementite and ferrite, two different phases. It is given that the ferrite 

quickly transforms to austenite, as soon as the steel is heated to the 850 ℃ temperature. So, 

we are dealing with austenite and cementite, and since the equilibrium concentrations of 

cementite and austenite are different, we expect that there should be a discontinuity at the 

interphase between cementite and austenite. But for the sake of solving this problem we are 

ignoring this discontinuity and we are treating the concentration profile as a continuous 

profile at any time 𝑡𝑡 > 0,. At 𝑡𝑡 = 0, it is a square wave type of profile, we are treating it just 

like a single phase diffusion condition. Also, we are assuming that diffusivity is constant. 
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We are solving the diffusion equation which can be written as: 

𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡

= 𝐷𝐷
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

 

The initial condition here is at 𝑡𝑡 = 0 we know the concentration in any cementite layer is 𝐶𝐶𝜀𝜀 

and in any ferrite which has been quickly transformed to austenite is 0: 

𝐼𝐼.𝐶𝐶. ∶      𝐶𝐶(𝑥𝑥,0) = 0       − 𝑙𝑙 < 𝑥𝑥 < −ℎ 

                𝐶𝐶(𝑥𝑥,0) = 𝐶𝐶𝜀𝜀        − ℎ < 𝑥𝑥 < ℎ 

                𝐶𝐶(𝑥𝑥,0) = 0       ℎ < 𝑥𝑥 < 𝑙𝑙 



And the boundary conditions are a no flow condition which means the concentration 

gradients are zero at the boundaries and at the middle of the profile.  

𝐵𝐵.𝐶𝐶. ∶      �
𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥�𝑥𝑥=0

= 0 = �
𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥�−𝑙𝑙

= �
𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥�𝑙𝑙

= ⋯ 

If you consider, middle of any layer, ferrite or cementite the concentration gradient is 

basically. And this is a periodic boundary condition, as we have a periodic profile here. We 

need to solve this equation, for periodic boundary condition, we can use separation of 

variable. Let us assume that 𝐶𝐶(𝑥𝑥,𝑡𝑡) can be expressed as an explicit function of 𝑥𝑥 and 𝑡𝑡, we 

express it as: 

𝐶𝐶(𝑥𝑥,𝑡𝑡) = 𝑋𝑋(𝑥𝑥).𝑇𝑇(𝑡𝑡) 

𝑋𝑋 is a function only of 𝑥𝑥, that is the distance coordinate, and 𝑇𝑇 is function only of 𝑡𝑡, that is 

time. With this: 

𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡

= 𝑋𝑋
𝜕𝜕𝑇𝑇
𝜕𝜕𝑡𝑡

 

and since T is only function of time 𝑡𝑡, we can replace this partial derivative with ordinary 

derivative, we can write: 

𝜕𝜕𝐶𝐶
𝜕𝜕𝑡𝑡

= 𝑋𝑋
𝜕𝜕𝑇𝑇
𝜕𝜕𝑡𝑡

= 𝑋𝑋
𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡

= 𝑋𝑋. �̇�𝑇 

Similarly: 

𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

= 𝑇𝑇
𝑑𝑑2𝑋𝑋
𝑑𝑑𝑥𝑥2

= 𝑇𝑇𝑋𝑋′′ 

If we substitute in the diffusion equation here, we get: 

𝑋𝑋�̇�𝑇 = 𝐷𝐷𝑇𝑇𝑋𝑋′′ 

 which yields after rearranging: 

�̇�𝑇
𝐷𝐷𝑇𝑇

=
1
𝑋𝑋
𝑋𝑋′′ 



Now if you look at this equation, the left hand side of this equation is only function of time 𝑡𝑡 

and the right hand side is only function of distance coordinate 𝑥𝑥. And 𝑥𝑥 and 𝑡𝑡 both are 

independent. This equality would be true, only if both the sides are equal to a constant, lets 

denote that constant as: 

�̇�𝑇
𝐷𝐷𝑇𝑇

=
1
𝑋𝑋
𝑋𝑋′′ = −𝜆𝜆2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡 
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So, we get two individual differential equations one for T and one for X. We can write: 

�̇�𝑇 + 𝜆𝜆2𝐷𝐷𝑇𝑇 = 0       𝑐𝑐𝑐𝑐𝑑𝑑    𝑋𝑋′′ + 𝜆𝜆2𝑋𝑋 = 0 



 The solutions for T and X are: 

𝑇𝑇 = 𝑇𝑇𝑜𝑜 exp(−𝜆𝜆2𝐷𝐷𝑡𝑡)      𝑐𝑐𝑐𝑐𝑑𝑑  𝑋𝑋 = 𝐴𝐴′𝑐𝑐𝑐𝑐𝑐𝑐𝜆𝜆𝑥𝑥 + 𝐵𝐵′𝑐𝑐𝑠𝑠𝑐𝑐𝜆𝜆𝑥𝑥 

Now the linear combination of the solutions will also be a solution (this will be true for large 

number of values of lambda) and we can express the function 𝐶𝐶(𝑥𝑥,𝑡𝑡) in the form of the series: 

𝐶𝐶(𝑥𝑥,𝑡𝑡) = 𝐴𝐴𝑜𝑜 + �(𝐴𝐴𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝜆𝜆𝑛𝑛𝑥𝑥 + 𝐵𝐵𝑛𝑛𝑐𝑐𝑠𝑠𝑐𝑐𝜆𝜆𝑛𝑛𝑥𝑥)𝑒𝑒𝑥𝑥𝑒𝑒(−𝜆𝜆𝑛𝑛2𝐷𝐷𝑡𝑡)
∞

𝑛𝑛=1

 

Where 𝐴𝐴𝑜𝑜 is the value of 𝐴𝐴𝑛𝑛at 𝜆𝜆𝑛𝑛 = 0. Now we need to find out these constants, we use our 

initial and boundary conditions for this. First we will use the boundary condition. For this we 

need to evaluate derivative: 

𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥

= �(−𝐴𝐴𝑛𝑛𝜆𝜆𝑛𝑛𝑐𝑐𝑠𝑠𝑐𝑐𝜆𝜆𝑛𝑛𝑥𝑥 + 𝐵𝐵𝑛𝑛𝜆𝜆𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝜆𝜆𝑛𝑛𝑥𝑥)𝑒𝑒𝑥𝑥𝑒𝑒(−𝜆𝜆𝑛𝑛2𝐷𝐷𝑡𝑡)
∞

𝑛𝑛=1

 

Now: 

�
𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥�𝑥𝑥=0

= 0 = �𝐵𝐵𝑛𝑛𝜆𝜆𝑛𝑛𝑒𝑒𝑥𝑥𝑒𝑒(−𝜆𝜆𝑛𝑛2𝐷𝐷𝑡𝑡)
∞

𝑛𝑛=1

 

as sin 0 is 0 and 𝑐𝑐𝑐𝑐𝑐𝑐 0 is 1. Now for this to be true we should have either: 

𝐵𝐵𝑛𝑛 = 0   𝑐𝑐𝑜𝑜     𝜆𝜆𝑛𝑛 = 0 

 But if we put 𝜆𝜆𝑛𝑛 = 0, then we get a trivial solution which will be independent of time here. 

So 𝜆𝜆𝑛𝑛 cannot be 0. All 𝐵𝐵𝑛𝑛 have to be 0. Now at we have: 

�
𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥�𝑥𝑥=𝑙𝑙

= 0 = �[−𝐴𝐴𝑛𝑛𝜆𝜆𝑛𝑛𝑐𝑐𝑠𝑠𝑐𝑐𝜆𝜆𝑛𝑛𝑙𝑙]𝑒𝑒𝑥𝑥𝑒𝑒(−𝜆𝜆𝑛𝑛2𝐷𝐷𝑡𝑡)
∞

𝑛𝑛=1

 

Now if this has to be 0 then either: 

𝐴𝐴𝑛𝑛 = 0   𝑐𝑐𝑜𝑜     𝜆𝜆𝑛𝑛 = 0     𝑐𝑐𝑜𝑜    𝜆𝜆𝑛𝑛 =
𝑐𝑐𝑛𝑛
𝑙𝑙

 

 Obviously, 𝐴𝐴𝑛𝑛 and 𝜆𝜆𝑛𝑛 cannot be zero, otherwise we will get a trivial solution. So we have: 



𝜆𝜆𝑛𝑛 =
𝑐𝑐𝑛𝑛
𝑙𝑙

 

And we get: 

𝐶𝐶(𝑥𝑥,𝑡𝑡) = 𝐴𝐴𝑜𝑜 + �𝐴𝐴𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑛𝑛𝑥𝑥
𝑙𝑙
𝑒𝑒𝑥𝑥𝑒𝑒 �−

𝑐𝑐2𝑛𝑛2

𝑙𝑙2
𝐷𝐷𝑡𝑡�

∞

𝑛𝑛=1

                        (1) 
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Now we need to find out, the values of 𝐴𝐴𝑜𝑜 and 𝐴𝐴𝑛𝑛. In order to get values of this, we will use 

the properties of integral of periodic function. Sine n Pi 𝑥𝑥 by l, cos n Pi 𝑥𝑥 by l and their 

products. Let us quickly refresh these properties. We know: 

�𝑐𝑐𝑠𝑠𝑐𝑐
𝑐𝑐𝑛𝑛𝑥𝑥
𝑙𝑙
𝑑𝑑𝑥𝑥

𝑙𝑙

−𝑙𝑙

= 0           ,      �𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑛𝑛𝑥𝑥
𝑙𝑙
𝑑𝑑𝑥𝑥

𝑙𝑙

−𝑙𝑙

= 0 

 Then: 

�𝑐𝑐𝑠𝑠𝑐𝑐
𝑐𝑐𝑛𝑛𝑥𝑥
𝑙𝑙
𝑐𝑐𝑠𝑠𝑐𝑐

 𝑚𝑚𝑛𝑛𝑥𝑥
𝑙𝑙

𝑑𝑑𝑥𝑥
𝑙𝑙

−𝑙𝑙

= 0   ,    𝑚𝑚 ≠ 𝑐𝑐 

�𝑐𝑐𝑠𝑠𝑐𝑐
𝑐𝑐𝑛𝑛𝑥𝑥
𝑙𝑙
𝑐𝑐𝑠𝑠𝑐𝑐

 𝑚𝑚𝑛𝑛𝑥𝑥
𝑙𝑙

𝑑𝑑𝑥𝑥
𝑙𝑙

−𝑙𝑙

= 𝑙𝑙   ,    𝑚𝑚 = 𝑐𝑐 

Both 𝑚𝑚 and 𝑐𝑐 here are integers. Similarly: 

�𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑛𝑛𝑥𝑥
𝑙𝑙
𝑐𝑐𝑐𝑐𝑐𝑐

 𝑚𝑚𝑛𝑛𝑥𝑥
𝑙𝑙

𝑑𝑑𝑥𝑥
𝑙𝑙

−𝑙𝑙

= 0   ,    𝑚𝑚 ≠ 𝑐𝑐 

�𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑛𝑛𝑥𝑥
𝑙𝑙
𝑐𝑐𝑐𝑐𝑐𝑐

 𝑚𝑚𝑛𝑛𝑥𝑥
𝑙𝑙

𝑑𝑑𝑥𝑥
𝑙𝑙

−𝑙𝑙

= 𝑙𝑙   ,    𝑚𝑚 = 𝑐𝑐 

To make use of these, we will use the initial condition: 



𝐼𝐼.𝐶𝐶. ∶      𝐶𝐶(𝑥𝑥,0) = 𝐴𝐴𝑜𝑜 + �𝐴𝐴𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑛𝑛𝑥𝑥
𝑙𝑙

∞

𝑛𝑛=1

       (2) 

Now to make use of the properties of the integrals, lets first take the integral on both side  of 

equation 2. We get: 

�𝐶𝐶(𝑥𝑥,0)𝑑𝑑𝑥𝑥
𝑙𝑙

−𝑙𝑙

= 𝐴𝐴𝑜𝑜 �𝑑𝑑𝑥𝑥
𝑙𝑙

−𝑙𝑙

+ �𝐴𝐴𝑛𝑛 �𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑛𝑛𝑥𝑥
𝑙𝑙
𝑑𝑑𝑥𝑥

𝑙𝑙

−𝑙𝑙

∞

𝑛𝑛=1

 

𝐴𝐴𝑛𝑛′𝑐𝑐 are constant so, we can take it outside the integral. We know between −ℎ to −𝑙𝑙, and 

between ℎ and  𝑙𝑙, 𝐶𝐶(𝑥𝑥,0) = 0. And between −ℎ to ℎ, 𝐶𝐶(𝑥𝑥,0) is 𝐶𝐶𝜀𝜀. This should give: 

�𝐶𝐶𝜀𝜀𝑑𝑑𝑥𝑥
ℎ

−ℎ

= 𝐴𝐴𝑜𝑜2𝑙𝑙 + 0 = 𝐶𝐶𝜀𝜀 . 2ℎ 

As 𝐶𝐶𝜀𝜀 is constant, we get: 

𝐴𝐴𝑜𝑜 = 𝐶𝐶𝜀𝜀
ℎ
𝑙𝑙

 

Now, we need the value of 𝐴𝐴𝑛𝑛. On multiplying both sides by 𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑥𝑥
𝑙𝑙

 we got: 

�𝐶𝐶(𝑥𝑥,0)𝑐𝑐𝑐𝑐𝑐𝑐
𝑚𝑚𝑛𝑛𝑥𝑥
𝑙𝑙

𝑑𝑑𝑥𝑥
𝑙𝑙

−𝑙𝑙

= 𝐴𝐴𝑜𝑜 �𝑐𝑐𝑐𝑐𝑐𝑐
𝑚𝑚𝑛𝑛𝑥𝑥
𝑙𝑙

𝑑𝑑𝑥𝑥
𝑙𝑙

−𝑙𝑙

+ �𝐴𝐴𝑛𝑛 �𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑛𝑛𝑥𝑥
𝑙𝑙
𝑐𝑐𝑐𝑐𝑐𝑐

𝑚𝑚𝑛𝑛𝑥𝑥
𝑙𝑙

𝑑𝑑𝑥𝑥
𝑙𝑙

−𝑙𝑙

∞

𝑛𝑛=1
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Now straight away, the first integral on the right hand side is 0. The second integral, we know 

this is 0 for all values of 𝑚𝑚 ≠ 𝑐𝑐 and this is equal to 𝑙𝑙 for 𝑚𝑚 = 𝑐𝑐. So 𝑚𝑚 = 𝑐𝑐.  

Because 𝑚𝑚 = 𝑐𝑐 we will substitute 𝑚𝑚 with 𝑐𝑐 here. We can write: 

�𝐶𝐶(𝑥𝑥,0)𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑛𝑛𝑥𝑥
𝑙𝑙
𝑑𝑑𝑥𝑥

𝑙𝑙

−𝑙𝑙

= 𝐴𝐴𝑛𝑛(𝑙𝑙) 

 Again, 𝐶𝐶(𝑥𝑥,0) = 0 for the limits −ℎ to −𝑙𝑙, and between ℎ and  𝑙𝑙, and between −ℎ to ℎ: 

𝐶𝐶(𝑥𝑥,0) = 𝐶𝐶𝜀𝜀 

We get: 



𝐶𝐶𝜀𝜀 � 𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑛𝑛𝑥𝑥
𝑙𝑙
𝑑𝑑𝑥𝑥

ℎ

−ℎ

= 𝐴𝐴𝑛𝑛(𝑙𝑙) 

 If we evaluate this integral, you get: 

𝐶𝐶𝜀𝜀 �
1
𝑐𝑐𝑛𝑛

𝑐𝑐𝑠𝑠𝑐𝑐
𝑐𝑐𝑛𝑛𝑥𝑥
𝑙𝑙
�
−ℎ

ℎ

= 𝐴𝐴𝑛𝑛(𝑙𝑙) 

𝐶𝐶𝜀𝜀
𝑐𝑐𝑛𝑛

�𝑐𝑐𝑠𝑠𝑐𝑐
𝑐𝑐𝑛𝑛ℎ
𝑙𝑙

− 𝑐𝑐𝑠𝑠𝑐𝑐
−𝑐𝑐𝑛𝑛ℎ
𝑙𝑙

� = 𝐴𝐴𝑛𝑛(𝑙𝑙) 

Following this we get the value of 𝐴𝐴𝑛𝑛 as: 

2𝐶𝐶𝜀𝜀
𝑐𝑐𝑛𝑛

𝑐𝑐𝑠𝑠𝑐𝑐
𝑐𝑐𝑛𝑛ℎ
𝑙𝑙

= 𝐴𝐴𝑛𝑛 

If we substitute for 𝐴𝐴𝑛𝑛 and 𝐴𝐴𝑜𝑜, we get the solution for 𝐶𝐶(𝑥𝑥,𝑡𝑡) in the form of a series: 

𝐶𝐶(𝑥𝑥,𝑡𝑡) = 𝐶𝐶𝜀𝜀
ℎ
𝑙𝑙

+
2𝐶𝐶𝜀𝜀
𝑛𝑛

�
1
𝑐𝑐
𝑐𝑐𝑠𝑠𝑐𝑐

𝑐𝑐𝑛𝑛ℎ
𝑙𝑙
𝑐𝑐𝑐𝑐𝑐𝑐

𝑐𝑐𝑛𝑛𝑥𝑥
𝑙𝑙
𝑒𝑒𝑥𝑥𝑒𝑒 �−

𝑐𝑐2𝑛𝑛2

𝑙𝑙2
𝐷𝐷𝑡𝑡�

∞

𝑛𝑛=1

 

This is the solution that we have obtained and this is how we can work with periodic 

boundary conditions and solve the diffusion equation using first separation of variable and 

then using the series expansion. Again, we dealt here with the austenitization problem which 

actually is a multi-phase problem. The concentration profile will be little bit different because 

of the discontinuity in the concentration profile at the interphase at all times as long as the 

interphase is there.  

We will see the more accurate type of profiles later when we study the multi-phase diffusion, 

but in order to understand how we solve the periodic boundary condition problem, I just over 

simplified it and just used it as a single phase diffusion problem. This gives us good flavor of 

solving the diffusion equation for periodic boundary conditions. We will stop here, thank 

you.   

 


