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Welcome back, today we are going to solve diffusion equation for another set of 

boundary conditions. It is called diffusion couple. A diffusion couple is formed when you 

have two blocks of different compositions which come into contact of each other at an 

elevated temperature. At the elevated temperature the components diffuse from one block 

into the other and the interdiffusion process occurs. 

Now we will talk about infinite diffusion couple which means the thickness of the two 

blocks in the diffusion couple that we are going to consider are large enough such that the 

diffusing species will not diffuse all the way to the other ends or all the way to the 

terminal ends of the two blocks. 
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The problem is like this. We have two alloy blocks. The initial contact plane is denoted as 

𝑥𝑥 = 0 and let us denote the starting concentration of left side alloy by 𝐶𝐶− and the starting 

concentration of the right side terminal alloy as 𝐶𝐶+. 



We will first consider binary diffusion couples which means there are two components 

and the composition of each of the block can be specified by just one concentration 

variable. So, we have to solve the diffusion equation: 

𝜕𝜕𝐶𝐶
𝜕𝜕𝜕𝜕

= 𝐷𝐷
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

        (1) 
 

And it has to be noted that we are making two assumptions here when we write this 

equation. First one is that 𝐷𝐷 is constant or independent of composition and secondly the 

molar volume is also assumed constant. Since we are dealing with infinite diffusion 

couples, the two terminal ends we denote as −∞ and +∞. 

We have on the left terminal 𝑥𝑥 = −∞, right terminal is at 𝑥𝑥 = +∞. The initial condition 

is: 

𝐶𝐶(𝑥𝑥, 0) = 𝐶𝐶−    𝑓𝑓𝑓𝑓𝑓𝑓     −∞ < 𝑥𝑥 < 0 

Now we have a step function here, the left terminal alloy initial concentration is 𝐶𝐶−, for 

all 𝑥𝑥 < 0 . And in the right terminal alloy the concentration: 

𝐶𝐶(𝑥𝑥, 0) = 𝐶𝐶+  𝑓𝑓𝑓𝑓𝑓𝑓    0 < 𝑥𝑥 < +∞ 
 

And the boundary conditions are: 

𝐶𝐶(−∞, 𝜕𝜕) = 𝐶𝐶−  

𝐶𝐶(∞, 𝜕𝜕) = 𝐶𝐶+ 

Now we have to solve the equation (1) with respect to this initial and boundary 

conditions.  We will derive the solution for this with two different approaches. First we 

will use what we have been using so far, the Laplace transform approach. For Laplace 

transform we start with taking Laplace transform on both sides of equation (1) which 

means we multiply by 𝑒𝑒−𝑘𝑘𝑘𝑘 and integrate from 𝜕𝜕 = 0 to 𝜕𝜕 = ∞: 



� 𝑒𝑒−𝑘𝑘𝑘𝑘
𝜕𝜕𝐶𝐶
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕
∞

0

= 𝐷𝐷� 𝑒𝑒−𝑘𝑘𝑘𝑘
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

𝑑𝑑𝜕𝜕
∞

0

 

Here 𝐷𝐷 is constant. So, we take 𝐷𝐷 outside the integral. Since 𝑒𝑒−𝑘𝑘𝑘𝑘 is independent of 𝑥𝑥, we 

can take this term inside the partial derivative, then right hand side becomes: 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐷𝐷�
𝜕𝜕2

𝜕𝜕𝑥𝑥2
(𝑒𝑒−𝑘𝑘𝑘𝑘𝐶𝐶)𝑑𝑑𝜕𝜕

∞

0

 

If we solve the RHS we can change the order of differentiation: 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐷𝐷�
𝜕𝜕2

𝜕𝜕𝑥𝑥2
(𝑒𝑒−𝑘𝑘𝑘𝑘𝐶𝐶)𝑑𝑑𝜕𝜕

∞

0

= 𝐷𝐷
𝜕𝜕2

𝜕𝜕𝑥𝑥2
� 𝑒𝑒−𝑘𝑘𝑘𝑘𝐶𝐶𝑑𝑑𝜕𝜕
∞

0

 

and this integral is again familiar as it is nothing but the Laplace transform of 𝐶𝐶(𝑥𝑥, 𝜕𝜕) 

which we denote as �̅�𝐶. And the Laplace transform is independent of time. So, we can 

replace the partial derivative with ordinary derivative. This becomes: 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐷𝐷
𝑑𝑑�̅�𝐶
𝑑𝑑𝑥𝑥2

 

 Now let us solve the left hand side: 

𝐿𝐿𝑅𝑅𝑅𝑅 = � 𝑒𝑒−𝑘𝑘𝑘𝑘
𝜕𝜕𝐶𝐶
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕
∞

0

 

Now let us use integration by parts here and we know the formula for integration by 

parts: 

�𝑢𝑢𝑑𝑑𝑢𝑢
𝑏𝑏

𝑎𝑎

= [𝑢𝑢𝑢𝑢]𝑎𝑎𝑏𝑏 − �𝑢𝑢𝑑𝑑𝑢𝑢
𝑏𝑏

𝑎𝑎

 

If you look at this integral here we can write: 

𝑢𝑢 = 𝑒𝑒−𝑘𝑘𝑘𝑘 ,     𝑑𝑑𝑢𝑢 =
𝜕𝜕𝐶𝐶
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕 
𝑑𝑑𝑢𝑢 = −𝑘𝑘𝑒𝑒−𝑘𝑘𝑘𝑘𝑑𝑑𝜕𝜕,    𝑢𝑢 = 𝐶𝐶 

 
We substitute here these functions and we get: 



𝐿𝐿𝑅𝑅𝑅𝑅 = [𝐶𝐶𝑒𝑒−𝑘𝑘𝑘𝑘]𝑘𝑘=0𝑘𝑘=∞ + 𝑘𝑘� 𝑒𝑒−𝑘𝑘𝑘𝑘𝐶𝐶𝑑𝑑𝜕𝜕
∞

0
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In LHS is you know 𝐶𝐶 at 𝜕𝜕 = ∞  will have a finite value and 𝑒𝑒−𝑘𝑘𝑘𝑘 = 0  and C at 𝜕𝜕 = 0   

let us call it as 𝐶𝐶𝑜𝑜 plus this integral is the Laplace transform of 𝐶𝐶: 

𝐿𝐿𝑅𝑅𝑅𝑅 = 0 − 𝐶𝐶𝑜𝑜 + 𝑘𝑘�̅�𝐶 = 𝑘𝑘�̅�𝐶 
 

If we equate LHS and RHS we find: 

𝑘𝑘�̅�𝐶 − 𝐶𝐶𝑜𝑜 = 𝐷𝐷
𝑑𝑑2�̅�𝐶
𝑑𝑑𝑥𝑥2

 
 

Or  
 
𝑑𝑑2�̅�𝐶
𝑑𝑑𝑥𝑥2

−
𝑘𝑘�̅�𝐶
𝐷𝐷

= −
𝐶𝐶𝑜𝑜
𝐷𝐷

 
 

 

We could convert using Laplace transform the partial differential equation in 𝑥𝑥 and 𝜕𝜕 to 

an ordinary differential equation. Now, this is a non-homogenous ordinary differential 

equation which is of the form: 

𝑦𝑦′′ + 𝑎𝑎𝑦𝑦′ + 𝑏𝑏𝑦𝑦 = 𝑐𝑐 



 
Here 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 are constants. Obviously 𝑎𝑎 is 0 in this case, 𝑏𝑏 = − 𝑘𝑘

𝐷𝐷
 and 𝑐𝑐 = −𝐶𝐶𝑜𝑜

𝐷𝐷
. Now to 

solve a non-homogeneous equation or to obtain the general solution for a non-

homogeneous equation, we need to first obtain the general solution for the corresponding 

homogenous equation which in this case is: 

𝑅𝑅𝑓𝑓𝐻𝐻𝑓𝑓𝐻𝐻𝑒𝑒𝐻𝐻𝑒𝑒𝑓𝑓𝑢𝑢𝐻𝐻 𝑝𝑝𝑎𝑎𝑓𝑓𝜕𝜕:    
𝑑𝑑2�̅�𝐶
𝑑𝑑𝑥𝑥2

−
𝑘𝑘�̅�𝐶
𝐷𝐷

= 0 
 

and one particular solution for the non-homogeneous equation. So, the sum of the two 

will give us the general solution for this non-homogeneous equation. Let us first consider 

the homogenous part and it has a general solution which we have seen last time when we 

solved for the semi-infinite slab boundary conditions.  

The general solution for this is: 

�̅�𝐶 = 𝑃𝑃𝑒𝑒𝑥𝑥𝑝𝑝�−�
𝑘𝑘
𝐷𝐷
𝑥𝑥� + 𝑄𝑄𝑒𝑒𝑥𝑥𝑝𝑝��

𝑘𝑘
𝐷𝐷
𝑥𝑥� 

 Now we need to know the particular solution for this. If you look at the right hand side 

of this non-homogenous equation: 

𝑑𝑑2�̅�𝐶
𝑑𝑑𝑥𝑥2

−
𝑘𝑘�̅�𝐶
𝐷𝐷

= −
𝐶𝐶𝑜𝑜
𝐷𝐷

        (2)  
 

 it is a constant −𝐶𝐶𝑜𝑜
𝐷𝐷

. The RHS can be expressed in the form: 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑘𝑘𝑒𝑒𝛾𝛾𝛾𝛾 

In this case 𝛾𝛾 is 0 and we can start with the particular solution of the type �̅�𝐶 : 

�̅�𝐶𝑃𝑃 = 𝛽𝛽𝑒𝑒𝛾𝛾𝛾𝛾 

As 𝛾𝛾 is 0,: 

�̅�𝐶𝑃𝑃 = 𝛽𝛽 

If we substitute this value of �̅�𝐶 in the LHS of non-homogeneous equation we get: 



0 −
𝑘𝑘
𝐷𝐷
𝛽𝛽 = −

𝐶𝐶𝑜𝑜
𝐷𝐷

 

This gives the value of 𝛽𝛽 as: 

𝛽𝛽 =
𝐶𝐶𝑜𝑜
𝑘𝑘

 

 the sum of the general solution of homogenous part and the particular solution of the 

non-homogeneous ODE is the general solution of the non-homogenous ODE. 
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The general solution of this equation (2) becomes: 

�̅�𝐶 = 𝑃𝑃𝑒𝑒𝑥𝑥𝑝𝑝�−�
𝑘𝑘
𝐷𝐷
𝑥𝑥� + 𝑄𝑄𝑒𝑒𝑥𝑥𝑝𝑝��

𝑘𝑘
𝐷𝐷
𝑥𝑥� +

𝐶𝐶𝑜𝑜
𝑘𝑘

 

Now this 𝐶𝐶𝑜𝑜 is the initial condition 𝐶𝐶 at 𝜕𝜕=0 and it has different values for different 

ranges of 𝑥𝑥 right because initial concentration profile was a step function.  

Now if we look at the form of the solution and we know that the concentration field 

should behave at all values of 𝑥𝑥 including 𝑥𝑥 equal to ±∞, we can straight away say that 

for negative values of 𝑥𝑥, 𝑃𝑃 should be 0 otherwise �̅�𝐶 will tend to infinity. Similarly for 

positive values of 𝑥𝑥, 𝑄𝑄 should be 0 and then 𝐶𝐶𝑜𝑜 is also different for negative and positive 

𝑥𝑥. We can write the solution as: 



�̅�𝐶 = 𝑄𝑄𝑒𝑒𝑥𝑥𝑝𝑝��
𝑘𝑘
𝐷𝐷
𝑥𝑥� +

𝐶𝐶−

𝑘𝑘
           −∞ < 𝑥𝑥 < 0 

�̅�𝐶 = 𝑃𝑃𝑒𝑒𝑥𝑥𝑝𝑝�−�
𝑘𝑘
𝐷𝐷
𝑥𝑥� +

𝐶𝐶+

𝑘𝑘
           0 < 𝑥𝑥 < +∞ 
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Now we need to find the values of P and Q. If you look at the initial concentration profile 

and we know that 𝐷𝐷 is constant or it is independent of composition here, obviously at 

𝑥𝑥=0, the concentration should be constant and it should be equal to the average: 

𝐶𝐶(0,𝑘𝑘) =
𝐶𝐶− + 𝐶𝐶+

2
 

The profile should be symmetric about 𝑥𝑥=0 because 𝐷𝐷 is constant, it is not varying with 

composition.  
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If we take the Laplace transform on both the side for this previous equation: 

� 𝑒𝑒−𝑘𝑘𝑘𝑘𝐶𝐶(0,𝑘𝑘)𝑑𝑑𝜕𝜕
∞

0

=
𝐶𝐶− + 𝐶𝐶+

2
� 𝑒𝑒−𝑘𝑘𝑘𝑘𝑑𝑑𝜕𝜕
∞

0

 

𝐶𝐶−+𝐶𝐶+

2
 is a constant. Left hand side integral is nothing but the Laplace transform of 𝐶𝐶(0,𝑘𝑘). 

For 𝑥𝑥 = 0 It should be equal to: 

�̅�𝐶𝑜𝑜 =
𝐶𝐶− + 𝐶𝐶+

2
×
−1
𝑘𝑘

× [0 − 1] =
𝐶𝐶− + 𝐶𝐶+

2𝑘𝑘
 

For 𝑥𝑥 < 0 condition if we substitute: 

�̅�𝐶𝑜𝑜 = 𝑄𝑄 +
𝐶𝐶−

𝑘𝑘
=
𝐶𝐶− + 𝐶𝐶+

2𝑘𝑘
 

and 𝑄𝑄 here comes out to be: 

𝑄𝑄 =
𝐶𝐶+ − 𝐶𝐶−

2𝑘𝑘
 

 

Using the above expression �̅�𝐶 here becomes: 



�̅�𝐶 =
𝐶𝐶+ − 𝐶𝐶−

2
×

1
𝑘𝑘

× 𝑒𝑒𝑥𝑥𝑝𝑝 �
𝑥𝑥√𝑘𝑘
√𝐷𝐷

� + 𝐶𝐶− �
1
𝑘𝑘�

 

For 𝑥𝑥 > 0 we substitute for �̅�𝐶 at 𝑥𝑥 equal to 0, this should be: 

�̅�𝐶𝑜𝑜 = 𝑃𝑃 +
𝐶𝐶+

𝑘𝑘
=
𝐶𝐶− + 𝐶𝐶+

2𝑘𝑘
 

And P here becomes: 

𝑃𝑃 =
𝐶𝐶− − 𝐶𝐶+

2𝑘𝑘
 

And �̅�𝐶 becomes: 

�̅�𝐶 =
𝐶𝐶− − 𝐶𝐶+

2
×

1
𝑘𝑘

× 𝑒𝑒𝑥𝑥𝑝𝑝 �
−𝑥𝑥√𝑘𝑘
√𝐷𝐷

� + �
𝐶𝐶+

𝑘𝑘
� 

So we got the equation of �̅�𝐶 on both sides of 𝑥𝑥 = 0. 
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If we take the inverse Laplace transform for 𝑥𝑥 < 0 we get back the function  : 

𝐶𝐶 =
𝐶𝐶+ − 𝐶𝐶−

2
× 𝐿𝐿−1 �

1
𝑘𝑘

exp �
𝑥𝑥√𝑘𝑘
√𝐷𝐷

�� + 𝐶𝐶−𝐿𝐿−1 �
1
𝑘𝑘
� 

𝐶𝐶− is a constant. And the first function inside the inverse Laplace is familiar to us as : 

𝐿𝐿−1 �
1
𝑘𝑘

exp �−𝑎𝑎√𝑘𝑘�� = 1 − 𝑒𝑒𝑓𝑓𝑓𝑓 �
𝑎𝑎

2√𝜕𝜕
� 

If we try to bring our equation in the familiar form we know: 

𝑎𝑎 = −
𝑥𝑥
√𝐷𝐷

 

we can write: 

𝐶𝐶 =
𝐶𝐶+ − 𝐶𝐶−

2
�1 − 𝑒𝑒𝑓𝑓𝑓𝑓 �

𝑎𝑎
2√𝜕𝜕

�� + 𝐶𝐶− =
𝐶𝐶+

2
−
𝐶𝐶−

2
+ 𝐶𝐶− +

𝐶𝐶− − 𝐶𝐶+

2
𝑒𝑒𝑓𝑓𝑓𝑓 �

−𝑥𝑥
2√𝐷𝐷𝜕𝜕

� 

as 𝐿𝐿−1 �1
𝑘𝑘
� = 1. And we know: 

𝑒𝑒𝑓𝑓𝑓𝑓(−𝑧𝑧) = −𝑒𝑒𝑓𝑓𝑧𝑧(𝑧𝑧) 

This we can write in the form: 

𝐶𝐶 =
𝐶𝐶+

2
+
𝐶𝐶−

2
−
𝐶𝐶− − 𝐶𝐶+

2
𝑒𝑒𝑓𝑓𝑓𝑓 �

𝑥𝑥
2√𝐷𝐷𝜕𝜕

� 



And if we subtract 𝐶𝐶+ from both the side and rearrange the term we get the familiar form 

for the diffusion couple equation: 

𝐶𝐶 − 𝐶𝐶+

𝐶𝐶− − 𝐶𝐶+
=

1
2
�1 − 𝑒𝑒𝑓𝑓𝑓𝑓 �

𝑥𝑥
2√𝐷𝐷𝜕𝜕

�� 

 Now for  𝑥𝑥 > 0: 

𝐶𝐶 =
𝐶𝐶− − 𝐶𝐶+

2
× 𝐿𝐿−1 �

1
𝑘𝑘

exp �
−𝑥𝑥√𝑘𝑘
√𝐷𝐷

�� + 𝐶𝐶+𝐿𝐿−1 �
1
𝑘𝑘
� 

And if we compare with the familiar expression for 𝐿𝐿−1 here: 

𝑎𝑎 =
𝑥𝑥
√𝐷𝐷

 

 and we can write: 

𝐶𝐶 =
𝐶𝐶− − 𝐶𝐶+

2
�1 − 𝑒𝑒𝑓𝑓𝑓𝑓 �

𝑥𝑥
2√𝐷𝐷𝜕𝜕

�� + 𝐶𝐶+ 

and if we rearrange we get: 

𝐶𝐶 − 𝐶𝐶+

𝐶𝐶− − 𝐶𝐶+
=

1
2
�1 − 𝑒𝑒𝑓𝑓𝑓𝑓 �

𝑥𝑥
2√𝐷𝐷𝜕𝜕

�� 

So, we get the same form for both 𝑥𝑥 < 0as well as 𝑥𝑥 > 0. We can write the solution in 

general as: 

𝐶𝐶(𝛾𝛾,𝑘𝑘) − 𝐶𝐶+

𝐶𝐶− − 𝐶𝐶+
=

1
2
�1 − 𝑒𝑒𝑓𝑓𝑓𝑓 �

𝑥𝑥
2√𝐷𝐷𝜕𝜕

�� 

 

1 − 𝑒𝑒𝑓𝑓𝑓𝑓(𝑧𝑧) is also called as complementary error function. It is denoted as erfc, we can 

write it as: 

𝐶𝐶(𝛾𝛾,𝑘𝑘) − 𝐶𝐶+

𝐶𝐶− − 𝐶𝐶+
=

1
2
𝑒𝑒𝑓𝑓𝑓𝑓𝑐𝑐 �

𝑥𝑥
2√𝐷𝐷𝜕𝜕

� 

 

This is the solution that we obtain for a typical infinite diffusion couple. This we obtained 

by Laplace transform method.  
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Now we will derive the equation for concentration evolution in an infinite diffusion 

couple using another method called Principle of Superposition. Let us draw the initial 

concentration profile, let us denote the 𝑥𝑥 coordinate with 𝑦𝑦. It will be clear soon why we 

are denoting it now by 𝑦𝑦. 

𝑦𝑦 = 0 and then we have 2 terminals at −∞ and +∞. The initial concentration in the left 

terminal alloy is 𝐶𝐶−, the initial concentration in the right terminal alloy is 𝐶𝐶+. We already 

defined the initial and boundary conditions and we have to solve the diffusion equation. 

Now let us consider a small volume element of very small width 𝑑𝑑𝑦𝑦 which is located at 

some coordinate 𝑦𝑦 within the diffusion couple. Now this small element can be considered 

as an instantaneous planar source for the diffusing component, right and let us say it’s 

strength is 𝑑𝑑𝑑𝑑. Now we have seen the solution for instantaneous planar source which is 

sandwiched between two infinite blocks. 

If you remember, you got concentration profile something like this, the instantaneous 

planar source was situated at this position 0. We have found the equation for evaluation 

concentration at any position 𝑥𝑥 = 𝑦𝑦 because of the instantaneous planar source at 𝑦𝑦 = 0.  

And that we know is: 



𝐶𝐶(𝛾𝛾,𝑘𝑘) =
𝑑𝑑𝑑𝑑

2√𝜋𝜋𝐷𝐷𝜕𝜕
exp �

−𝑥𝑥2

4𝐷𝐷𝜕𝜕
� 

Now this whole diffusion couple can be thought of as composed of large number of such 

instantaneous planar sources and from the initial concentration profile we know what 

would be their strength. On the left hand side or for 𝑦𝑦 < 0 the strength will be 𝐶𝐶−𝑑𝑑𝑦𝑦 and 

for right hand side the strength would be 𝐶𝐶+𝑑𝑑𝑦𝑦 and if you want to find the total 

concentration at any position 𝑥𝑥 there will the contribution from each of these 

instantaneous planar source. So, we can obtain the individual contribution by the solution 

for instantaneous planar source sandwiched between two infinite blocks. And if we sum 

the concentration field because of each of this instantaneous source we will get the total 

concentration at this position 𝑥𝑥 at any time 𝜕𝜕. 𝐶𝐶(𝛾𝛾,𝑘𝑘) would be nothing but integral −∞ to 

+∞  for all the sources. Now from −∞ to 0 we have a different strength and 0 to +∞ we 

have different strength. Let us split this integral at 0, from −∞ to 0 we know 𝑑𝑑𝑑𝑑 for 𝑦𝑦 <

0 is 𝐶𝐶−𝑑𝑑𝑦𝑦. Similarly for the right side of the couple. Now we need to know the distance 

between the source and the plane at which we want to find the concentration field. That 

will be 𝑥𝑥 − 𝑦𝑦.  So we get finally: 

𝐶𝐶(𝛾𝛾,𝑘𝑘) = �
𝐶𝐶−𝑑𝑑𝑦𝑦

2√𝜋𝜋𝐷𝐷𝜕𝜕

0

−∞

exp �
−(𝑥𝑥 − 𝑦𝑦)2

4𝐷𝐷𝜕𝜕 � + �
𝐶𝐶+𝑑𝑑𝑦𝑦

2√𝜋𝜋𝐷𝐷𝜕𝜕

∞

0

exp �
−(𝑥𝑥 − 𝑦𝑦)2

4𝐷𝐷𝜕𝜕 � 

Let us take the constants out: 

𝐶𝐶(𝛾𝛾,𝑘𝑘) =
𝐶𝐶−

2√𝜋𝜋𝐷𝐷𝜕𝜕
� exp �

−(𝑥𝑥 − 𝑦𝑦)2

4𝐷𝐷𝜕𝜕 � 𝑑𝑑𝑦𝑦
0

−∞

+
𝐶𝐶+

2√𝜋𝜋𝐷𝐷𝜕𝜕
� exp �

−(𝑥𝑥 − 𝑦𝑦)2

4𝐷𝐷𝜕𝜕 �
∞

0

𝑑𝑑𝑦𝑦 

 Now if we substitute: 

𝑥𝑥 − 𝑦𝑦
2√𝐷𝐷𝜕𝜕

= 𝜂𝜂 

 then we can write: 

𝑑𝑑𝑦𝑦 = −2√𝐷𝐷𝜕𝜕𝑑𝑑𝜂𝜂 

and when: 



𝑦𝑦 = −∞,        𝜂𝜂 = +∞ 

𝑦𝑦 = 0,        𝜂𝜂 =
𝑥𝑥

2√𝐷𝐷𝜕𝜕
 

𝑦𝑦 = ∞,        𝜂𝜂 = −∞ 

 

If we substitute these,  𝐶𝐶(𝛾𝛾,𝑘𝑘) becomes: 

𝐶𝐶(𝛾𝛾,𝑘𝑘) = −
𝐶𝐶−

2
2
√𝜋𝜋

� exp[− 𝜂𝜂2]𝑑𝑑𝜂𝜂

𝛾𝛾
2√𝐷𝐷𝑘𝑘

∞

−
𝐶𝐶+

2
2
√𝜋𝜋

� exp[− 𝜂𝜂2]𝑑𝑑𝜂𝜂           (3)
−∞

𝛾𝛾
2√𝐷𝐷𝑘𝑘

 

Now the integral limits I have changed corresponding to η. So these looks something 

similar to error function type and we know: 

erf(𝑧𝑧) =
2
√𝜋𝜋

� exp[− 𝜂𝜂2]𝑑𝑑𝜂𝜂
𝑧𝑧

0

 

So to bring to this from each of the integrals in Eq. (3) is split at 0. We can write: 

𝐶𝐶(𝛾𝛾,𝑘𝑘) = −
𝐶𝐶−

2
2
√𝜋𝜋

⎣
⎢
⎢
⎢
⎡
� exp[− 𝜂𝜂2]𝑑𝑑𝜂𝜂
0

∞

+ � exp[− 𝜂𝜂2]𝑑𝑑𝜂𝜂

𝛾𝛾
2√𝐷𝐷𝑘𝑘

0
⎦
⎥
⎥
⎥
⎤

−
𝐶𝐶+

2
2
√𝜋𝜋

⎣
⎢
⎢
⎢
⎡
� exp[− 𝜂𝜂2]𝑑𝑑𝜂𝜂
0

𝛾𝛾
2√𝐷𝐷𝑘𝑘

+ � exp[− 𝜂𝜂2]𝑑𝑑𝜂𝜂
−∞

0 ⎦
⎥
⎥
⎥
⎤
 

If we look at each of the integrals they are error functions. So I can write this as: 

𝐶𝐶(𝛾𝛾,𝑘𝑘) = −
𝐶𝐶−

2
�− erf(∞) + erf �

𝑥𝑥
2√𝐷𝐷𝜕𝜕

�� −
𝐶𝐶+

2
�−erf �

𝑥𝑥
2√𝐷𝐷𝜕𝜕

� + erf(−∞)  � 

 

Again, we know erf(∞) is 1 and erf(−∞) is -1. We can write this as: 

𝐶𝐶(𝛾𝛾,𝑘𝑘) =
𝐶𝐶−

2
−
𝐶𝐶−

2
erf �

𝑥𝑥
2√𝐷𝐷𝜕𝜕

� +
𝐶𝐶+

2
erf �

𝑥𝑥
2√𝐷𝐷𝜕𝜕

� +
𝐶𝐶+

2
 

 



Again if we subtract 𝐶𝐶+ from both side and rearrange we will get the solution: 

𝐶𝐶 − 𝐶𝐶+

𝐶𝐶− − 𝐶𝐶+
=

1
2
�1 − 𝑒𝑒𝑓𝑓𝑓𝑓 �

𝑥𝑥
2√𝐷𝐷𝜕𝜕

�� 

 

So, we derived this equation with the principle of superposition.  Basically each of the 

small element in these blocks of the diffusion couple can be assumed as an instantaneous 

planar source sandwiched between two infinite blocks and by summing all their 

concentration field at any given 𝑥𝑥 we find the net concentration at that particular value of 

𝑥𝑥. 

Now let us quickly look at some of the features of this error function solution, this is a 

similar solution that we obtained for the carburizing problem, so similar properties will 

apply here. The solution is same except for this factor of 1
2
.  

We will see that 𝐶𝐶+, 𝐶𝐶− and 𝐷𝐷 are constants. 

(Refer Slide Time: 42:13) 

 

Again we can say that 𝐶𝐶 at any position 𝑥𝑥 and 𝜕𝜕 is a function of 𝛾𝛾
√𝑘𝑘

 and 𝛾𝛾
√𝑘𝑘

 is also called as 

Boltzmann parameter  𝜆𝜆. What does this mean again? If we draw the schematic 

concentration profiles at different times for infinite diffusion couple, these are the initial 



profiles for three times, 𝜕𝜕1, 𝜕𝜕2 and 𝜕𝜕3. If we consider any particular composition let say 𝐶𝐶𝑖𝑖 

here and track its 𝑥𝑥 position at different times these will be 𝑥𝑥1, 𝑥𝑥2, and 𝑥𝑥3.  

What this relation tells me that: 

𝑥𝑥1
√𝜕𝜕1

=
𝑥𝑥2
√𝜕𝜕2

=
𝑥𝑥3
�𝜕𝜕3

= 𝜆𝜆𝐶𝐶𝑖𝑖 

Each composition plane in a diffusion couple moves parabolically with time, it is what 

we usually call it because 𝛾𝛾
√𝑘𝑘

 is equal to constant. This is a parabolic relation that each of 

the composition plane follows in a diffusion couple: 

𝐶𝐶(𝛾𝛾,𝑘𝑘) = 𝑓𝑓 �
𝑥𝑥
√𝜕𝜕
� = 𝑓𝑓(𝜆𝜆) 

  And this is an important property because this helps us in roughly estimating the 

penetration depths at different times if you know penetration depth at one time for a 

given composition plane.   

Okay, this diffusion couple is very important for in our class, we will use this diffusion 

couple concept quite frequently because most of the experiments that we carry out to 

determine the interdiffusion and intrinsic diffusion coefficients are based on this infinite 

diffusion couples.  

So, far we derived the expression for binary diffusion couple, but when it comes to 

multicomponent diffusion couple the problem becomes little more complicated but we 

will also derive the equation for a concentration profiles of multi-component diffusion 

couple. We will look into it in the next class. Thank you. 


