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Error Function and its Laplace Transform 

Welcome back, to the class on Diffusion in Multicomponent Solids. In next few lectures, we 

will go over solutions of diffusion equation for various boundary conditions and Laplace 

transform will be an important tool in solving this diffusion equations. Last lecture, we went 

through the properties of Laplace transforms and we also solved some examples wherein we 

evaluated Laplace transforms for some simple functions. Today, we will evaluate the Laplace 

transforms for some of the important functions that we will encounter while solving diffusion 

equation.  

When I say that, one of the important function that we will encounter in solutions of diffusion 

equation is error function. Let us first go over some of the properties of error function the 

definition first and it will be sufficient for this class to just know the definition and some of 

the properties of error functions. We do not need to go over in detail into this error function. 

The error function is defined as follows. 
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erf(𝑡) =
2

√𝜋
∫ 𝑒−𝑢2

𝑑𝑢
𝑡

0

 



The factor 
2

√𝜋
  is the normalizing factor so that the error function of infinity turns out to be 

unity and this is an important function. Many of the solutions will have this error function 

form. Let us see some of the properties of error function. 

First one is: 

erf(−𝑡) = −erf(𝑡) 

It is easy to show this. For example if we make a substitution for: 

𝑢 = −𝑘,     𝑡ℎ𝑒𝑛            𝑢 = 0      𝑓𝑜𝑟         𝑘 = 0  

    𝑓𝑜𝑟    𝑢 = −𝑡, 𝑘 = 𝑡 

𝑑𝑢 = −𝑑𝑘 

If we define erf(−𝑡) it should be: 

erf(−𝑡) =
2

√𝜋
∫ 𝑒−𝑢2

𝑑𝑢
−𝑡

0

 

Now, if we substitute 𝑢 = −𝑘  this turns out to be: 

erf(−𝑡) =
2

√𝜋
∫ 𝑒−𝑢2

𝑑𝑢
−𝑡

0

= −
2

√𝜋
∫ 𝑒−𝑘2

𝑑𝑘
𝑡

0

= −erf(𝑡) 

Hence we have proved erf(−t) = −erf(t). Similarly, the second property isL 

erf(0) = 0 

It is very easy to see here, because integral from 0 to 0 should be 0. Third property is: 

erf(∞) = 1 

and from the first property it will turn out that: 



erf(−∞) = −1 

And then the fourth and one of the important property is: 

𝑑

𝑑𝑥
erf(𝑥) =

2

√𝜋
𝑒−𝑥2

 

These are some of the properties of error function. With that now let us try to evaluate the 

Laplace transform for error function. erf (
𝑎

√𝑡
) is an important function which we will 

encounter in the solutions for diffusion equation. So let us try to evaluate the Laplace 

transform for erf (
𝑎

√𝑡
). 
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The problem is to evaluate 𝐿 {erf (
𝑎

√𝑡
)} and by definition the Laplace transform is: 

𝐿 {erf (
𝑎

√𝑡
)} = ∫ 𝑒−𝑘𝑡 erf (

𝑎

√𝑡
) 𝑑𝑡

∞

0

 

And, if you substitute for error function from its definition, you will get: 

𝐿 {erf (
𝑎

√𝑡
)} = ∫ 𝑒−𝑘𝑡erf (

𝑎

√𝑡
)𝑑𝑡

∞

0

= ∫ 𝑒−𝑘𝑡 [
2

√𝜋
∫ 𝑒−𝑢2

𝑑𝑢

𝑎

√𝑡

0

]
∞

0

𝑑𝑡 

There are two integrals involved here, let us try to rearrange them: 

𝐿 {erf (
𝑎

√𝑡
)} =

2

√𝜋
∫ ∫ 𝑒−𝑘𝑡𝑒−𝑢2

𝑑𝑢
𝑢=

𝑎

√𝑡

𝑢=0

𝑡=∞

𝑡=0

𝑑𝑡 

Now we have to evaluate this double integral in this case. The first integral is with respect to 

𝑑𝑢 and then with respect to 𝑑𝑡. Let us try to change the order of integration, so that it 

becomes convenient to solve. In this case the inner integral is with respect to 𝑢. Limits are 

defined for 𝑢 as equal to 0 to 
𝑎

√𝑡
 and the outer integral is for 𝑡, so the limit of outer integral are 

defined as 𝑡 = 0 to 𝑡 = ∞. How do we change the order of integration if there are two 

variables here 𝑢 and 𝑡? 

Let us draw a plot of 𝑢 versus 𝑡.  First let us discuss the inner integral limits: 𝑢 equal to 0 is 

basically this 𝑡 axis at 𝑢 = 0 to 𝑢 equal to 
𝑎

√𝑡
. This upper limit is defined by the curve of 𝑢 =



𝑎

√𝑡
. So, iff you draw a plot of 𝑢 versus t, such that 𝑢 equal to 

𝑎

√𝑡
 we will get a plot something 

like this and this plot defines the upper limit for 𝑢. For the outer integral, the limits of 𝑡 are 

from 𝑡 equal to 0 which is basically the 𝑢 axis to 𝑡 = ∞ as the upper limit for 𝑡 is infinity.  

If we try to change the order of integration, which means if we first want to evaluate the 

integral with respect to 𝑡 and then with respect to 𝑢, we first have to take the limits of 𝑡. Now, 

in this case the limits of 𝑡 will go from 𝑡 equal to 0: so if we draw these horizontal lines, the 𝑡 

is bound by 0 on left side and by this plot on the right side. 

You can also write the equation of this plot as: 

𝑡 =
𝑎2

𝑢2
 

If we define the inner integral limit as 𝑡 equal to 0 to 𝑡 equal to 
𝑎2

𝑢2 and the outer integral limit 

will now become u. The 𝑢 in this case will be bound by 𝑢 equal to 0 and all the way to 

infinity and the integrand is 𝑒−𝑘𝑡𝑒−𝑢2
: 

𝐿 {erf (
𝑎

√𝑡
)} =

2

√𝜋
∫ ∫ 𝑒−𝑘𝑡𝑒−𝑢2

𝑑𝑡
𝑡=

𝑎2

𝑢2

𝑡=0

𝑢=∞

𝑢=0

𝑑𝑢 

We have changed the order of integration and there is also a factor of 
2

√𝜋
 outside. Let us try to 

evaluate this inner integral now. The inner integral will be: 

∫ 𝑒−𝑘𝑡𝑒−𝑢2
𝑑𝑡

𝑡=
𝑎2

𝑢2

𝑡=0

=
−𝑒−𝑢2

𝑘
[𝑒−𝑘𝑡]

0

𝑎2

𝑢2
=

𝑒−𝑢2

𝑘
[1 − 𝑒

−
𝑘𝑎2

𝑢2 ] 

So, the Laplace transform of error function a by root 𝑡 should be equal to: 

𝐿 {erf (
𝑎

√𝑡
)} =

2

√𝜋
∫ [

𝑒−𝑢2

𝑘
−

𝑒−𝑢2

𝑘
𝑒

−𝑘𝑎2

𝑢2 ]

𝑢=∞

𝑢=0

𝑑𝑢 

If we evaluate this separately, this will be: 

𝐿 {erf (
𝑎

√𝑡
)} =

1

𝑘

2

√𝜋
∫ 𝑒−𝑢2

𝑑𝑢

𝑢=∞

𝑢=0

−
1

𝑘

2

√𝜋
∫ 𝑒−𝑢2

𝑒
−𝑘𝑎2

𝑢2 𝑑𝑢

𝑢=∞

𝑢=0

=
1

𝑘
−

1

𝑘

2

√𝜋
𝐼 



The first term here is 
1

𝑘
 and we have to evaluate this second integral here. Let us call this 

integral as 𝐼: 

𝐼 = ∫ 𝑒−𝑢2
𝑒

−𝑘𝑎2

𝑢2 𝑑𝑢

𝑢=∞

𝑢=0

 

and if you notice, the integration is with respect to 𝑢 and it is a definite integral. 𝐼 is a 

function of k, so we write 𝐼(𝑘). To evaluate this integral let us try to do a little bit of 

manipulation, if we take a derivative of 𝐼 with respect to 𝑘: 

𝑑𝐼

𝑑𝑘
= ∫ 𝑒−𝑢2 𝑑

𝑑𝑘
𝑒

−𝑘𝑎2

𝑢2 𝑑𝑢

𝑢=∞

𝑢=0

 

And if we evaluate the derivative of 𝑒
−𝑘𝑎2

𝑢2  and substitute we get: 

𝑑𝐼

𝑑𝑘
= ∫ 𝑒−𝑢2 𝑑

𝑑𝑢
𝑒

−𝑘𝑎2

𝑢2 𝑑𝑢

𝑢=∞

𝑢=0

= ∫ 𝑒−𝑢2 −𝑎2

𝑢2
𝑒

−𝑘𝑎2

𝑢2 𝑑𝑢

𝑢=∞

𝑢=0

 

𝑑𝐼

𝑑𝑘
 in this case is: 

𝑑𝐼

𝑑𝑘
= −𝑎2 ∫ 𝑒−𝑢2 1

𝑢2
𝑒

−
𝑘𝑎2

𝑢2 𝑑𝑢

∞

0

 

Now let us make a substitution here. If we define: 

𝑥 =
√𝑘𝑎

𝑢
 

So, 

𝑑𝑥 = −
√𝑘𝑎

𝑢2
𝑑𝑢     𝑜𝑟 𝑑𝑢 = −

𝑢2

√𝑘𝑎
𝑑𝑥 

 and we substitute this in 
𝑑𝐼

𝑑𝑘
 which becomes: 



𝑑𝐼

𝑑𝑘
= −𝑎2 ∫ 𝑒

−𝑘𝑎2

𝑥2
1

𝑢2
𝑒−𝑥2 −𝑢2

√𝑘𝑎
𝑑𝑥

0

∞

 

and if we see the limits, when 𝑢 is equal to 0 𝑥 will tend to ∞ and as 𝑢 tends to ∞ 𝑥 will tend 

to 0. These limits are reversed as ∞ to 0. Further the expression can be simplified as: 

𝑑𝐼

𝑑𝑘
= −

𝑎

√𝑘
∫ 𝑒−𝑥2

𝑒
−𝑘𝑎2

𝑥2 𝑑𝑥

∞

0

 

 and and if we closely look at this integral, it is basically the same as 𝐼 of k. So what we get 

here: 

𝑑𝐼

𝑑𝑘
= −

𝑎

√𝑘
𝐼 

 Now, if you solve this equation, the solution is: 

𝐼 = 𝐶𝑒𝑥𝑝(−2𝑎√𝑘) 

Now, to evaluate 𝐶 if you substitute for 𝑘 = 0, then we know: 

𝐼(𝑜) = 𝐶 

but if we substitute in the integral: 

𝐼𝑜 = 𝐶 = ∫ 𝑒−𝑥2
𝑑𝑥

∞

0

 

As 

 
2

√𝜋
∫ 𝑒−𝑥2

𝑑𝑥
∞

0
= erf(∞) = 1 

So: 

𝐼𝑜 = 𝐶 =
√𝜋

2
 

We have now got the value of 𝐼: 



𝐼 =
√𝜋

2
𝑒𝑥𝑝 (−2𝑎√𝑘) 

If you substitute the expression for 𝐼 back in the Laplace transform equation we get: 

𝐿 {𝑒𝑟𝑓 (
𝑎

√𝑡
)} =

1

𝑘
−

2

√𝜋

1

𝑘

√𝜋

2
𝑒𝑥𝑝(−2𝑎√𝑘) =

1

𝑘
−

1

𝑘
𝑒𝑥𝑝(−2𝑎√𝑘) 

We got the Laplace transform of one of the important function here. If we evaluate the 

inverse Laplace on both side here, then: 

𝑒𝑟𝑓 (
𝑎

√𝑡
) = 𝐿−1 [

1

𝑘
] − 𝐿−1 [

1

𝑘
𝑒𝑥𝑝(−2𝑎√𝑘)] 

𝐿−1 [
1

𝑘
] is nothing but 1 because the Laplace transform of 1 is 

1

𝑘
 and if you rearrange, we find 

𝐿−1 [
1

𝑘
𝑒𝑥𝑝(−2𝑎√𝑘)] should be equal to: 

𝐿−1 [
1

𝑘
𝑒𝑥𝑝(−2𝑎√𝑘)] = 1 − 𝑒𝑟𝑓 (

𝑎

√𝑡
) 

This is an important result, because when we solve diffusion equation, we will do that 

Laplace transform and to get back the original solution when we take the inverse Laplace we 

will have to refer to this kind of solutions. And this is an important result here. 1 − 𝑒𝑟𝑓(𝑥) is 

also referred to as 𝑒𝑟𝑓𝑐 or complementary error function. So: 

𝐿−1 [
1

𝑘
𝑒𝑥𝑝(−2𝑎√𝑘)] = 𝑒𝑟𝑓𝑐 (

𝑎

√𝑡
) 

This is one important formula that we have obtained. 

We have now derived the formula for the Laplace transform of error function of 
𝑎

√𝑡
 where 𝑎 is 

a constant. Let us try to now use the property of Laplace transform of the derivative of 

functions and try to derive one more formula here. Let us say: 

𝑓(𝑡) = 𝑒𝑟𝑓 (
𝑎

√𝑡
) 
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The derivative of 𝑓(𝑡) will be: 

𝑓′(𝑡) =
𝑑

𝑑𝑡
𝑒𝑟𝑓 (

𝑎

√𝑡
) = −

𝑎

2𝑡√𝑡
 

 and we know 
𝑑

𝑑𝑥
 of error function 𝑥 is equal to: 

𝑑

𝑑𝑥
𝑒𝑟𝑓(𝑥) =

2

√𝜋
𝑒−𝑥2

 

 Here we will have to first evaluate 
𝑑

𝑑𝑡
(

𝑎

√𝑡
) as: 

𝑓′(𝑡) =
𝑑

𝑑𝑡
𝑒𝑟𝑓 (

𝑎

√𝑡
) = −

𝑎

2𝑡√𝑡

2

√𝜋
𝑒𝑥𝑝 [

−𝑎2

𝑡
] 

This should be: 

𝑓′(𝑡) = −
𝑎

√𝜋𝑡3/2
𝑒𝑥𝑝 [

−𝑎2

𝑡
] 

 Now let us make use of formula for Laplace transform of derivative of a function.  𝐿{𝑓′(𝑡)} 

should be equal to: 

𝐿{𝑓′(𝑡)} = 𝑘𝐿{𝑓(𝑡) − 𝑓(0)} 

 Since, our 𝑓(𝑡) is 𝑒𝑟𝑓 (
𝑎

√𝑡
) t, as 𝑡 tends to 0 𝑓(0) tends to 1, the right hand side here will be: 

𝐿{𝑓′(𝑡)} = 𝑘𝐿{𝑓(𝑡) − 𝑓(0)} = 𝑘𝐿 {𝑒𝑟𝑓 (
𝑎

√𝑡
)} − 1 

 And, we just derived the formula for Laplace transform of error function of 
𝑎

√𝑡
. If we 

substitute for the Laplace transform of 𝑒𝑟𝑓 (
𝑎

√𝑡
), that should be equal to 

1

𝑘
−

1

𝑘
𝑒𝑥𝑝(−2𝑎√𝑘). 

So: 

𝐿{𝑓′(𝑡)} = 𝑘𝐿{𝑓(𝑡) − 𝑓(0)} = 𝑘𝐿 {𝑒𝑟𝑓 (
𝑎

√𝑡
)} − 1 = 𝑘 [

1

𝑘
−

1

𝑘
𝑒𝑥𝑝(−2𝑎√𝑘)] − 1 

𝐿{𝑓′(𝑡)} = −𝑒𝑥𝑝(−2𝑎√𝑘) 



If you substitute for 𝑓′(𝑡) here on the left hand side and get rid of the negative sign from both 

the sides, we find: 

𝐿 {
𝑎

√𝜋𝑡3/2
𝑒𝑥𝑝 [

−𝑎2

𝑡
]} = 𝑒𝑥𝑝(−2𝑎√𝑘) 

This is one more formula that we have derived. 

If we take inverse on both the side, we can also write this as: 

𝐿−1{𝑒𝑥𝑝(−2𝑎√𝑘)} =
𝑎

√𝜋𝑡3/2
𝑒𝑥𝑝 [

−𝑎2

𝑡
] 

This is another formula that is often used while solving the diffusion equation.  

We have derived a couple of formula today, we will stop here for today, thank you. 


