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Welcome back to this online class on Diffusion in Multicomponent Solids. Today we are going 

to solve diffusion equation for multicomponent system.  
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We will consider the infinite diffusion couple boundary conditions and we will consider a 

multicomponent system containing 𝑛𝑛 components. When it comes to multicomponent systems, 

there are 𝑛𝑛-1 independent concentration variables. And when we define the flux of one 

component, we need to consider the concentration gradients of all the 𝑛𝑛-1 independent 

components. Based on Onsager’s formalism of Fick's law, we can write the equation for flux of a 

component 𝑖𝑖 in an 𝑛𝑛 component system as: 

𝐽𝐽𝑖𝑖 = −�𝐷𝐷�𝑖𝑖𝑖𝑖𝑛𝑛
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕

𝑛𝑛−1

𝑖𝑖=1

            𝑖𝑖 = 𝑗𝑗 𝑡𝑡𝑡𝑡 𝑛𝑛 − 1 

The flux of component 𝑖𝑖 is related to the gradient of component 𝑗𝑗 through the interdiffusion 

coefficient 𝐷𝐷�𝑖𝑖𝑖𝑖𝑛𝑛 . The superscript 𝑛𝑛 here denotes that component 𝑛𝑛 is taken as the dependent 

component. Now, there are 𝑛𝑛-1 independent concentration gradients and that is why 𝑗𝑗 varies 

from 1 to 𝑛𝑛-1. To define the flux of one component, we need 𝑛𝑛-1 interdiffusion coefficients. And 

we have 𝑛𝑛-1 independent fluxes. Because, if we assume the molar volume to be constant then the 

summation of all 𝐽𝐽𝑖𝑖, 𝑖𝑖 going from 1 to 𝑛𝑛 is equal to 0: 

�𝐽𝐽𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 0 

So, the nth flux is dependent. Therefore, we have (𝑛𝑛 − 1)2 interdiffusion coefficient that define 

the interdiffusion completely in an 𝑛𝑛 component system at a particular composition. 



Now we are going to assume that the set of interdiffusion coefficients is independent of 

composition for solving this equation. Let us see how do we solve the diffusion equation for an 𝑛𝑛 

component system. We consider here as an example quaternary system which means there are 

four components. So, three components are independent and we can write three interdiffusion 

fluxes: 

𝐽𝐽1 = −𝐷𝐷�114
𝜕𝜕𝐶𝐶1
𝜕𝜕𝜕𝜕

− 𝐷𝐷�124
𝜕𝜕𝐶𝐶2
𝜕𝜕𝜕𝜕

− 𝐷𝐷�134
𝜕𝜕𝐶𝐶3
𝜕𝜕𝜕𝜕

 

𝐽𝐽2 = −𝐷𝐷�214
𝜕𝜕𝐶𝐶1
𝜕𝜕𝜕𝜕

− 𝐷𝐷�224
𝜕𝜕𝐶𝐶2
𝜕𝜕𝜕𝜕

− 𝐷𝐷�234
𝜕𝜕𝐶𝐶3
𝜕𝜕𝜕𝜕

 

𝐽𝐽3 = −𝐷𝐷�314
𝜕𝜕𝐶𝐶1
𝜕𝜕𝜕𝜕

− 𝐷𝐷�324
𝜕𝜕𝐶𝐶2
𝜕𝜕𝜕𝜕

− 𝐷𝐷�334
𝜕𝜕𝐶𝐶3
𝜕𝜕𝜕𝜕

 

To get to the diffusion equation we can apply the continuity equation for individual components, 

we can write: 

�
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑡𝑡 �𝑥𝑥

= −�
𝜕𝜕𝐽𝐽𝑖𝑖
𝜕𝜕𝜕𝜕
�
𝑡𝑡
 

If we expand this continuity equation again for three components we can write: 

𝜕𝜕𝐶𝐶1
𝜕𝜕𝑡𝑡

= 𝐷𝐷�114
𝜕𝜕2𝐶𝐶1
𝜕𝜕𝜕𝜕2

+ 𝐷𝐷�124
𝜕𝜕2𝐶𝐶2
𝜕𝜕𝜕𝜕2

+ 𝐷𝐷�134
𝜕𝜕2𝐶𝐶3
𝜕𝜕𝜕𝜕2

 

𝜕𝜕𝐶𝐶2
𝜕𝜕𝑡𝑡

= 𝐷𝐷�214
𝜕𝜕2𝐶𝐶1
𝜕𝜕𝜕𝜕2

+ 𝐷𝐷�224
𝜕𝜕2𝐶𝐶2
𝜕𝜕𝜕𝜕2

+ 𝐷𝐷�234
𝜕𝜕2𝐶𝐶3
𝜕𝜕𝜕𝜕2

 

𝜕𝜕𝐶𝐶3
𝜕𝜕𝑡𝑡

= 𝐷𝐷�314
𝜕𝜕2𝐶𝐶1
𝜕𝜕𝜕𝜕2

+ 𝐷𝐷�324
𝜕𝜕2𝐶𝐶2
𝜕𝜕𝜕𝜕2

+ 𝐷𝐷�334
𝜕𝜕2𝐶𝐶3
𝜕𝜕𝜕𝜕2

 

So, we can see in multicomponent system, the diffusion equation is coupled, which means if we 

consider the partial differential of any component’s profile with respect to time, it is expressed in 

terms of second derivative or the second partial of each of the independent components with 

respect to 𝜕𝜕. And we have a problem here, how to solve this coupled equation.  

We first need to decouple the equation. And we can do that easily if we use matrix algebra. If we 

carefully look at the equation for the fluxes, for example here it is easy to see that we can express 

this in the form of a matrix equation. If we define a column matrix of fluxes on the left side, 

column matrix of gradients on the right side and square matrix of interdiffusion coefficients.  
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we can write the Fick's law equation as: 

𝐽𝐽𝑛𝑛 = −𝐷𝐷�
𝜕𝜕
𝜕𝜕𝜕𝜕

[𝐶𝐶] 

In this case if we write this for quaternary system, you can define these matrices as: 

𝐽𝐽4 = �
𝐽𝐽1
𝐽𝐽2
𝐽𝐽3
� 



 𝐽𝐽4 is a column matrix of 3 independent fluxes. 𝐶𝐶 is a column matrix of 3 independent 

concentrations and 𝐷𝐷� is a square matrix: 

[𝐶𝐶] = �
𝐶𝐶1
𝐶𝐶2
𝐶𝐶3
� ,          𝐷𝐷� = �

𝐷𝐷�114 𝐷𝐷�124 𝐷𝐷�134

𝐷𝐷�214 𝐷𝐷�224 𝐷𝐷�234

𝐷𝐷�314 𝐷𝐷�324 𝐷𝐷�334
� 

In case of quaternary, 𝐷𝐷� is a 3x3 matrix containing 9 interdiffusion coefficients which are given 

above. We can also write the three diffusion equations in the form of a matrix equation as: 

𝜕𝜕
𝜕𝜕𝑡𝑡

[𝐶𝐶] = 𝐷𝐷�
𝜕𝜕2

𝜕𝜕𝜕𝜕2
[𝐶𝐶] 

Now to make it even simpler, let us try to transform the original matrices into a new form. Let us 

call this new form as cap basis. So, we have to first define what we call as similarity 

transformation matrix for 𝐷𝐷�. This similarity transformation matrix 𝑃𝑃 is defined such that if we 

pre multiply 𝐷𝐷� by inverse of 𝑃𝑃, and post multiply 𝐷𝐷� by 𝑃𝑃, we get a diagonal matrix ∆: 

𝑃𝑃−1.𝐷𝐷�.𝑃𝑃 = ∆ 

and it is obtained by arranging the eigen values of this 𝐷𝐷� matrix along the diagonal. ∆ is: 

∆= �
𝑑𝑑1 0 0
0 𝑑𝑑2 0
0 0 𝑑𝑑3

� 

These 𝑑𝑑𝑖𝑖′𝑠𝑠 are eigen values of 𝐷𝐷� and matrix 𝑃𝑃 is obtained by arranging the eigen vectors of 

𝐷𝐷� column by column. For convenience, we write eigen vectors such that the corresponding 

diagonal elements are normalized to 1: 

𝑃𝑃 = �
1 𝛼𝛼2 𝛼𝛼3
𝛽𝛽1 1 𝛽𝛽3
𝛾𝛾1 𝛾𝛾2 1

� 

Now to proceed further, we define fluxes and compositions in a new basis which we call as cap 

basis. We obtained the matrix 𝐽𝐽 by pre-multiplying the original matrix with 𝑃𝑃−1. : 

𝐽𝐽 = 𝑃𝑃−1. 𝐽𝐽  



and �̂�𝐶 is obtained by pre-multiplying the original matrix 𝐶𝐶 with 𝑃𝑃−1: 

�̂�𝐶 = 𝑃𝑃−1.𝐶𝐶 

So, how this transformation helps us, just try to look at it. If we now pre-multiply the diffusion 

equation in the matrix form with 𝑃𝑃−1, we get: 

𝑃𝑃−1.
𝜕𝜕
𝜕𝜕𝑡𝑡

[𝐶𝐶] = 𝑃𝑃−1.𝐷𝐷�.
𝜕𝜕2

𝜕𝜕𝜕𝜕2
[𝐶𝐶] 

Now we are assuming that, 𝐷𝐷� matrix is constant. And this 𝑃𝑃 and 𝑃𝑃−1 matrices are also constant, 

so we can take them inside the derivatives. Further, we know: 

�̂�𝐶 = 𝑃𝑃−1.𝐶𝐶  
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So, we can write: 

𝜕𝜕�̂�𝐶
𝜕𝜕𝑡𝑡

= 𝑃𝑃−1.𝐷𝐷�.
𝜕𝜕2

𝜕𝜕𝜕𝜕2
[𝐶𝐶] 

We insert a matrix defined by the product of 𝑃𝑃 and 𝑃𝑃−1 which is an identity matrix on the right 

hand side between 𝐷𝐷� and 𝜕𝜕
2

𝜕𝜕𝑥𝑥2
[𝐶𝐶] we get: 



𝜕𝜕�̂�𝐶
𝜕𝜕𝑡𝑡

= 𝑃𝑃−1.𝐷𝐷�. (𝑃𝑃.𝑃𝑃−1)
𝜕𝜕2

𝜕𝜕𝜕𝜕2
[𝐶𝐶] = �𝑃𝑃−1.𝐷𝐷�.𝑃𝑃�.𝑃𝑃−1

𝜕𝜕2

𝜕𝜕𝜕𝜕2
[𝐶𝐶] 

Now on substituting the following we get: 

𝑃𝑃−1.𝐷𝐷�.𝑃𝑃 = ∆ 

𝜕𝜕�̂�𝐶
𝜕𝜕𝑡𝑡

= ∆ .𝑃𝑃−1
𝜕𝜕2

𝜕𝜕𝜕𝜕2
[𝐶𝐶] 

We can take 𝑃𝑃−1 inside and 𝑃𝑃−1.𝐶𝐶 is again matrix of concentration in cap basis. So: 

𝜕𝜕�̂�𝐶
𝜕𝜕𝑡𝑡

= ∆.
𝜕𝜕2�̂�𝐶
𝜕𝜕𝜕𝜕2

 

We now by the transformation got the diffusion equation in a simpler form. In terms of 

individual components of this, you know �̂�𝐶 would be a column vector of �̂�𝐶1, �̂�𝐶2 and �̂�𝐶3 . And ∆ is 

a diagonal matrix. Individually we can write: 

𝜕𝜕�̂�𝐶𝑖𝑖
𝜕𝜕𝑡𝑡

= 𝑑𝑑𝑖𝑖
𝜕𝜕2�̂�𝐶𝑖𝑖
𝜕𝜕𝜕𝜕2

 

We have now obtained a decoupled partial differential equation which looks now easier to solve. 

But we also need to look at the initial and boundary conditions now. Initial conditions for a 

diffusion couple is a step function. If we consider any single component, on the left terminal 

alloy composition was 𝐶𝐶𝑖𝑖− and on the right terminal alloy the composition was 𝐶𝐶𝑖𝑖+ to start with.  

And it is a step function or at 𝜕𝜕 = 0 there is a discontinuity. The thicknesses of the two blocks 

are such that the diffusion species does not penetrate all the way to the other end. These ends are 

±∞. The concentration of the alloy blocks remain as the original concentration in these two 

ends. 

So, initial condition is: 

𝐼𝐼.𝐶𝐶.   ∶       𝐶𝐶𝑖𝑖(𝜕𝜕, 0) = 𝐶𝐶𝑖𝑖−           𝜕𝜕 < 0 

                     𝐶𝐶𝑖𝑖(𝜕𝜕, 0) = 𝐶𝐶𝑖𝑖+           𝜕𝜕 > 0 

Boundary condition is: 

𝐵𝐵.𝐶𝐶.   ∶       𝐶𝐶𝑖𝑖(−∞, 𝑡𝑡) = 𝐶𝐶𝑖𝑖− 



                 𝐶𝐶𝑖𝑖(∞, 𝑡𝑡) = 𝐶𝐶𝑖𝑖+ 

When we solve the diffusion equation for the binary diffusion couple, we also used the 

condition: 

𝐶𝐶𝑖𝑖(0, 𝑡𝑡) =
𝐶𝐶𝑖𝑖− + 𝐶𝐶𝑖𝑖+

2
 

Since the diffusivity are constant, 𝐶𝐶𝑖𝑖(0, 𝑡𝑡) should be average of the two end concentrations. Now 

if you define this in terms of matrices, we can write: 

𝐼𝐼.𝐶𝐶.   ∶       𝐶𝐶(𝜕𝜕, 0) = 𝐶𝐶−           𝜕𝜕 < 0 

                    𝐶𝐶(𝜕𝜕, 0) = 𝐶𝐶+            𝜕𝜕 > 0 

𝐵𝐵.𝐶𝐶.   ∶       𝐶𝐶(−∞, 𝑡𝑡) = 𝐶𝐶−  

                𝐶𝐶(∞, 𝑡𝑡) = 𝐶𝐶+  

𝐶𝐶(0, 𝑡𝑡) =
𝐶𝐶−  + 𝐶𝐶+ 

2
 

where 𝐶𝐶 is the matrix of concentrations, 𝐶𝐶− is the matrix of three independent concentrations in 

the left terminal alloy and 𝐶𝐶+ is the column matrix of three independent concentrations for right 

terminal alloy. We can apply the similar transformation to the initial and boundary conditions. If 

we pre-multiply on both sides by 𝑃𝑃 inverse, we get the concentrations in cap basis.  

If we pre-multiply both side by 𝑃𝑃−1, we can write: 

𝐼𝐼.𝐶𝐶.   ∶       �̂�𝐶(𝜕𝜕, 0) = �̂�𝐶−           𝜕𝜕 < 0 

                                    = �̂�𝐶+            𝜕𝜕 > 0 

𝐵𝐵.𝐶𝐶.   ∶       �̂�𝐶(−∞, 𝑡𝑡) = �̂�𝐶−                           

�̂�𝐶(∞, 𝑡𝑡) = �̂�𝐶+  

�̂�𝐶(0, 𝑡𝑡) =
�̂�𝐶−  + �̂�𝐶+ 

2
 

We have to solve, now this diffusion equations and the initial and boundary conditions are 

defined by these matrix equations. If you write in terms of individual components �̂�𝐶𝑖𝑖, then we 

will see that now we have obtained a decoupled partial differential equation with the initial and 

boundary conditions which we have solved before for binary diffusion.  



Except that here, the concentration variable is now defined in the new basis, the cap basis. And 

instead of the single diffusivity term that appeared earlier for binary diffusion, here we see is 

𝑑𝑑𝑖𝑖 which is the eigen value of 𝐷𝐷�. Now we know the solution for this as we have derived the 

solution for this.  
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If you write the solution for Ci cap: 

�̂�𝐶𝑖𝑖 = �̂�𝐶𝑖𝑖
+ +

1
2
��̂�𝐶𝑖𝑖

− − �̂�𝐶𝑖𝑖
+� �1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �

𝜕𝜕
2�𝑑𝑑𝑖𝑖𝑡𝑡

�� 



 Remember we are using the eigen value of 𝐷𝐷� instead of single diffusivity term. For binary there 

was a single diffusivity term. We can rearrange the term and write the last solution as: 

�̂�𝐶𝑖𝑖 =
1
2
�̂�𝐶𝑖𝑖
+ +

1
2
�̂�𝐶𝑖𝑖
− −

1
2
𝑒𝑒𝑒𝑒𝑒𝑒 �

𝜕𝜕
2�𝑑𝑑𝑖𝑖𝑡𝑡

� . ��̂�𝐶𝑖𝑖
− − �̂�𝐶𝑖𝑖

+� 

Now if we want to get back to the original basis because we want the solution for composition in 

the original basis we first need to convert this into matrix form:  

If we write this in the matrix form you get: 

�̂�𝐶 =
1
2
�̂�𝐶+ +

1
2
�̂�𝐶− −

1
2
𝐸𝐸𝐸𝐸𝐸𝐸. ��̂�𝐶− − �̂�𝐶+� 

And this 𝐸𝐸𝐸𝐸𝐸𝐸 is nothing but the diagonal matrix defined by arranging the error function terms. 

These error function term for different components are arranged along the diagonal of this matrix 

as: 

𝐸𝐸𝐸𝐸𝐸𝐸 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜕𝜕
2�𝑑𝑑1𝑡𝑡

0 0

0
𝜕𝜕

2�𝑑𝑑2𝑡𝑡
0

0 0
𝜕𝜕

2�𝑑𝑑3𝑡𝑡⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

Now we have to get back to the original basis what. So, we defined the cap basis as: 

�̂�𝐶 = 𝑃𝑃−1.𝐶𝐶 

 If we pre-multiply now by 𝑃𝑃 on both sides of the equation: 

𝑃𝑃. �̂�𝐶 = 𝐶𝐶 

𝐶𝐶 =
1
2
𝐶𝐶+ +

1
2
𝐶𝐶− −

1
2
𝑃𝑃.𝐸𝐸𝐸𝐸𝐸𝐸��̂�𝐶− − �̂�𝐶+� 

and introducing 𝐼𝐼 = 𝑃𝑃−1.𝑃𝑃 after 𝐸𝐸𝐸𝐸𝐸𝐸 we get back the original matrix: 

𝐶𝐶 =
1
2
𝐶𝐶+ +

1
2
𝐶𝐶− −

1
2
𝑃𝑃.𝐸𝐸𝐸𝐸𝐸𝐸.𝑃𝑃−1(𝐶𝐶− − 𝐶𝐶+) 

 



𝐶𝐶+ and 𝐶𝐶− are the matrices of independent concentrations in right and left terminal alloy 

respectively.  

This is the solution for all the concentrations in a multi-component diffusion couple. We can 

arrange this in a better more good looking form as: 

𝐶𝐶 =
1
2

[𝐼𝐼 − 𝑃𝑃.𝐸𝐸𝐸𝐸𝐸𝐸.𝑃𝑃−1]𝐶𝐶− +
1
2

[𝐼𝐼 + 𝑃𝑃.𝐸𝐸𝐸𝐸𝐸𝐸.𝑃𝑃−1]𝐶𝐶+ 

This is a very simple looking solution in the matrix form. And remember I illustrated this for 

quaternary while deriving the solution but this is applicable for an 𝑛𝑛 component system.  Just to 

verify if I apply this for binary system.  
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For binary we have a single diffusivity term. 𝐷𝐷 = 𝑑𝑑𝑖𝑖, 𝑃𝑃 = 1 and we get back the solution that we 

have derived: 

𝐶𝐶 =
𝐶𝐶+

2
+
𝐶𝐶−

2
−

1
2
𝑒𝑒𝑒𝑒𝑒𝑒 �

𝜕𝜕
2√𝐷𝐷𝑡𝑡

� (𝐶𝐶− − 𝐶𝐶+) 

And if you rearrange the term we get the more popular form: 

𝐶𝐶 − 𝐶𝐶+

𝐶𝐶− − 𝐶𝐶+
=

1
2
�1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �

𝜕𝜕
2√𝐷𝐷𝑡𝑡

�� 



Remember this matrix 𝐸𝐸𝐸𝐸𝐸𝐸 here for binary will have only one term that is 𝑒𝑒𝑒𝑒𝑒𝑒 � 𝑥𝑥
2√𝐷𝐷𝑡𝑡

� where 𝐷𝐷 is 

the binary diffusivity there. So, this can be verified for binary.  

The advantage of using the matrix approach for solving the diffusion equation with the 

transformations that we did is very clear here. Because, we could solve very simplistically and 

got a very simple form of solution. Now people have derived before the solutions for ternary and 

you can see it can take a very complicated form. The advantage of matrix approaches is that we 

get the solution in a very simple form.  
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For example if you want to see the solution for a ternary system which was derived earlier by 

Fujita and Gosting. This is the solution for ternary concentrations. We have two independent 

concentrations 𝐶𝐶1 and 𝐶𝐶2 and you can see it is a very complicated form. But using the matrix 

approach we obtained the solution in a very simple form. We will stop here for today, thank you. 


