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Welcome to another interesting class of Diffusion in Multi-component Solids. In today’s 

class we will see some of the features of concentration profiles that develop in a diffusion 

couple. We will look into both binary and multi-component diffusion couples. 

Diffusion couple is a very important concept for this class. Throughout this class, we will 

use diffusion couples for various purposes, particularly for determination of 

interdiffusion coefficients and to see how the concentration profiles evolve in different 

types of infinite boundary conditions. So, it is important to go over some of the features 

of concentration profiles which are developed in infinite solid-solid diffusion couples. 



We have already derived the solutions to diffusion equation with the boundary conditions 

as applicable for infinite diffusion couples. Today, we will see how the concentration 

profiles evolve and what are the different features. 
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First we will look into diffusion profiles in a binary diffusion couple. Let us call the 

concentration at any position 𝑥𝑥 as 𝐶𝐶𝐴𝐴 (𝑥𝑥,𝑡𝑡), concentration of component A at 𝑥𝑥 and 𝑡𝑡 is It is 

given by: 

𝐶𝐶𝐴𝐴 (𝑥𝑥,𝑡𝑡) = 𝐶𝐶𝐴𝐴+ +
𝐶𝐶𝐴𝐴− − 𝐶𝐶𝐴𝐴+
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where 𝐶𝐶𝐴𝐴+ is the concentration of the right side terminal alloy and 𝐶𝐶𝐴𝐴− is the concentration 

of the left side terminal alloy. So, we are considering interdiffusion here and the 

interdiffusion coefficient is usually denoted by this symbol ~ on top of 𝐷𝐷. 𝐷𝐷� is the binary 

interdiffusion coefficient of the system that we are considering here. Above equation 

represent an error function type of solution. And this is the kind of profiles that develop 

in diffusion couple. 

We have shown in the above figure, concentration profile of component A and 

concentration profile of component B. This hypothetical diffusion couple was formed by 



placing an alloy with 80 percent of A and 20 percent of B in atom percent on left side and 

90 percent of B and 10 percent of A on the right side. 

As you can see, the first obvious feature of this concentration profiles are: each 

concentration profile shows an inverted symmetry. To explain this further, if I consider 

the particular profile of component A here and this is the initial contact plane at 𝑥𝑥=0. If, I 

flip the concentration profile on the left side of this plane and repeat it on the other side, I 

get the entire concentration profile. That is the inverted symmetry. Of course, we have to 

rescale our concentration axis. In this case to get this inverted symmetry, I have to make 

𝐶𝐶𝐴𝐴+ = 0. Between 𝐶𝐶𝐴𝐴− and 𝐶𝐶𝐴𝐴+, this symmetry can be seen. It is also obvious from the kind 

of solution that we get for constant interdiffusion coefficients. Remember, first we are 

considering the case of constant interdiffusion coefficient. And throughout class today for 

all different concentration profiles, we will also assume that the molar volume 𝑉𝑉𝑚𝑚 is 

constant. Towards the end of the class, we will see what happens if 𝑉𝑉𝑚𝑚 varies with 

composition. 

So, the first feature is that each individual profile shows inverted symmetry when 

interdiffusion coefficient is constant. The second feature you can see, we get the same 

diffusion depths on both sides for any particular component. For example if we see 

component B on the left side it has penetrated about 35 𝜇𝜇𝜇𝜇. On the right side also it has 

penetrated about 35 𝜇𝜇𝜇𝜇. Moreover, the diffusion depths of both the components are 

same in a binary diffusion couple on both the sides. The reason for this is: we know that 

we have 𝑛𝑛 − 1 independent fluxes in an 𝑛𝑛 component system. If we consider the volume 

fixed frame of reference, this interdiffusion coefficient 𝐷𝐷� is in the volume fix frame of 

reference. And, we have only one independent flux in a binary system which means for 

constant molar volume: 

𝐽𝐽1 + 𝐽𝐽2 = 0 

From this equation it should be clear that if the flux of a particular component goes to 

zero in a particular terminal alloy, the flux of other component should also go to zero. 

And both the components should show the same diffusion depths. So for binary diffusion, 

there is only one interdiffusion coefficient which characterizes the diffusion behavior of 



both the components. And, this binary interdiffusion coefficient should have a positive 

value, which means we will not expect any maxima or minima on any of the 

concentration profiles. So, there would be no uphill diffusion observed in a binary 

diffusion couple. 

Now, what happens if I change the interdiffusion coefficients? On the right side here I 

have shown the binary diffusion profile. I have taken the value of 𝐷𝐷� to be 4 times the one 

I used for previous profiles. For the first profile, we used: 

𝐷𝐷� = 1 × 10−15  
𝑚𝑚2

𝑠𝑠
 

And, this hypothetical diffusion couple was annealed for 48 hours. For the second 

hypothetical diffusion couple, I am now using interdiffusion coefficient as: 

𝐷𝐷� = 4 × 10−15  
𝑚𝑚2

𝑠𝑠
 

 It is annealed for the same time that is 48 hours. Immediately, you can see the diffusion 

depths have increased. Obviously, from this equation one can recognize that the diffusion 

depth varies as �𝐷𝐷�𝑡𝑡. What it means is if I increase the interdiffusion coefficient by 4 

times, the diffusion depth should be doubled, which can be seen if we compare the two 

profiles here. In the first profile, the total diffusion depth was about 35+ 35 on both sides, 

will be about 70 𝜇𝜇𝜇𝜇. In the second case, the total diffusion depth is 70+70 which is about 

140 𝜇𝜇m. If, I increase the diffusion coefficient to 4 times, the diffusion depths would be 

doubled assuming that the binary diffusion profiles were for constant interdiffusion 

coefficient. 
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Now, for constant 𝐷𝐷� value, we can directly use the expression for concentration profiles 

which was error function type of expression, which we derived for the infinite boundary 

conditions. But, when 𝐷𝐷� varies with composition, we cannot solve the diffusion equation 

straightaway or analytically. But we can solve the diffusion equation numerically with 

varying 𝐷𝐷�. In this slide I am comparing two couples. On the left side, I have the same 

hypothetical diffusion couple with constant value of 𝐷𝐷� equal to: 

𝐷𝐷� = 1 × 10−15  
𝑚𝑚2

𝑠𝑠
 

And the second on the right side are the diffusion profiles developed in a binary diffusion 

couple in which the interdiffusion coefficient varies with composition. How much it is 

varying? In the left terminal alloy, the diffusion coefficient is: 

𝐷𝐷� = 4.1 × 10−14  
𝑚𝑚2

𝑠𝑠
 



It varies with composition. And, in the right terminal alloy, it has the value of: 

𝐷𝐷� = 1.2 × 10−14  
𝑚𝑚2

𝑠𝑠
 

Now, the difference between the two type of profiles, when 𝐷𝐷� is constant as against when 

𝐷𝐷� is varying is obvious. First is if we see the individual profiles, they do not show any 

kind of symmetry which is obvious because 𝐷𝐷� is varying with composition. Also the 

diffusion depths are not same on both sides. In the left terminal alloy, the interdiffusivity 

values are higher than the right terminal alloy. And, we will see the diffusion depth is 

more in the left terminal alloy than in the right terminal alloy, which is also evident from 

the slopes of the concentration profiles. We can see the gradient in the concentration is 

shallower in the left terminal alloy and it is much steeper on the right terminal alloy. 

Then, again since we only have one independent interdiffusion flux in volume fixed 

frame and assuming 𝑉𝑉𝑚𝑚 is constant, we have: 

𝐽𝐽1 + 𝐽𝐽2 = 0 

And on any side, both the diffusing species should show the same penetration depth or 

same diffusion depth. These diffusion depths are different on either side but at any given 

side the two components should show the same diffusion depth. 

Again, no peaks are observed because we have a single diffusivity characterizing the 

diffusion behavior of both the components. And, we have only one independent 

component and one independent interdiffusion flux. Now, this was about the binary 

diffusion profiles. Let us see the nature of ternary diffusion profiles. 
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When I say ternary or a three component system, I have two independent interdiffusion 

fluxes. Based on Onsager’s formalism of Fick’s law I can write: 

𝐽𝐽1 = −𝐷𝐷�113
𝜕𝜕𝐶𝐶1
𝜕𝜕𝜕𝜕

− 𝐷𝐷�123
𝜕𝜕𝐶𝐶2
𝜕𝜕𝜕𝜕

 

𝐽𝐽2 = −𝐷𝐷�213
𝜕𝜕𝐶𝐶1
𝜕𝜕𝜕𝜕

− 𝐷𝐷�223
𝜕𝜕𝐶𝐶2
𝜕𝜕𝜕𝜕

 

 I have to define 4 interdiffusion coefficients for a ternary system, 𝐷𝐷�113 , 𝐷𝐷�123 , 𝐷𝐷�213  and 𝐷𝐷�223 . 

The superscript 3 here denotes that component 3 is being treated as the dependent 

component. Components 1 and 2 are the independent component. The flux of each 

component 1 and 2 is expressed in terms of the concentration gradients, 𝜕𝜕𝐶𝐶1
𝜕𝜕𝜕𝜕

 and 𝜕𝜕𝐶𝐶2
𝜕𝜕𝜕𝜕

. 

These are the concentration profiles of the 3 components developed in hypothetical 

ternary diffusion couple which was assembled between two terminal alloys. On the left 

side, the alloy had 10 % of component 1, 42 % of component 2, 48 % of component 3. 

On the right side, the alloy had 42 % of component 2 and 58 % of component 3. 

Components 1 and 2 are being treated as independent components here. And, component 

3 is treated as the dependent component. 

Again, this simulation was done for constant set of interdiffusion coefficient and 

assumption of constant molar volume. Because of the constancy of interdiffusion 



coefficient, we can see each individual profile shows inverted symmetry. Then, the 

diffusion depths should also be same on both the side for any individual component.  

For a ternary case since there are two independent components and the third one is 

dependent, for constant value of 𝑉𝑉𝑚𝑚  we have: 

𝐽𝐽1 + 𝐽𝐽2 + 𝐽𝐽3 = 0 

Even if one of the flux goes to 0 earlier than the others, then the other two should still 

satisfy this equation, which means at least two components should show the same 

diffusion depth. If not, all three. This is an important point because in ternary there are 

two independent components and the third one is dependent.  

Now, in this particular couple you can see component 2 has the same concentration on 

both the side. If I want to write the flux of component 2, I can use above equation: 

𝐽𝐽2 = −𝐷𝐷�213
𝜕𝜕𝐶𝐶1
𝜕𝜕𝜕𝜕

− 𝐷𝐷�223
𝜕𝜕𝐶𝐶2
𝜕𝜕𝜕𝜕

 

And, the set of ternary interdiffusion coefficient that was used to produce this profile is 

written here: 

�𝐷𝐷�113 = 4.5,        𝐷𝐷�123 = 3,        𝐷𝐷�213 = −0.6,        𝐷𝐷�223 = 1.7  � × 10−15  
𝑚𝑚2

𝑠𝑠
 

The values are in 10−15  𝑚𝑚
2

𝑠𝑠
. Particularly for component 2, 𝐷𝐷�223  is the main coefficient 

which quantifies the contribution from gradient of 2 to its own flux. And 𝐷𝐷�213  is the cross 

coefficient that quantifies the effect of gradient of 1 on the diffusion of component 2. 

Both the independent gradients will contribute to the flux of 2. Even if there is no 

gradient of concentration for component 2 to start with, we can still expect some flux. 

But, in this case the profile is still almost flat. And, the reason being, the cross 

coefficient, 𝐷𝐷�213  is much smaller than the main coefficient, 𝐷𝐷�223  in its order of magnitude. 

Even though there is a gradient for 1, in first term, 𝐷𝐷�213  is very small. So, the cross effect 

is negligible here. The gradient of 2 is anyways 0 to start with and we get to see almost 

flat profile for component 2. 



However, in a ternary couple we may expect maximum and minimum on one or more 

profiles which denotes the presence of uphill diffusion. We will see that in the later slide. 

But, now let us see what happens if I change the main interdiffusion coefficient. In this 

matrix now, if I increase the interdiffusion coefficient of 1, keeping the 3 components of 

the matrix same: 

�𝐷𝐷�113 = 64,        𝐷𝐷�123 = 3,        𝐷𝐷�213 = −0.6,        𝐷𝐷�223 = 1.7� × 10−15  
𝑚𝑚2

𝑠𝑠
 

We can see the diffusion depth of component 1 has increased. In the first couple, where 

the 𝐷𝐷�113 = 4.5 × 10−15  𝑚𝑚
2

𝑠𝑠
, the diffusion depth was about minus 70 + 70, about 140 𝜇𝜇m. 

In the second couple, where 𝐷𝐷�113 = 64 × 10−15  𝑚𝑚
2

𝑠𝑠
, the diffusion depth is about -230 to 

+230 is about 460 𝜇𝜇m. So, the diffusion depth of component 1 has increased. 

But, you can see the diffusion depth of component 3 has also increased. The reason 

being, as I explained earlier, you have to satisfy this condition:  

𝐽𝐽1 + 𝐽𝐽2 + 𝐽𝐽3 = 0 

Since 𝐽𝐽2 is almost zero throughout the diffusion profile, 𝐽𝐽1 has to be equal to −𝐽𝐽3. 

Component 3 which is the dependent component here, responds to the changes in 

concentration of component 1. And, the diffusion depth of component 3 has also 

increased. 

Let us see the effect of cross terms or how diffusional interactions work in multi-

component system or how diffusional interactions are important in a multi-component 

system. 
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On this slide, I am comparing two cases of the same diffusion couple or the diffusion 

couple formed with the same to two terminal alloys as described in the first previous 

slide. Now, here what I have done is, I have changed the cross coefficients. The first 

profile is same as I presented previously with : 

�𝐷𝐷�113 = 4.5,        𝐷𝐷�123 = 3,        𝐷𝐷�213 = −0.6,        𝐷𝐷�223 = 1.7� × 10−15  
𝑚𝑚2

𝑠𝑠
 

For the second case, I kept the main coefficient same but increased the cross coefficient b 

an order of magnitude: 

�𝐷𝐷�113 = 4.5,        𝐷𝐷�123 = 0.3,        𝐷𝐷�213 = −4.0,        𝐷𝐷�223 = 1.7� × 10−15  
𝑚𝑚2

𝑠𝑠
 

Now, in order to keep the matrix positive definite, I had to decrease the value of 𝐷𝐷�123 . But, 

let us see the effect of this change in magnitude of cross coefficient of component 2. In 

the previous case, since the cross coefficient was very small and we started with the same 

concentration of 2 on both the terminal alloys, we saw that the concentration profile for 

component 2 was almost flat.  

But, now since the cross coefficient has considerable magnitude, in fact the magnitude of 

cross coefficient here is higher than that for a main coefficient 𝐷𝐷�223 . It gives rise to this 

kind of maximum and minimum in the concentration profile. In other words, component 



2 is showing uphill diffusion because now the interactions are very strong which is 

reflected in the large magnitude of  𝐷𝐷�213 .  

Now, the cross coefficient can be negative or positive. In this case, I considered negative 

cross coefficient. What if the coefficient was positive?  

(Refer Slide Time: 21:29) 

 

In this slide, I am comparing two cases. Again, in the first case, coefficient of 𝐷𝐷�21  
3 is 

negative whereas in the second case, it is positive: 

�𝐷𝐷�113 = 4.5,        𝐷𝐷�123 = 0.3,        𝐷𝐷�213 = −4.0,        𝐷𝐷�223 = 1.7� × 10−15  
𝑚𝑚2

𝑠𝑠
 

�𝐷𝐷�113 = 4.5,        𝐷𝐷�123 = 0.3,        𝐷𝐷�213 = 4.0,        𝐷𝐷�223 = 1.7� × 10−15  
𝑚𝑚2

𝑠𝑠
 

 And, if you compare the two concentration profiles, we can see the positions of 

maximum and minimum on concentration profiles of 2 are flipped as I changed the sign 

of its cross coefficient. 

In the first case, the maximum was on the left side whereas minimum on the right side. In 

the second case, minimum is on the left side and maximum is on the right side. Now, it 

has also affected the concentration profile of component 3 right, because not all 

concentration gradients are independent. We can write for constant molar volume: 



𝜕𝜕𝐶𝐶1
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐶𝐶2
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐶𝐶3
𝜕𝜕𝜕𝜕

= 0 

If I am treating 1 and 2 as independent component, 3 is the dependent component. If the 

gradient of 2 changes and you can see there is not much change in the concentration 

profile of component 1, the concentration profile of dependent component 3 also has to 

change in order to satisfy this equation. This is how the diffusion interactions can give 

very interesting concentration profiles and these diffusional interactions are quantified in 

terms of the cross coefficients. 

Now, let us see what this negative and positive signs means. For example if I write the 

equation for interdiffusion flux of component 2, we can see the contributions is from 

both, the main term, which is this 𝐷𝐷�223
𝜕𝜕𝐶𝐶2
𝜕𝜕𝜕𝜕

 and the cross term 𝐷𝐷�213
𝜕𝜕𝐶𝐶1
𝜕𝜕𝜕𝜕

.  

Now, let us suppose 𝐷𝐷�223  is positive and the concentration gradient to start with is 

negative. The second term in effect is positive. Now, if 𝐷𝐷�213  is negative and the gradient 

term of 1 is also negative, which is the case here, then the first term becomes negative. 

So, it is decreasing the flux of component 2 or it has a reducing effect because the second 

term is positive, the first term is negative, which means, the interdiffusion flux of 

component 2 is reduced down the gradient of 1. And, it is enhanced up the gradient of 1. 

How is it enhanced up the gradient? Up the gradient means, if by any chance in a couple, 

if the gradient of 1 was positive, then this total first term will be positive and it will add to 

the second term. And, it has an additive effect. That means the negative value of cross 

coefficient 𝐷𝐷�213  enhances the interdiffusion flux of 2 up the gradient of 1 and reduces 

down the gradient of 1.  

With a similar logic, if 𝐷𝐷�213  was positive, it would have reverse effect. The positive value 

of cross coefficient, 𝐷𝐷�213  means the interdiffusion flux of 2 is enhanced down the gradient 

of 1 and reduced up the gradient of 1. This is how the diffusional interaction can affect 

the concentration profiles in a multi-component system. 

Now, let us look into some of the real multi-component concentration profiles. I will give 

you couple of examples. 
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The first one is an iron-nickel-aluminum ternary diffusion couple taken from this 

reference here by Dayananda and Sohn. Profiles are plotted by extracting the data from 

this reference. You can see in this particular couple between two iron-nickel-aluminum 

alloys, the aluminum profile is characterized by very prominent maximum and minimum. 

Also the iron profile is characterized by a very prominent maximum here on the right side 

of the initial contact plane which is also referred to as Matano plane. It means strong 

diffusional interactions exist in this iron-nickel-aluminum system. 

This particular couple was diffusion annealed at 1000 ℃ for 48 hours. As we see the 

prominent maximum and minimum on aluminum and prominent maximum on the iron 

profile, this indicates strong diffusional interactions in this system. And, this was actually 

evidenced in terms of large values of a cross interdiffusion coefficient in the system, as 

reported in this reference. Particularly, 𝐷𝐷�𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 and 𝐷𝐷�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝐹𝐹  here are very highly negative and 

have large magnitudes. 
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This is another example. Two quinary diffusion couples I am showing here. It is taken  

from this reference recently published in JMR. The first couple was assembled between a 

quinary alloy. Quinary means 5 component system. On the left side, we have 40 iron, 23 

nickel, 17 cobalt, 23 chrome, 23 manganese. The concentrations are in atom percent and 

the right side- 26 iron, 17 nickel, 23 cobalt, 17 chrome and 17 manganese. And, these are 

the concentration profiles developed in this quinary diffusion couple. And, important to 

note here is the nickel profile. We can see a nice maximum here on the left side and there 

is a minimum on the right side of the initial contact plane here. Similarly, in the second 

diffusion couple which was assembled between 14 iron, 17 nickel, 23 cobalt, 23 

chromium, 23 manganese and, 26 iron, 23 nickel, 17 cobalt, 17 chromium and 17 

manganese, the concentrations being in atom percent. On cobalt profile, we can see a 

maximum and minimum here. And, this indicates the presence of strong diffusional 

interactions in this system. This particular system, iron-nickel-cobalt-chrome-manganese 

is a very important system. It has recently gained a lot of importance, particularly in high 

entropy alloys in which diffusion is one of the most debated topics. 

These couples actually show there exists strong diffusional interactions in high entropy 

alloy systems, particularly this one, iron-nickel-cobalt-chrome-manganese. If you want to 

know more, you can refer to this paper.  



We have also characterized the interdiffusion coefficients. A quinary interdiffusion 

coefficient matrix has (𝑛𝑛 − 1)2 or 16 terms. A quinary composition is characterized by 

16 interdiffusion coefficients in volume fixed frame of reference. These are some of the 

examples of multi-component diffusion couples and the concentration profiles developed 

in these couples.  

Now, as I said, for all the discussion so far in this class we assumed molar volume is 

constant because we used for many of the profiles the analytical expressions derived by 

solving the diffusion equation which was: 

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝐽𝐽𝑖𝑖𝑜𝑜

𝜕𝜕𝜕𝜕
 

Now, if molar volume is not constant, then 𝐽𝐽𝑖𝑖𝑣𝑣 which is basically the flux in volume fixed 

frame of reference can be expressed in the terms of the flux in stationary frame of 

reference as: 

𝐽𝐽𝑖𝑖𝑣𝑣 = 𝐽𝐽𝑖𝑖𝑜𝑜 − 𝐶𝐶𝑖𝑖𝑈𝑈𝑣𝑣 

where 𝑈𝑈𝑣𝑣 is the velocity of the volume fixed frame with respect to stationary frame. Now, 

whenever I write this continuity equation, you have to remember the flux here is in 

stationary frame of reference. The continuity equation applies for the stationary frame of 

reference. If I have to solve this equation, I have to substitute in terms of the volume 

fixed frame of reference as:  

𝐽𝐽𝑖𝑖𝑜𝑜 = 𝐶𝐶𝑖𝑖𝑈𝑈𝑣𝑣 + 𝐽𝐽𝑖𝑖𝑣𝑣 

If 𝑈𝑈𝑣𝑣 is 0, which is the case when molar volume is constant, then you can see the volume 

fixed frame and the stationary frame would coincide. Or, the fluxes determined in any of 

the frames will be the same. And we can directly substitute here and solve this equation. 

But if 𝑈𝑈𝑣𝑣 is not 0, which is the case when molar volumes vary with composition or more 

specifically when partial molar volumes vary with composition then, we have to account 

for this term 𝑈𝑈𝑣𝑣.Again, 𝑈𝑈𝑣𝑣 is also function of 𝑥𝑥 and, this becomes a complicated equation 

to solve. Then continuity equation cannot be solved straight away.  



And, that is why we assumed the molar volume was constant so that we can simplistically 

show some features of the concentration profiles using the analytical expressions. 

Ofcourse, for varying case of binary interdiffusion coefficients we solved the diffusion 

equation numerically, again for constant molar volume case.  

I think that should be all for now. I will explain in more detail what happens if or how we 

solve for 𝑈𝑈𝑣𝑣 when the partial molar volumes are not constant. But, that will come later in 

the class. 


