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Welcome back to this next lecture in the course on Diffusion in Multicomponent Solids. Last 

few classes, we have been solving diffusion equation for various boundary conditions 

including those related to infinite solid-solid diffusion couples, carburizing and also the 

instantaneous planar source. Now, we will look into boundary value problems which include 

finite boundary conditions or periodic boundary conditions.  

And in today’s class, we will consider another industry important process called 

homogenization. Most of the alloys when they are cast, exhibit some kind of segregation. 

There are 2 types of segregations, macro segregation, which is on a macro level, on a bigger 

scale, on the component level and micro segregation which is at the micro level or at the 

microstructure level. The macro segregation is something which we cannot get rid of, but the 

micro segregation which invariably occurs in most of the alloys after solidification has to be 

gotten rid of and homogenization is often used in order to get rid of the micro segregation.  

Now, this homogenization treatment is governed by the process of diffusion and it is 

important to understand the various parameters which are basically driven by the diffusion.  

How the segregation takes place?  
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For example, in casting there is something called as coring effect due to which the solute 

content in an alloy varies from center of the grain towards the exterior. Going over very 

quickly, this is the part of the phase diagram and this is the liquid region, alpha solid phase, 

this is the liquidus and this is the solidus.  

When any alloy solidifies starts solidifying, the first solid that solidifies, has a lesser solute 

content which is given by this lets point 𝑎𝑎. As it solidifies further, the next solid that forms is 

little richer in the solute and on. If you look into the grain, the solute content varies from the 

center of the grain towards the exterior. Since the center is depleted in solid, if you draw the 

concentration versus 𝑥𝑥 coordinate here, you will get a plot something like this. And when 

there is a grain nucleated next to the first grain, this pattern will be repeated. And you will see 



there is a kind of a sinusoidal distribution of the solute throughout the microstructure, 

considering that we are dealing with a single phase alpha. Ofcourse, if there is a second phase 

then there will be an interface, the concentration profiles will be different, but right now, we 

are considering only single phase. Now, to start with or immediately after the solidification, 

the concentration profile may not be exactly sinusoidal like this, but there will be some kind 

of repeating variations and as the homogenization start quickly, most of the time it will take 

the shape of a sinusoidal form.  

To start with the distribution of concentration is given by this sinusoidal pattern. We will 

solve the diffusion equation. If I consider component 𝑖𝑖 in an 𝑛𝑛 component alloy, I have to 

solve the continuity equation: 

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝐽𝐽𝑖𝑖
𝜕𝜕𝜕𝜕

      (1) 

And we know 𝐽𝐽𝑖𝑖 in an 𝑛𝑛 component system is expressed in terms of 𝑛𝑛-1 interdiffusion 

coefficient: 

𝐽𝐽𝑖𝑖 = −�𝐷𝐷�𝑖𝑖𝑖𝑖𝑛𝑛
𝑛𝑛−1

𝑗𝑗=1

𝜕𝜕𝐶𝐶𝑗𝑗
𝜕𝜕𝜕𝜕

 

If we substitute for 𝐽𝐽𝑖𝑖  in continuity equation, we will get a coupled diffusion equation. And as 

we have seen before if we use the matrix approach, it simplifies the problem. If we write this 

equation in the form of matrix,, we can write: 

𝜕𝜕
𝜕𝜕𝜕𝜕

[𝐶𝐶] = −𝐷𝐷�𝑛𝑛
𝜕𝜕2

𝜕𝜕𝑥𝑥2
[𝐶𝐶] 

after substituting for 𝐽𝐽𝑖𝑖. And we know this matrix 𝐶𝐶 is a column matrix. For example, if we 

expand this for a ternary, we have 2 independent concentrations and four interdiffusion 

coefficients. So: 

[𝐶𝐶] = �𝐶𝐶1𝐶𝐶2
� ,       𝐷𝐷�𝑛𝑛 = �

𝐷𝐷�113 𝐷𝐷�123

𝐷𝐷�213 𝐷𝐷�223
� 

This is the diffusion equation that we need to solve: 

[𝐶𝐶](𝑥𝑥,𝑡𝑡= 0) = [𝐶̅𝐶] + 𝑠𝑠𝑠𝑠𝑠𝑠
𝜋𝜋𝜋𝜋
𝑙𝑙

[𝛽𝛽𝑜𝑜] 



and what are the boundary conditions. The initial condition is initially we have a sinusoidal 

pattern. We can represent for a component 𝑖𝑖 at any 𝑥𝑥 and 𝑡𝑡 = 0 the sinusoidal pattern as: 

𝐶𝐶𝑖𝑖(𝑥𝑥,0) = 𝐶̅𝐶𝑖𝑖 + 𝛽𝛽𝑜𝑜𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠
𝜋𝜋𝜋𝜋
𝑙𝑙

 

where 𝐶̅𝐶𝑖𝑖 is the average concentration about which the oscillations of concentrations occur, 𝛽𝛽𝑜𝑜𝑖𝑖  

is basically the amplitude of the pattern for component 𝑖𝑖 and 2𝑙𝑙 is the period of the pattern. 𝑙𝑙 

is half the period. So the coordinate extend as: this is 𝑥𝑥 = 0, 𝑥𝑥 = 𝑙𝑙, 𝑥𝑥 = 2𝑙𝑙 and this repeats so 

that we have a periodic boundary condition. And what is the boundary condition? Since this 

is periodic boundary condition we know at 𝑥𝑥 = 0, 𝑥𝑥 = 𝑙𝑙, 𝑥𝑥 = 2𝑙𝑙  and on the concentration 

will not change. It will be same as the average concentration 𝐶̅𝐶𝑖𝑖 at any time 𝑡𝑡: 

𝐶𝐶𝑖𝑖(0,𝑡𝑡) = 𝐶𝐶𝑖𝑖(𝑙𝑙,𝑡𝑡) = 𝐶𝐶𝑖𝑖(2𝑙𝑙,𝑡𝑡) = 𝐶̅𝐶𝑖𝑖 

And there is one more condition, we know as the homogenization proceeds, the variation in 

concentration should slowly die down and so that ultimately we should get a uniform 

composition throughout the alloy. That uniform composition will be the average composition 

𝐶̅𝐶𝑖𝑖. We can write: 

𝐶𝐶𝑖𝑖(𝑥𝑥,𝑡𝑡=∞) = 𝐶̅𝐶𝑖𝑖 

Now these conditions also we can write in the form of matrices: 

[𝐶𝐶](𝑥𝑥,𝑡𝑡= 0) = [𝐶̅𝐶] + 𝑠𝑠𝑠𝑠𝑠𝑠
𝜋𝜋𝜋𝜋
𝑙𝑙

[𝛽𝛽𝑜𝑜] 

Where for a ternary system: 

[𝐶̅𝐶] = �𝐶̅𝐶1
𝐶̅𝐶2
� ,        [𝛽𝛽𝑜𝑜] = �𝛽𝛽𝑜𝑜

1

𝛽𝛽𝑜𝑜2
� 

𝛽𝛽𝑜𝑜 is the column matrix of amplitudes of component 1 and 2. Similarly, we can express the 

boundary conditions in the matrix form as: 

[𝐶𝐶](0,𝑡𝑡) = [𝐶𝐶](𝑙𝑙,𝑡𝑡) = [𝐶̅𝐶] 

And we have one more condition which also can be written as: 

[𝐶𝐶](𝑥𝑥,∞) = [𝐶̅𝐶] 



So, we got the diffusion continuity equation in the form of matrix and which we have to solve 

with respect to this initial condition and these boundary conditions. We first need to decouple 

the equation for which we use the similar approach that we used previously for solving the 

multicomponent diffusion equation and we need a similarity transformation matrix which we 

call 𝑃𝑃 for the interdiffusivity matrix.  
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We define the similarity transformation matrix 𝑃𝑃 which is the matrix form by arranging the 

Eigen vectors of 𝐷𝐷� column by column. For simplicity, we write the Eigen vectors such that 

the diagonal elements are normalized to 1. delta is a diagonal matrix of Eigen values of 𝐷𝐷�: 



𝑃𝑃 = � 1 𝛼𝛼2
𝛽𝛽1 1 �   ,       ∆= �𝑑𝑑1 0

0 𝑑𝑑2
� 

And we know: 

𝑃𝑃−1.𝐷𝐷�𝑛𝑛.𝑃𝑃 = ∆ 

 Now, we convert the concentration from its original basis to cap basis. And we do that just 

like what we did for the diffusion couple problem. We pre-multiply the matrix 𝐶𝐶 with 𝑃𝑃−1 

which should give the matrix of concentration in new basis we call it a cap basis. 𝑃𝑃 inverse 

times 𝐶𝐶 gives: 

𝑃𝑃−1. [𝐶𝐶] = �𝐶̂𝐶� = �𝐶̂𝐶1
𝐶̂𝐶2
�     

These are the concentrations in the new basis that is cap basis. Similarly: 

𝑃𝑃−1. [𝛽𝛽𝑜𝑜] = �𝛽̂𝛽𝑜𝑜� = �𝛽̂𝛽𝑜𝑜
1

𝛽̂𝛽𝑜𝑜2
� 

which is again a column matrix of amplitudes in the cap basis. Now with this, if we pre-

multiply the diffusion equation (1) with 𝑃𝑃−1 and we know: 

𝐼𝐼 = 𝑃𝑃.𝑃𝑃−1 

We get: 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐶̂𝐶� = 𝑃𝑃−1.𝐷𝐷�𝑛𝑛

𝜕𝜕2

𝜕𝜕𝑥𝑥2
[𝐶𝐶] 

Now, we smartly insert the identity matrix 𝐼𝐼 = 𝑃𝑃.𝑃𝑃−1 in between. We have: 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐶̂𝐶� = 𝑃𝑃−1.𝐷𝐷�𝑛𝑛.𝑃𝑃

𝜕𝜕2

𝜕𝜕𝑥𝑥2
�𝐶̂𝐶� 

Since, we are assuming constant interdiffusion coefficient, we can take the matrix 𝑃𝑃 inside 

the derivative. What we get is: 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐶̂𝐶� = ∆

𝜕𝜕2

𝜕𝜕𝑥𝑥2
�𝐶̂𝐶�  



We can do the similar operation for the initial and boundary conditions. For the initial 

condition which is written here, if we pre multiply by 𝑃𝑃 inverse, we get: 

�𝐶̂𝐶�
(𝑥𝑥,0)

= �𝐶̂̅𝐶� + 𝑠𝑠𝑠𝑠𝑠𝑠
𝜋𝜋𝜋𝜋
𝑙𝑙
�𝛽̂𝛽𝑜𝑜� 

And for the boundary condition again if we pre-multiply by 𝑃𝑃−1, this will be: 

�𝐶̂𝐶�
(0,𝑡𝑡)

= �𝐶̂𝐶�
(𝑙𝑙,𝑡𝑡)

= �𝐶̂̅𝐶� 

And the last condition can be written as: 

�𝐶̂𝐶�
(𝑥𝑥,∞)

= �𝐶̂̅𝐶� 

If we expand the equation: 

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐶̂𝐶� = ∆

𝜕𝜕2

𝜕𝜕𝑥𝑥2
�𝐶̂𝐶� 

 in terms of the individual components, we get an equation of the form: 

𝜕𝜕𝐶̂𝐶𝑖𝑖
𝜕𝜕𝜕𝜕

= 𝑑𝑑𝑖𝑖
𝜕𝜕2𝐶̂𝐶𝑖𝑖
𝜕𝜕𝑥𝑥2

 

Similarly, if we write the initial and boundary conditions in terms of the individual 

components, we will see that: 

𝐶̂𝐶𝑖𝑖(𝑥𝑥,0) = 𝐶̂̅𝐶𝑖𝑖 + 𝛽̂𝛽𝑜𝑜𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠
𝜋𝜋𝜋𝜋
𝑙𝑙

 

𝐶̂𝐶𝑖𝑖(0,𝑡𝑡) = 𝐶̂𝐶𝑖𝑖(𝑙𝑙,𝑡𝑡) = 𝐶̂̅𝐶𝑖𝑖 

𝐶̂𝐶𝑖𝑖(𝑥𝑥,∞) = 𝐶̂̅𝐶𝑖𝑖  

What we are assuming here is that the period 𝑙𝑙 is same for all the independent components 

which should be the case usually due to the way the microstructure evolves. Now, we need to 

solve this equation and we have periodic boundary conditions. So far, we used Laplace 

transforms, which was useful for solving the diffusion equation with infinite boundary 

conditions.  



And now, we will use another approach which is useful in solving the diffusion equation with 

periodic boundary conditions and that is the principle of separation of variable. 
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What we assume is that 𝐶̂𝐶𝑖𝑖 at any 𝑥𝑥 and 𝑡𝑡 can be expressed as a product of two functions: one 

which is the function of only 𝑥𝑥 and the second which is the function of only 𝑡𝑡. Let us call it 

𝑋𝑋(𝑥𝑥) and 𝑇𝑇(𝑡𝑡). 𝐶̂𝐶𝑖𝑖 at any 𝑥𝑥 and 𝑡𝑡 can be given as: 

𝐶̂𝐶𝑖𝑖(𝑥𝑥,𝑡𝑡) = 𝑋𝑋(𝑥𝑥).𝑇𝑇(𝑡𝑡) 

This means I can write: 

𝜕𝜕𝐶̂𝐶𝑖𝑖
𝜕𝜕𝜕𝜕

= 𝑋𝑋(𝑥𝑥)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

     ,      
𝜕𝜕2𝐶̂𝐶𝑖𝑖
𝜕𝜕𝑥𝑥2

= 𝑇𝑇(𝑡𝑡).
𝑑𝑑2𝑋𝑋
𝑑𝑑𝑥𝑥2

 

 And since 𝑇𝑇 is function only of t, I can replace 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 as the ordinary derivative 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. Similarly, I 

can replace the partial derivative with again ordinary derivative because 𝑋𝑋 is only function of 

x. This derivative with respect to 𝑡𝑡, we usually denote with dot on top of the function 𝑇𝑇 and 

first derivative with respect to 𝑥𝑥 we denote by prime, double prime for second derivative. If 

we substitute this in the diffusion equation, what we see is: 

𝑋𝑋. 𝑇̇𝑇 = 𝑑𝑑𝑖𝑖𝑇𝑇𝑋𝑋′′        ,        
𝑇̇𝑇
𝑑𝑑𝑖𝑖𝑇𝑇

=
1
𝑋𝑋
𝑋𝑋′′ 

Now this is interesting, because what you see in this equation, the left hand side of this 

equation is function only of 𝑡𝑡 and the right side is function only of  𝑥𝑥. So, left hand side and 

right hand side are basically independent of each other. This equality, therefore, will be valid 

only when both the sides are equal to a constant.  

Let us call that constant as −𝜆𝜆2: 



𝑇̇𝑇
𝑑𝑑𝑖𝑖𝑇𝑇

=
1
𝑋𝑋
𝑋𝑋′′ = −𝜆𝜆2 

 We basically get 2 ordinary differential equation, one only in 𝑇𝑇, the other only in 𝑥𝑥 and those 

I can write as: 

𝑇̇𝑇 + 𝑑𝑑𝑖𝑖𝜆𝜆2𝑇𝑇 = 0       𝑎𝑎𝑎𝑎𝑎𝑎    𝑋𝑋′′ + 𝜆𝜆2𝑋𝑋 = 0 

The solution for the first one can be expressed as: 

𝑇𝑇 = 𝑇𝑇𝑜𝑜 exp(−𝑑𝑑𝑖𝑖𝜆𝜆2𝑡𝑡) 

And solution for 𝑥𝑥 can be expressed as: 

𝑋𝑋 = 𝐴𝐴′𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐵𝐵′𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

If we substitute these solutions in the respective equations for 𝑇𝑇 and 𝑋𝑋, the function 

𝐶̂𝐶𝑖𝑖(𝑥𝑥,𝑡𝑡) can be written as: 

𝐶̂𝐶𝑖𝑖(𝑥𝑥,𝑡𝑡) = (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)𝑒𝑒𝑒𝑒𝑒𝑒(−𝜆𝜆2𝑑𝑑𝑖𝑖𝑡𝑡) 

 Here, I have combined the constants 𝑇𝑇𝑜𝑜 and 𝐴𝐴′ to get 𝐴𝐴 and 𝑇𝑇𝑜𝑜 and 𝐵𝐵′ to get 𝐵𝐵. Now, we 

know the linear combination of solutions is also a solution. If there are infinite number of 

values of 𝜆𝜆𝑛𝑛 for which the solution is satisfied, then their summation should also be a 

solution. I can write: 

𝐶̂𝐶𝑖𝑖(𝑥𝑥,𝑡𝑡) = 𝐴𝐴𝑜𝑜 + �(𝐴𝐴𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝜆𝜆𝑛𝑛𝑥𝑥 + 𝐵𝐵𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆𝑛𝑛𝑥𝑥)𝑒𝑒𝑒𝑒𝑒𝑒(−𝜆𝜆𝑛𝑛2𝑑𝑑𝑖𝑖𝑡𝑡)
∞

𝑛𝑛=1

 

This 𝐴𝐴𝑜𝑜 is basically the value of 𝐴𝐴𝑛𝑛 when 𝜆𝜆𝑛𝑛 = 0. So, this is the general solution that we 

have obtained for 𝐶̂𝐶𝑖𝑖. Now, we need to find these constants. If we use this condition: 

𝐶̂𝐶𝑖𝑖(𝑥𝑥,∞) = 𝐶̂̅𝐶𝑖𝑖  

If we substitute 𝑡𝑡 = ∞ in this equation, I get: 

𝐶̂𝐶𝑖𝑖(𝑥𝑥,∞) = 𝐶̂̅𝐶𝑖𝑖 = 𝐴𝐴𝑜𝑜 

If we use the initial condition now: 



𝐶̂𝐶𝑖𝑖(𝑥𝑥,0) = 𝐶̂̅𝐶𝑖𝑖 + 𝛽̂𝛽𝑜𝑜𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠
𝜋𝜋𝜋𝜋
𝑙𝑙

 

On substituting 𝑡𝑡 = 0 general solution for 𝐶̂𝐶𝑖𝑖 should be equal to: 

𝐶̂𝐶𝑖𝑖(𝑥𝑥,0) = 𝐶̂̅𝐶𝑖𝑖 + 𝛽̂𝛽𝑜𝑜𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠
𝜋𝜋𝜋𝜋
𝑙𝑙

= 𝐶̂̅𝐶𝑖𝑖 + �(𝐴𝐴𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝜆𝜆𝑛𝑛𝑥𝑥 + 𝐵𝐵𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆𝑛𝑛𝑥𝑥)𝑒𝑒𝑒𝑒𝑒𝑒(−𝜆𝜆𝑛𝑛2𝑑𝑑𝑖𝑖𝑡𝑡)
∞

𝑛𝑛=1

 

If we evaluate this again at 𝑥𝑥 = 0: 

𝐶̂𝐶𝑖𝑖(0,0) = 𝐶̂̅𝐶𝑖𝑖 = 𝐶̂̅𝐶𝑖𝑖 + �𝐴𝐴𝑛𝑛

∞

𝑛𝑛=1

 

So we get: 

�𝐴𝐴𝑛𝑛

∞

𝑛𝑛=1

= 0   

Now if this has to be true for all values of 𝐴𝐴𝑛𝑛, then all 𝐴𝐴𝑛𝑛 should be equal to 0, only then this 

will be true. So: 

𝐴𝐴𝑛𝑛 = 0    𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 

We can write: 

𝐶̂𝐶𝑖𝑖(𝑥𝑥,0) = 𝐶̂̅𝐶𝑖𝑖 + �𝐵𝐵𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆𝑛𝑛𝑥𝑥
∞

𝑛𝑛=1

 

Now I use the second boundary condition that is at 𝑥𝑥 = 𝑙𝑙: 

𝐶̂𝐶𝑖𝑖(𝑙𝑙,𝑡𝑡) = 𝐶̂̅𝐶𝑖𝑖 = 𝐶̂̅𝐶𝑖𝑖 + �𝐵𝐵𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆𝑛𝑛

∞

𝑛𝑛=1

 

Again this means: 

�𝐵𝐵𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝜆𝜆𝑛𝑛

∞

𝑛𝑛=1

= 0 

Either all 𝐵𝐵𝑛𝑛 have to be 0 which will yield a trivial solution or the second sin term has to be 0. 

For the second case to be possible: 



𝜆𝜆𝑛𝑛 =
𝑛𝑛𝑛𝑛
𝑙𝑙

 

𝐶̂𝐶𝑖𝑖(𝑥𝑥,𝑡𝑡) will be given by: 

𝐶̂𝐶𝑖𝑖(𝑥𝑥,𝑡𝑡) = 𝐶̂̅𝐶𝑖𝑖 + �𝐵𝐵𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑛𝑛𝑛𝑛
𝑙𝑙
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑛𝑛2𝜋𝜋2

𝑙𝑙2
𝑑𝑑𝑖𝑖𝑡𝑡�

∞

𝑛𝑛=1

 

Again, if I write at 𝑡𝑡 =0 this should be equal to: 

𝐶̂𝐶𝑖𝑖(𝑥𝑥,0) = 𝐶̂̅𝐶𝑖𝑖 + 𝛽̂𝛽𝑜𝑜𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠
𝜋𝜋𝜋𝜋
𝑙𝑙

= 𝐶̂̅𝐶𝑖𝑖 + �𝐵𝐵𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑛𝑛𝑛𝑛
𝑙𝑙

∞

𝑛𝑛=1

 

which is from the initial condition and this should be: 

𝛽̂𝛽𝑜𝑜𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠
𝜋𝜋𝜋𝜋
𝑙𝑙

= �𝐵𝐵𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑛𝑛𝑛𝑛
𝑙𝑙

∞

𝑛𝑛=1

 

Now to obtain the values of 𝐵𝐵𝑛𝑛, what we do? We multiply both sides by 𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚
𝑙𝑙

 and integrate 

within the interval −𝑙𝑙 to 𝑙𝑙. Here 𝑚𝑚 is an integer. We get: 

𝛽̂𝛽𝑜𝑜𝑖𝑖 � 𝑠𝑠𝑠𝑠𝑠𝑠
𝜋𝜋𝜋𝜋
𝑙𝑙
𝑠𝑠𝑠𝑠𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚
𝑙𝑙

𝑙𝑙

−𝑙𝑙

= �𝐵𝐵𝑛𝑛 �𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑛𝑛𝑛𝑛
𝑙𝑙

𝑙𝑙

−𝑙𝑙

𝑠𝑠𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚
𝑙𝑙

∞

𝑛𝑛=1

 

 since 𝐵𝐵𝑛𝑛 are constants. Now, it will be clear why we did this, because the integral on the 

right hand side, if we look at it, it has a value: 

0  𝑖𝑖𝑖𝑖 𝑚𝑚 ≠ 𝑛𝑛    ,     𝑙𝑙    𝑖𝑖𝑖𝑖 𝑚𝑚 = 𝑛𝑛 

Similarly, on the left hand side, it is a similar integral with 𝑛𝑛 = 1 here. So, this has a value: 

0  𝑖𝑖𝑖𝑖 𝑚𝑚 ≠ 1    ,     𝑙𝑙     𝑖𝑖𝑖𝑖 𝑚𝑚 = 1 

In effect if both sides are 0 then it would not help. So we should have: 

𝑚𝑚 = 𝑛𝑛 = 1 

and in which case the value of the integrals will be 𝑙𝑙. I can write this equation as: 

𝛽̂𝛽𝑜𝑜𝑖𝑖 (𝑙𝑙) = 𝐵𝐵1(𝑙𝑙) 



𝛽̂𝛽𝑜𝑜𝑖𝑖 = 𝐵𝐵1 

and all other 𝐵𝐵𝑛𝑛 = 0. We got the solution for 𝐶̂𝐶𝑖𝑖 which takes the form: 

𝐶̂𝐶𝑖𝑖(𝑥𝑥,𝑡𝑡) = 𝐶̂̅𝐶𝑖𝑖 + 𝛽̂𝛽𝑜𝑜𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠
𝜋𝜋𝜋𝜋
𝑙𝑙
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝜋𝜋2𝑑𝑑𝑖𝑖
𝑙𝑙2

𝑡𝑡� 

And we can see if we write for all independent components, this can be expressed in the 

matrix form as: 

𝐶̂𝐶 = 𝐶̂̅𝐶 + 𝑠𝑠𝑠𝑠𝑠𝑠
𝜋𝜋𝜋𝜋
𝑙𝑙
𝐸𝐸𝐸𝐸𝐸𝐸. �𝛽̂𝛽𝑜𝑜� 

We will define soon what is the matrix E 𝐸𝐸𝐸𝐸𝐸𝐸. �𝛽̂𝛽𝑜𝑜�. And this 𝐸𝐸𝐸𝐸𝐸𝐸 is a diagonal matrix with 

these exponential terms along its diagonal. For a ternary system this is: 

𝐸𝐸𝐸𝐸𝐸𝐸 =

⎣
⎢
⎢
⎢
⎡𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝜋𝜋2𝑑𝑑1
𝑙𝑙2

𝑡𝑡� 0

0 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝜋𝜋2𝑑𝑑2
𝑙𝑙2

𝑡𝑡�
⎦
⎥
⎥
⎥
⎤
 

 So,  we got the solution for the concentrations in the cap basis. Now, we want to convert 

back to the original basis, we do a reverse operation. If we pre-multiply both sides by the 

matrix P, we get: 

[𝐶𝐶] = [𝐶̅𝐶] + 𝑠𝑠𝑠𝑠𝑠𝑠
𝜋𝜋𝜋𝜋
𝑙𝑙
𝑃𝑃.𝐸𝐸𝐸𝐸𝐸𝐸�𝛽̂𝛽𝑜𝑜� 

But if we insert 𝑃𝑃−1.𝑃𝑃 in between, we get: 

[𝐶𝐶] = [𝐶̅𝐶] + 𝑠𝑠𝑠𝑠𝑠𝑠
𝜋𝜋𝜋𝜋
𝑙𝑙
𝑃𝑃.𝐸𝐸𝐸𝐸𝐸𝐸.𝑃𝑃−1[𝛽𝛽𝑜𝑜] 

So, this is the solution that we have got for homogenization in an 𝑛𝑛 component alloy for 

which the initial concentration profile was represented by the sinusoidal form: 

(Refer Slide Time: 39:20)  



 

For binary this will reduce to, as we need just one concentration variable: 

𝐶𝐶 = 𝐶̅𝐶 + 𝛽𝛽𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠
𝜋𝜋𝜋𝜋
𝑙𝑙
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑡𝑡
𝜏𝜏
� 

Where: 

1
𝜏𝜏

=
𝜋𝜋2𝐷𝐷
𝑙𝑙2

 

and it has a unit of per second.  𝐷𝐷 is 𝑚𝑚
2

𝑠𝑠
, 𝑙𝑙 square is meter square. So 𝜏𝜏 is basically a measure 

of rate of homogenization. We can see the rate of homogenization depends on the diffusivity: 

higher the diffusivity, higher will be the rate of homogenization and it varies inversely with 

𝑙𝑙2. The rate of homogenization will be higher for smaller period. If we have 2 different 

segregation patterns with the same amplitude, but if they have different periods, the 

segregation pattern with lower period will homogenize faster.  

Okay, this is the solution that we have obtained. Now, let us study the features of the 

concentration profiles that develop during homogenization in order to understand how the 

homogenization proceeds based upon the solutions that we have derived. Let us first consider 

for binary and then also for a ternary system, so that we will understand how the cross 

diffusion term make important effects.  

(Refer Slide Time: 42:02)  



 

Let us first consider the binary case. This figure shows the concentration profiles that are 

developed at different times of homogenization in a binary alloy and the parameters that we 

have taken for the simulation are: 

𝐷𝐷 = 3.2 × 10−15  
𝑚𝑚2

𝑠𝑠
= 0.0032 

𝜇𝜇𝜇𝜇2

𝑠𝑠
 

The period is taken as 100 𝜇𝜇𝜇𝜇 or: 

𝑙𝑙 = 50 𝜇𝜇𝜇𝜇       ,    𝛽𝛽𝑜𝑜 = 0.25 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

 𝛽𝛽𝑜𝑜 is the amplitude and the average concentration is 0.7 atom fraction. This blue profile is 

the initial concentration profile. The profile is oscillating between the maximum value of 0.95 

and the minimum value of 0.45. This is at 𝑡𝑡 equal to 0, if we use the equation that we derived 

and simulate at different times, let us say at 8 hours the profile is represented by this red 

curve, at 32 hours the profile is represented by this green curve. We can see as the 

homogenization time proceeds, the amplitude keeps dropping. The fluctuations are getting 

lower and lower so that with time the profile is tending to flatten out. If we consider a 

particular period and let us look at the 2 sides of the half of the period. On the left side, you 

will see the curvature of the profile is negative. And for constant diffusion coefficient, we 

know: 

𝜕𝜕𝐶𝐶
𝜕𝜕𝜕𝜕

= 𝐷𝐷
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

 



If the curvature is negative means, 𝜕𝜕𝐶𝐶
𝜕𝜕𝜕𝜕

 is negative, which means the concentration should 

drop. Whereas on the right side of this half interval, we see that the curvature is positive and 

the concentration should increase with time. At 𝑥𝑥 equal to 0, 𝑙𝑙, 2𝑙𝑙 and on, the curvature is 0 

and the concentration should be constant, which is the average concentration 𝐶̅𝐶. This was the 

effect of time. Now, let us understand the effect of period and the diffusivity. 

(Refer Slide Time: 44:44)  

 

We know the rate of homogenization was given by: 

1
𝜏𝜏

=
𝜋𝜋2𝐷𝐷
𝑙𝑙2

 

The rate is inversely proportional to 𝑙𝑙2. Obviously as the period increases, the rate of 

homogenization should decrease. Again these are the concentration profiles with the similar 

parameters that we used for earlier profiles. The same value of diffusivity, 𝛽𝛽𝑜𝑜 and 𝐶𝐶 � and at 𝑡𝑡 

equal to 8 hours, we have simulated for different periods. At 𝑡𝑡 = 8 ℎ𝑟𝑟 this is the profile for 𝑙𝑙 

equal to 100 micron, the red one is for 𝑙𝑙 equal to 50 micron and the green one is for 𝑙𝑙 equal to 

25 micron. After the same time of homogenization, although we started with the same 

amplitude and the same average concentration, we see that the profile with the lower period 

homogenizes faster. Then, obviously as the rate of homogenization is 𝜋𝜋
2𝐷𝐷
𝑙𝑙2

 , as the diffusivity 

increases, the rate of homogenization should also increase.  

(Refer Slide Time: 46:09)  



 

With the same parameters at 𝑡𝑡 equal to 8 hours and the half of the period-50 micron for 

different values of diffusivities, the profiles are shown here.  

Blue one is for 𝐷𝐷 = 3.2 × 10−3  𝜇𝜇𝜇𝜇
2

𝑠𝑠
, red one is for the double the diffusivity and green one is 

for 4 times the original diffusivity. And we see as the diffusivity increases, the 

homogenization rate is increased. This was for binary. Now let us look into a ternary profile.  
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Now, in ternary means we have 2 independent concentrations. So, the 2 concentrations can 

vary independently, third one will be just a dependent component or will just respond to the 

variations in the first two. The average concentration that we have taken for the ternary is: 

𝐶̅𝐶1 = 0.5 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝐶̅𝐶1 = 0.25 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝛽𝛽𝑜𝑜1 = 0.2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝛽𝛽𝑜𝑜2 = −0.2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

which means 𝐶𝐶1 and 𝐶𝐶2 are varying in the opposite direction. This is the initial profile for 

𝐶𝐶1 and this one is for 𝐶𝐶2. 𝐶𝐶1 is varying from the maximum value of 0.7 to the minimum value 

of 0.3 periodically. And 𝐶𝐶2 is varying in the same interval, the minimum value of 0.05 to the 

maximum value of 0.45. And you can see, 𝐶𝐶3 is constant throughout. To start with, there was 

no variation in 𝐶𝐶3. It was uniformly distributed. Now, one would tend to think, since 𝐶𝐶3 is 

constant, it should remain constant throughout the homogenization treatment. But that is not 

true because of the cross effects. Although the gradient in 𝐶𝐶3 is 0, but there exists gradients in 

1 and 2. And the cross interdiffusivity term would come into effect. Here we need 4 inter 

diffusion coefficients for ternary. The values that we are used assuming of course, the 

constant values are given as: 



�
𝐷𝐷�113 𝐷𝐷�123

𝐷𝐷�213 𝐷𝐷�223
� = �4.5 0.3

−4 1.7� × 10−3  
𝜇𝜇𝜇𝜇2

𝑠𝑠
 

Now, we see we have simulated the concentration profiles at different times at 𝑡𝑡 equal to 8 

hours, 32 hours, 64 hours and 196 hours. As we go at 8 hours, we see the amplitudes of 1 and 

2 have decreased and interestingly 𝐶𝐶3 to start with was constant, but it has now developed the 

undulations. As I increase the time, the undulations of 𝐶𝐶3 have increased, 𝐶𝐶1 is homogenizing 

very fast. Of course, the main diffusivity of component 1 is much higher compared to the 

main diffusivity of 2. 𝐶𝐶1 is homogenizing much faster.  

And, as I go to 64 hour, what we can see? 𝐶𝐶1 has completely flattened out, but 𝐶𝐶2 which 

looked to be flattening out between 8 hours to 32 hours has now reversed its undulations and 

this is the interesting effect which has occurred because of the interactions. Now, we will try 

to understand how. To start with, if we look at the 𝐷𝐷�213  and 𝐷𝐷�223  value, 𝐷𝐷�213  is very highly 

negative or its magnitude is higher than the main coefficient of 2. We expect that interaction 

of 1 on 2 will be great. But, we can see, because the flux of J 2 is given as: 

𝐽𝐽2 = −𝐷𝐷�213
𝜕𝜕𝐶𝐶1
𝜕𝜕𝜕𝜕

− 𝐷𝐷�223
𝜕𝜕𝐶𝐶2
𝜕𝜕𝜕𝜕

 

the gradient of 2 is also high to start with, both the gradients are higher and 𝐶𝐶1 is flattening 

out very fast. The interaction effect of 1 and 2 are not very obvious here. And by the time, 

𝐶𝐶1 has flattened out, the gradient in 𝐶𝐶3 has picked up. And the interaction of 3 on 2 have 

come into effect. Now to understand those interaction I need to convert diffusivity matrix. 

This matrix is represented with component 3 as dependent, I can convert it to a matrix with 

component 1 as dependent because we want to analyze component 2, 3.  

If I convert it to component 1 as dependent, this is the matrix that we have got: 

�
𝐷𝐷�221 𝐷𝐷�231

𝐷𝐷�321 𝐷𝐷�331
� = � 5.7 4.0

−1.5 0.5� × 10−3  
𝜇𝜇𝜇𝜇2

𝑠𝑠
 

 And what we see, 𝐷𝐷�321  is much higher than 𝐷𝐷�331 , it is a negative and an order of magnitude 

higher. And the interaction of 2 and 3 becomes very important. At the same time, the gradient 

of 3 was very low to start with, and that is the reason, if you write the similar equation for 𝐽𝐽3 

in terms of 𝐷𝐷�231  and 𝐷𝐷�331  with component 1 as dependent. You will see, although 𝐶𝐶3 was flat to 

start with, but there was a gradient in 2 and which caused the development of undulations in 



𝐶𝐶3. By the time 𝐶𝐶1 has flattened out, 𝐶𝐶3 has developed a profile and now the effect of 3 on 2 

would come into picture. And we can see 𝐷𝐷�231 is almost similar to 𝐷𝐷�221 . And that is why the 

undulations of 𝐶𝐶2  have reversed in this case.  

So,  here the direction of undulations are reversed and slowly this will flatten out. And this is 

very important in ternary and higher order system. This cross terms plays important part. If 

we do not consider this cross terms, we would have missed this effect of the undulations that 

have been developed in 𝐶𝐶3. Where would this be very important?  

For example, if 𝐶𝐶3 was constant initially and let us assume that it was below the solubility 

limit of 3 in the alloy. But since these undulations developed and if it happens that this 

concentration tries to exceed the solubility limit of component 3 in the alloy, then we expect 

the second phase to precipitate out. If we ignore these effects, we would completely miss the 

second phase precipitation and we will wrongly predict the microstructure.  

This is just one example why the cross terms are important. Okay, we have developed the 

solution for homogenization for 𝑛𝑛 component system. We applied it to binary and ternary and 

we also have seen the behavior of concentration profiles during homogenization treatment. 

Alright, we will stop here for today. Thank you. 

 

 

 


