Diffusion in Multicomponent Solids
Professor Kaustubh Kulkarni
Department of Material Science and Engineering
Indian Institute of Technology, Kanpur
Lecture 25
Numerical Problems

Welcome back, now that we have gone over derivation of some of the solutions to different
boundary conditions. Today, we will go over couple of numerical problems. The first one deals
with Carburizing of Steels and evaluating the case depths or carburizing time required. the

second one deals with evolution of concentration profiles in a multicomponent diffusion couple.
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1) A thick steel part with initial carbon content of 0.18 wt% was exposed to a
carburizing atmosphere at 820°C with constant surface concentration of carbon at
0.8 wt%.
a) If the case depth of the carburized steel is taken as the depth at which carbon
concentration drops to 0.4 wt%. determine the time required for achieving a case
depth of 0.8mm. Use the following data for diffusion of carbon in steel.

Phase Activation Energy (Q) | Frequency Factor (Dy)
kJ/mol m/s
Austenite 136 1x10°
Ferrite 80 [ 6.2 x 107

b) What will be the case depth if carburizing time is doubled?
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b) What will be the case depth if carburizing time is doubled?
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2™ Decimal of Z
LZ 0 1 2 3 4 3 6 7 ] 9

|0 0.00000[0.011280.02256 0.03384]0.04511]0.05637  0.06762|0.07886|0.09008 010128
{01 0.11246/0.12362] 0.13476, 0. 14587/ 0.15695 | 0.16800 0. 17901 0.159990.20094 0.21 184
| 0.2 /0.22270/0.23352 0.24430, 0.25302 | 0.26570/0.27633|0.28690|0.29742 0.30788 031828
| 0.3 |0.32863 0.33891/0.34913 0.3592% 0.36936|0.37938 | 0.38933 0.399210.40901 0.41874
|04 DAZH]‘) 0437‘77 na.mv 0.45689|0.46623 0.47548 | 0.48466. 0-!9]75 10.50275 0.51167
103 031090 05202-&05)790 nm 0.55494 0!6!32 10.57162 03798! (058792 DW’N
|06 |0.60385]0.61168]0.61941 | 0.62705 | 0.63459]0.64203|0.64938 | 0.65663 0.66378 0.67084.
| 0.7 0.67780]0.68467 | 0.69143]0.69810] 0.70468/0.71116 0.71754/0.72382 0.73001 0.73610
| 0.8 [0.74210]0.74800/0.75381 | 0.75952 0. 76514]0.77067|0.77610]0.78144 0. 78669 0.79 184
| 0.9 [0.79691]0.80188]0.60677 0.81156/0.81627|0.42089|0.42542 0.82987 0.83423 083851
|1 0.84270,0.8468 1 DISW 03547! 0.85865 0M2« 0.86614 DRW OHTJ‘H  0.87680
| 1.1 70.88021]0.88353 048679 0.88997|0.89308|0.89612|0.899100.90200|0.90484 0.90761|
| 1.2 [0.91031]0.91296/0.91553 091805 0.92051/0.92290/0.92524 0.92751 0.92973 0.93150.
|13 0.93401]0.93606|0.93807 | 0.94002|0.94191]0.94376|0.94556 0.94731 0.94902 0.95067
| 1.4 0.95229/0.95385 0.95538]0.95686 | 0.95830(0.95970 | 0.96105]0.96237 | 0.96365 0.96490
|15 096611 096728 0.96841 09&952 097059/ I.IWIQZ 0.97263 0.97360 0.97455 097546
|16 0.97635]0.97721|0.97804 0.97884|0.97962|0.98038 | 0.98110 0.98181 0.98249 0.983 15
| 1.7 0.98379]0.98441 | 0.98500 0.98558 | 0.98613|0.98667|0.98719|0.98759 0.98817 0.98864.
|18 nolono oml omﬁm 0.99035 | l0.99074] 10.99111] 1099147 1099182 009215 0.99248

1.9 0.99279]0.99309 0.99338 | 0.99366 0.99392|0.99418|0.99443 | 0.99466 0.99459 0.99511

|2 0.99532/0.99552/0.99572 0.995910.99609 | 0.99626 0.99642 0.99658|0.99673 099688

Here is the first problem on carburizing. This is a thick steel part with initial carbon content of
0.18 weight percent which was exposed to a carburizing atmosphere at 820 °C with constant

surface concentration of carbon at 0.8 weight percent. The original carbon content of steel is:
C, = 018wt %
and constant surface concentration maintained during carburizing is:

C, = 0.8 wt %



Assume that molar volume and interdiffusivities are independent of composition (interdiffusivity
of carbon in steel should be considered here) and since the interdiffusivity can be assumed
constant we can use the solution that we have derived for the carburizing boundary conditions,
that is, the semi-infinite boundary conditions. Since the problem states that steel part is thick,
which means it obeys the semi-infinite boundary conditions. We can draw the schematic of the
steel part carburizing surface: left side we can call as x = 0 and it is thick enough, so that the
carbon does not diffuse all the way to the other side. The other surface can be considered as x =
oo. The concentration on the surface is C; = 0.8 wt %. at the other end the original concentration
is maintained at all times as C,. At any time t, we have seen the diffusion profile will be
something like this. Now the first problem is if the case depth of the carburized steel is taken as
the depth at which carbon concentration drops to 0.4 wt %, determine the time required for
achieving a case depth of 0.8 mm. We want to find the time at which at x is equal to 0.8 mm, or

800 um, the carbon concentration achieved at that distance is:
C, =04wt% at x =800um
T =820°C=1093K
We can use the solution that we have derived, which states that:

C,—¢C, { f( X )
—-——=1—e€r
C, —C, 2+/Dt

Now, we are considering the ratios of concentration here. Since the problem states that the molar
volume can be assumed constant, it should not matter which unit of concentration we are using.

We can straightaway use the weight percent as given and on the right hand side of above

equation, we need to evaluate this error function term which contains erf (z_m)’ x is given here

which is 800 um and for D we need to consider the interdiffusivity of carbon in steel. Now, in
the given table, we see there are 2 phases austenite and ferrite in which activation energy and

frequency factor for carbon diffusion are given. Now, which one we should use?
Since the temperature being considered is:

T =820°C=1093K



Stable phase in this low carbon steel should be austenite. We should use diffusivity of carbon in

austenite phase. If we evaluate:

—136000 )

—Q e
b L%exp(RT) 110 exp(8314><1093
we have to substitute for D, and Q for austenite. Gas constant R is 8.314.

m? m?
D=32x1mﬂj;=32”

S

Let us refer to this error function table in a moment. Now we need to substitute for

concentrations.

(Refer Slide Time: 06:48)
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z| o 1 2

|_0_|0.000000.01128]0.02256
| 0.1 |0.11246|0.123620.13476
| 0.2 [0.22270|0.23352|0.24430
| 0.3 |0.328630.338910.34913
| 0.4 [0.42839/0.43797|0.44747
0.5 |0.520500.52924/0.53790

Table for: erf(Z)

2" Decimal of Z |

3 4 5 6 7 8 9 ‘
0.03384/0.04511]0.05637/0.06762| 0.07886] 0.09008 | 0.10128
0. 14537 0. ]5695 0. lﬁx()ﬂJU |7’~)Dl 0.18999 0.20094|0.21184
0.25502/0.265700.27633 | 0.28690  0.29742| 0.30788| 0.3 1828
0.35928 0.369360,37938|0.38933 | 0.39921|0,40901|0.41874
0.45689]0.46623 |0.47548| 0.48466|0.49375 0.502750.51167
0.54646 0.554940.56332 0.57162,0.57982| 0.58792|0.59594

’06 Ull(ﬂﬂﬁ 0.61168/0.61941
\ 0.7 0 67780 0.68467|0.69143

0.8 U 74210/0.74800|0.75381

0.9 079691 |0.80188 | 0.80677
[ 1 U 84270 0.84681|0.85084
| 1.1 08&02! 0&3153 0.88679
| 1.2 091031 091296 0.91553
! 1.3 D‘l?dﬂl 0016()6 0.93807
| 1.4 0 95229(0.95385/0.95538
| 1.5 U 96611 |0.96728|0.96841

1.6 U ‘)7635 0.97721|0.97804
‘ 1.7 UQR'l'lg 0.98441|0.98500

0.62705|0.63459 | 0. MZO%JO 64938 0.65663
0693]0 0.70468 | |0.71116 0. 71754 0.72382
0.75952 l].7ﬁ5lﬂ‘l).'l'l()fv?“l).'f?()] l]‘ 0.78144
0.81156|0.81627|0.82089 0.82542 0.82987
0.; 85478 0. ﬂSRfaS 0. 36244\0 86614 0.86977
0.889970.89308 | 0.896120.89910 0.90200
0. ‘JIEDS 0.92051 0 922900 92524 0.92751
0. 94002 0.94191 | ﬂ 9417&]0 ‘)45‘6 0.94731
0.95686 0. 95530 0.959700. 961050.96237
0.96952 0.97059|0.971620.97263 0.97360
0.97884 0.97962 | 0. 9303&10 981 10 0.98181
0.98558 0.98613 |0.98667 | 0.98719| 0.98769

0.66378
0.73001
0.78669
0.83423
0.87333
0.90484
0.92973
0.94902
0.96365
0.97455
0.98249
0.98817

0.67084
0.73610
0.79184
0.83851
0.87680
0.90761
0.93190
0.95067
0.96490
0.97546
0.98315
0.98864

| 1.8 098909 0.98952 | 0.98994

‘ 19 ‘0.9927970.9930970.9933H
L2 ‘"0.99531 0.9955210.99572

0.99035]0.990740.99111/0.99147]0.99182
0.99366/0.99392|0.99418/0.994430.99466
0.99591/0.99609|0.99626|0.996420.99658

0.99216
0.99489
0.99673

0.99248
0.99511
0.99688|

exf (2)= 0-6451€ e (0.45)=0.64203 o _ 0-64516-0.64203
:i (f !Z)= a“"“"”; ; 066045 0-y28 -0.64203
0te) = 0-
Z=0-6542¢

We can write:

04—018 _
0.8—10.18

/()

We need to find the carburizing time, okay. We can solve this left side. Let us call this quantity

inside error function as z and it is obtained as:
erf(z) = 0.64516

We need to evaluate first value of z which will give error function z equal to 0.64516. We can
refer to the standard error function tables which are available. The way we read this is on the
leftmost column, you have the values of z up to one decimal place and on the right side on the

topmost row are the values of z in the second decimal place

If we want the error function of 0.32 refer to 0.3 and the second decimal place is 2. The error
function of 0.32 is 0.34913. Now, we need to find out z such that error function z is equal to
0.64516. Now exactly this value may not appear in the table, but we can assume the linear
relation within the small range of z. Let us see one value which comes before 0.64516 and the

other which is slightly greater than 0.64516 from this table. We have:
erf(z) = 0.64516

erf(0.65) = 0.64203



erf(0.66) = 0.64938
If we assume linear relation, we can find the value of z here, we can write:

z—0.65  0.64516 —0.64203
0.66 — 0.65 0.64938 — 0.64203

This will give me the value of z as:

z = 0.65426
If I substitute for z:
800 = 0.65426
232t

This will give me the value of t, which comes out to be:
t = 116685 = 32.4 hours

In this particular case, to achieve the case depth of 800 um, the carburizing time should be 32.4
hours at 820 °C and the case depth in this case is defined as the depth at which carbon

concentration becomes 0.4 weight percent.



(Refer Slide Time: 11:33)
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b) What will be the case depth if carburizing time is doubled?
&
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2™ Decimal of Z

Lzl e 1 2 3 4 s 6 7 [ [
|_0_0.00000/0.0112%]0.02256/0.03384 0.04511]0.05637|0.06762 [0.07886 | 0.09008 0.10128
[0 ﬂII!M_O 12362/ 0. I‘-nh_ll I-“R'l_ﬂ ISM‘_Q 16800 0. 17901 0. IRM\OZMM_O!IIM
| 02 0.22270(0.23352 0.24430/ 0.25502 | 0.26570/0.27633 | 0.28690 0.29742 0.30788 031828
| 03 0.32863]0.33891 | 0.34913]0.35928 | 0.36936|0.37938 | 0.38933 0.39921 0.40901 0.41874
| 04 |0.42539]0.43797  0.44747 0.45689 0.46623|0.47548 | 0.48466 0.49375 050275 0.51167
| 0.5 |0.52050(0.52924 0.53790/0.54646 | 0.95494|0.56332 057162 |0.57982 | 0.58792 0.59594
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Now, the second part of the problem, what will be the case depth if carburizing time is doubled?
This is simple as once we know when carburizing time for one case depth, we can straightaway

use the Boltzmann parameter. As you see this equation here, C is a function of:

c=r()

Everything else is constant included D, C, and C;.. It means, for part b:



X1 X3 Vt, V2x
—— 1

r—i ) x_xlx_
Vi VG

N , x2=\/§x0.8mm

We suggest that if we double the carburizing time, the case depth should become V2 times the
original one. So:
x, = 1.13mm

This is how we can determine carburizing time for the given conditions or carburizing time for
the given case depth or we can determine what should be the case depth in given carburizing

time at a given temperature. Let us move on to the second problem today.

(Refer Slide Time: 13:56)
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2) A solid-solid infinite diffusion couple was assembled between two terminal alloys whose compositions are given
in the table below. If the couple was isothermally anncaled for 48 hours, what should be the composition of the

pla m: located at -700 pm in the diffusion zone? Assume that the molar volume and interdiffusivity matrix are
of comp . The interdiffusivity matrix is given as follows:
“ompositions (in atom?s) of the terminal alloys
Leﬁ terminal a Right terminal 1llun B}, DY 45 031
& o S b=l p|=ll0 plemts
10 -l! 48 0 42 58 -

+=48hag = 172800 SeC , E=-Fo0 LM
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plane located at "DU pm in the diffusion zone? Assume that the molar volume and interdiffusivity matrix are
independent of composition. The interdiffusi mr\ matrix is given as follows:

Compositions (in atom%6) of the terminal alloys

Left terminal alloy Right terminal alloys | 5“ ﬁ 45 03
Elele o (o [ o] e v
10 12 48 42 58

t=48hag = 172800 SeC , X=-FooLm
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This problem is calculating the concentration at given x and ¢ in a multi component diffusion
couple. Again, we will assume constant interdiffusivity matrix and we will consider a ternary
diffusion couple example. This will give you an idea about how to use the multi component
diffusion equation to actually calculate the concentrations at various x and t in an infinite
diffusion couple. We will solve this for ternary but it will be equally applicable for quaternary or
higher order system and we will be using the analytical solutions for constant interdiffusivity
matrix. The problem says a solid-solid infinite diffusion couple was assembled between 2

terminal alloys whose compositions are given in the table below.

In the diffusion couple, this is the initial interface between 2 terminal alloy, let us call it x=0 and
this is an infinite diffusion couple. The left most terminal is at —oo, right most terminal is +oo.
Again this means that the diffusing species do not penetrate by diffusion all the way to the

terminal ends, that the infinite boundary conditions are maintained.

Now in the left terminal alloy, the initial concentrations which we typically denote by €~ in mole
fractions are: C; = 0.1, C; = 0.42, C; = 0.48. ¢ =0, C; = 0.42, C§ = 0.58. Composition
of component 2 is same in both the terminal alloy to start with. So this is the initial concentration
profile, you can see it is a step function or it has a discontinuity at x=0, except for C, because in
this case C, is constant on both sides.

¢ = [00412] c* = [0.912]



The couple was isothermally annealed for 48 hours. The diffusion annealing time t is equal to 48

.o . . ... . m? m?2 . .
hours, we can convert it into seconds, because we use diffusivities in - or “T So, it will be

172800 second. Then, what should be the composition of the plane located at -700 yum in the
diffusion zone? -700 means it would be on the left side of the couple as x = -700 um. Assume
that the molar volume and interdiffusivity matrix are independent of composition and the

interdiffusivity matrix is given here:

2
~ ~ ~ ~ m
(D3, =45 D3 =03, D} =-40, D} =17) “T

These are the ternary interdiffusion coefficients. We need 4 interdiffusion coefficients since there
are 2 independent components. Now, we can use the multi component diffusion solution in order
to obtain the concentrations at the given x and t in the matrix form. We can write Cy 1) , where C
is a column matrix since there are 2 independent concentrations, so it is a 2x1 column matrix. It
will contain the term C; and C, since we have interdiffusivities with component 3 as dependent,

the superscript denotes the dependent component. This should be:

1
¢ =1l = P.ERF.PT']C™ + 5 [I + P.ERF.P7']C*

N| =

C~ and C* is the column matrix of independent concentrations in the left and right terminal
alloys respectively. Now, we know what are these matrices P, ERF and P~!. ERF is essentially a
diagonal matrix containing error function terms. This error function terms are in terms of the

Eigen values of the diffusivity matrix. So, it looks like:

x
o

ERle X }
0
2\/d,t

The non-diagonal elements are 0 and 1D443 is a matrix formed by Eigen vectors of D. Eigen

vectors are arranged column by column, since D is a 2 by 2 matrix, there are 2 Eigen vectors. P

is again a 2 by 2 matrix.



Now we first need to find out the Eigen values and Eigen vectors of D. This is a little bit of
revision of part of mathematical concepts, we already gone over some of those like Laplace

transforms. You will get an opportunity to revise your matrix algebra concepts, that is why I am

going over these problems.

(Refer Slide Time: 21:47)
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2.2H8X, +03%K,=0

fazl, K= ;02':‘8:—0.13,3,
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To evaluate the eigenvalues and eigenvectors of D, we write the typical equation:
Dx = X,

This will give me:



[b-alx=0 1=[ ]

where [ is a 2x2 identity matrix. Obviously X = 0 is a trivial solution. If we evaluate the D tilde
minus A I matrix. Since [ is an identity matrix Al would be, again a diagonal matrix with both the

diagonal terms being A and the non-diagonal terms being 0. So we get:

45—-1 0.3

D=AI=1"4o 17-2

Now we need to evaluate A by putting determinant of D — Al equal to 0. If we evaluate the

determinant of this matrix, it will be:
|ID-A1|=0=45-D(17-2)+4%03
We will get a quadratic equation in the form:
A2 —6.21+885=0

and the roots of this equation would be:

1 —b ++Vb?% — 4ac
B 2a

Substituting the values of a = 1, b = —6.2, ¢ = 8.85 we will get:
A, =39718=d; , A, =2.2282=d,

These are the 2 Eigen values in our terminology, d; and d,. Now, we need to find the Eigen
vectors. To find the Eigen vectors, we substitute each value of A one by one back into the

solution. For 4, = 3.9718:

4.5-3.9718 0.3 ] [X1] _ [O]
—4.0 1.7 —3.97181 [ X, 0

We will get 2 equations, we can solve any one of them. So, we get:
0.5282X; + 03X, =0

The second one basically we will get the same equation.



We have two unknowns, but only 1 equation. So, we can fix one value and get the other one.
This indicates why we take the matrix P with the diagonal elements being one. Tt is easier to do

the calculations. here if we assume the first element X; = 1, as we can find X,:

0.5282

FOT'X:L:].,XZ: 0.3

= —-1.7607

Similarly, we can do for A, = 2.2282:

4.5 —2.2282 0.3 ] [X1] _ [O]
—4.0 1.7 — 2.22821 | X, 0

We get an equation of the form:
2.2718X; + 03X, =0

For the second Eigen vector, we take X, = 1:

0.3

For X,=1, X;=—=-——=-0.1321
or Xp=1, X =-oogg = 013
(Refer Slide Time: 28:23)
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a

Now, we have obtained our matrix P here:

_ —0.1321
P=[_1 7607 |
So, we arranged the Eigen vectors column by column. The first Eigen vector is 1,-1.7607, second

one is -0.1321, 1. Now next we need to find the inverse of P. To find the inverse of P, we can

use the formula:

1
pt =17 —{cofactor of P}T



So, we have to first find co-factor matrix of P and take its transpose and divided by the
determinant of P. Let us see the cofactor matrix of P. For a 2 x2 matrix, it is easy. We just switch
the positions of diagonal elements among themselves and the non-diagonal elements among

themselves and multiply the non-diagonals by -1. This becomes:

cofactor of P = [0 11321 1.71607]

And we take its transpose, which means we arrange rows as columns or columns as rows. This

comes out to be:

17507r* 01521]

T _ 1 _ 1
(eofactor of PY =y 135, = 17607
and we need determinant of P. This should be equal to:

|[P| =1-0.1321 x 1.7607 = 0.7674

To find P inverse, we divide the transpose of co-factor of P by the determinant of P:

P_1:[1.3031 0.1721
2.2944 1.3031

We need to find the error function terms. The first error function term is:

( x ) —700
erf = erf( )
2,/d;t 21/3.9718 x 172800

using the first Eigen value. Now, we can refer back to the same error function tables and we can
evaluate the error function of this term. Now the most error function tables will give you error

function for only the positive values of z. But we know:

erf(—z) = —erf(z)

It 1s easy to refer to those tables and get the values of error functions of negative values. This

comes out to be:

x —700
er =er = —0.44278
‘f(z,hu¢> 'f<2V39718><172800)



Similarly, for the second error function term, referring back to the error function table, we will

find the error function of this to be:

erf( ad ) - erf< —709 ) — —0.57494

2,/d,t 21/2.2282 x 172800
So:
_ [—0.44278 0
ERF_[ 0 —0.57494]

Referring back to the solution, we need this product P. ERF.P~1,
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We can obtain this product P. ERF.P~1 as:

1 1 —0.132171[—0.44278 0 1.3031 0.1721
P.ERE.P _[—1.7607 1 ” 0 —0.57494”2_2944 1.3031
~1 _ [-0.4120 —0.0215
P.ERE.P [—0.2871 —0.6129]

Now, we have to substitute back in the solution right:

1
C =1~ P.ERF.P™'C” +5[I + P.ERF.P7']C*

N =

We know | is the identity matrix 2 x2 here, we know this P. ERF.P~! and we know C~ and C*.

So, we substitute in them and find C at x and t. It will come out to be again a column matrix:

0.0706
Coxr) = 0.4344 ,C, =0.0706 , C, =0.4344

What it tells me at x=-700 um after 48 hours of diffusion annealing, the composition plane that
will be developed is C; = 0.0706, C, = 0.4344 and because C3 =1 — C; — C;:

C; = 0.4950

This will be in atom fraction. So, this is how we can use the multi-component diffusion solution
to get the concentration as a function of x and t in any multi-component diffusion couple. Again

we illustrated this with a ternary diffusion couple, but similar procedure you can apply to



quaternary, quinary or higher order diffusion couples, okay. We assumed the interdiffusivity

matrix is constant throughout the diffusion zone and also molar volume was assumed constant.

Instead of moles per centimeter cube, we can also use the atom fraction or even weight fraction
because molar volume is constant, it is independent of composition. Okay, with that we will stop

here for today. Thank you.



