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Welcome to the 18th lecture, in the open course on Diffusion in Multicomponent Solids. We 

will be solving diffusion equation for non-steady state diffusion, particularly for infinite 

boundary conditions. We will make use of Laplace transforms and hence, this lecture is a 

refresher on Laplace transforms. 

One of the most important aspect of phenomenological expressions of diffusion is that we can 

use it to predict concentration profiles in different diffusion problems. With respect to 

different boundary conditions and given initial conditions, we can solve the diffusion 

equation to predict the concentration profile as a function of 𝑥 and 𝑡. For that we need to 

solve the diffusion equation. Remember how we derived diffusion equation? We used 

continuity equation, substitute Fick’s law expression into continuity equation, and we get the 

desired diffusion equation. 

Now, in steady state condition the concentration at a given 𝑥 does not change with time and 

we have seen the solutions for steady state condition as we solved the diffusion equation for 

steady state condition. Now, we will go over the solution for diffusion equation in non-steady 

state conditions, for different boundary conditions and initial conditions. For that, we will use 

Laplace transform as one of the very useful mathematical tool. 

Now, you guys have already studied Laplace transforms in your mathematics class probably, 

but at that time the connection may not be very clear. The application of mathematics to the 

problems that we solve in our Material Science or Metallurgy may not be very clear so I 

would like to first give a refresher of Laplace transform for next couple of classes because we 

will be using a very important mathematical tool for solving diffusion equations. 

Anybody remembers what is Laplace transform? What does it do? How do we define Laplace 

transform?  

Student: It will convert one kind of function into another kind of, it will change the variable. 



Professor: What kind of variable we typically use? Let us look at the definition of Laplace 

transform. 
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If we have a function 𝑓(𝑡), then we define the Laplace transform of 𝑓(𝑡) or we write: 

𝐿{𝑓(𝑡)} = ∫ 𝑒−𝑘𝑡𝑓(𝑡)𝑑𝑡

∞

0

= 𝑓(̅𝑘) 

This is a definite integral so obviously it is independent of time. 

The Laplace transform is also denoted by the function 𝑓:̅ 

𝐿{𝑓(𝑡)} = 𝑓(̅𝑘) 

and now, 𝑓 ̅is not a function of 𝑡, but function of 𝑘. If we take the inverse of 𝑓(̅𝑘), inverse 

Laplace transform, we get back the original function 𝑓(𝑡). We write: 

𝐿−1{𝑓(̅𝑘)} = 𝑓(𝑡) 

Basically the function which was initially a function of time, by taking Laplace transform, we 

are making it independent of time, 𝑡. Let us see some simple examples. 

Suppose: 

𝑓(𝑡) = 𝑃 



𝑃 is some constant, we can write: 

𝐿{𝑓(𝑡)} = ∫ 𝑒−𝑘𝑡𝑃𝑑𝑡

∞

0

 

So, P is a constant you can take it out of integral: 

𝐿{𝑓(𝑡)} = 𝑃 ∫ 𝑒−𝑘𝑡𝑑𝑡

∞

0

= −
𝑃

𝑘
[𝑒−𝑘𝑡]0

∞ = −
𝑃

𝑘
[0 − 1] 

But: 

𝐿{𝑃} =
𝑃

𝑘
 

 So, I can write: 

𝐿−1 {
𝑃

𝑘
} = 𝑃 

 We will write down some of the Laplace transforms here, on the right side.  
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If 𝑓(𝑡) is 𝑃. Laplace transform of 𝑓(𝑡) is 
𝑃

𝑘
. 
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Consider, another example, if: 

𝑓(𝑡) = 𝑒−𝑃𝑡 

then Laplace transform of 𝑓(𝑡) would be: 

𝐿{𝑓(𝑡)} = ∫ 𝑒𝑃𝑡𝑒−𝑘𝑡𝑑𝑡

∞

0

= ∫ 𝑒−(𝑘−𝑝)𝑡𝑑𝑡

∞

0

= −
1

𝑘 − 𝑝
[𝑒−∞ − 𝑒0] =

1

𝑘 − 𝑝
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If our 𝑓(𝑡) is 𝑒𝑃𝑡 its Laplace transform is  
1

𝑘−𝑝
. Similarly, we can look at another example. 
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𝑓(𝑡) = 𝑐𝑜𝑠𝜔𝑡 

Let us try to get the Laplace transform of this: 

𝐿{𝑓(𝑡)} = ∫ 𝑒−𝑘𝑡𝑐𝑜𝑠𝜔𝑡𝑑𝑡

∞

0

 

 Let us integrate by part, what is the formula for integration by part? 

∫ 𝑢𝑑𝑣

𝑏

𝑎

= [𝑢𝑣]𝑎
𝑏 − ∫ 𝑣𝑑𝑢

𝑏

𝑎

 

Here we can write: 

𝑢 = 𝑐𝑜𝑠𝜔𝑡 

𝑑𝑣 = 𝑒−𝑘𝑡𝑑𝑡 

𝑣 = −
𝑒−𝑘𝑡

𝑘
 

𝑑𝑢 = −𝜔𝑠𝑖𝑛𝜔𝑡𝑑𝑡 

𝐿{𝑓(𝑡)} becomes: 



𝐿{𝑓(𝑡)} = −
1

𝑘
[𝑒−𝑘𝑡𝑐𝑜𝑠𝜔𝑡]0

∞ −
𝜔

𝑘
∫ 𝑒−𝑘𝑡𝑠𝑖𝑛𝜔𝑡

∞

0

𝑑𝑡 =
1

𝑘
−

𝜔

𝑘
∫ 𝑒−𝑘𝑡𝑠𝑖𝑛𝜔𝑡

∞

0

𝑑𝑡 

Second term on right hand side can be integrated by integration by parts considering: 

𝑢 = 𝑠𝑖𝑛𝜔𝑡                     𝑑𝑣 = 𝑒−𝑘𝑡𝑑𝑡 

𝑑𝑢 = 𝜔𝑐𝑜𝑠𝜔𝑡                𝑣 = −
𝑒−𝑘𝑡

𝑘
 

So we get: 

𝐿{𝑓(𝑡)} =
1

𝑘
−

𝜔

𝑘
{−

1

𝑘
[𝑒−𝑘𝑡𝑠𝑖𝑛𝜔𝑡]0

∞ +
𝜔

𝑘
∫ 𝑒−𝑘𝑡𝑐𝑜𝑠𝜔𝑡

∞

0

𝑑𝑡} =
1

𝑘
−

𝜔2

𝑘2
𝐿{𝑓(𝑡)} 

𝐿{𝑓} =
𝑘

𝑘2 + 𝜔2
 

So, the Laplace transform of 𝑐𝑜𝑠𝜔𝑡 we obtain as 
𝑘

𝑘2+𝜔2. we can obtain Laplace transform of 

𝑠𝑖𝑛𝜔𝑡 similarly, and if you work on 𝑠𝑖𝑛𝜔𝑡 we will get Laplace transform of 𝑠𝑖𝑛𝜔𝑡 as 
𝜔

𝑘2+𝜔2. 



We can obtain Laplace transforms of some simple functions similarly, and you will see they 

are tabulated at various places. Now if we have to deal with complicated functions, then we 

need to look into more properties of Laplace transforms. 
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One of the property is the Linearity property which states that: 

𝐿{𝑎𝑓1(𝑡) + 𝑏𝑓2(𝑡)} = 𝑎𝐿{𝑓1(𝑡)} + 𝑏𝐿{𝑓2(𝑡)} 

The second property which is called K- shifting property essentially says that if: 

𝑓(̅𝑘) = 𝐿{𝑓(𝑡)} 

Then: 

𝐿{𝑒𝑃𝑡𝑓(𝑡)} =  𝑓(̅𝑘 − 𝑃) 

It is shifting the k, that is why it is called k shifting. If I take inverse L inverse, I get: 

𝐿−1{𝑓(̅𝑘 − 𝑃)} = 𝑒𝑃𝑡𝑓(𝑡) 

We can prove this. 
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If you write the Laplace transform expression for 𝑒𝑃𝑡𝑓(𝑡) this will be: 

𝐿{𝑒𝑃𝑡𝑓(𝑡)} = ∫ 𝑒−𝑘𝑡𝑒𝑃𝑡𝑓(𝑡)𝑑𝑡

∞

0

= ∫ 𝑒−𝑘+𝑃𝑓(𝑡)𝑑𝑡

∞

0

 

and if we substitute: 

𝑘 − 𝑃 = 𝑠 

we get: 

𝐿{𝑒𝑃𝑡𝑓(𝑡)} = ∫ 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡

∞

0

= 𝑓(̅𝑠) = 𝑓(̅𝑘 − 𝑃) 

𝐿{𝑒𝑃𝑡𝑠𝑖𝑛𝜔𝑡} =
𝜔

(𝑘 − 𝑃)2 + 𝜔2
 

For example, if you consider any function from here, let us say 𝑠𝑖𝑛𝜔𝑡, then the Laplace 

transform of 𝑒𝑃𝑡𝑠𝑖𝑛𝜔𝑡 can be calculated by looking at the table. So you have to substitute 𝑘 

with 𝑘 − 𝑃 which should be equal to
𝜔

(𝑘−𝑃)2+𝜔2
. 

Similarly, what will be the Laplace transform of 𝑒𝑃𝑡𝑐𝑜𝑠𝜔𝑡? You have to substitute 𝑘 with 

𝑘 − 𝑃. It will be 
𝑘−𝑃

(𝑘−𝑃)2+𝜔2
. Now, this property especially comes handy when we are trying to 



find inverse Laplace transforms of some complicated function. Let us see one example, let us 

try to find inverse Laplace transform of a function. 
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𝑓(̅𝑘) =
6

𝑘2 + 6𝑘 + 18
 

How do we go about this? This we can write as: 

𝑓(̅𝑘) =
6

𝑘2 + 6𝑘 + 18
=

6

𝑘2 + 6𝑘 + 9 + 9
=

2 × 3

(𝑘 + 3)2 + 32
 

This looks similar to the expression for Laplace transform of 𝑠𝑖𝑛𝜔𝑡 with 𝜔 = 3 and instead 

of k we have 𝑘 + 3, then we use the k shifting theorem. This should be: 

𝐿−1{𝑓(̅𝑘)} = 2𝐿−1 {
3

(𝑘 + 3)2 + 32
} = 2𝑒−3𝑡𝑠𝑖𝑛3𝑡 

Now we will be solving differential equations with this. We are also interested in Laplace and 

inverse Laplace of derivatives. Let us look at the properties of Laplace transform of 

derivatives. 
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There are two formula, first: 

𝐿{𝑓′} = 𝑘𝐿{𝑓} − 𝑓(0) 

 and the Laplace transform of second derivative of f that is: 

𝐿{𝑓′′} = 𝑘2𝐿{𝑓} − 𝑘𝑓(0) − 𝑓′(0) 

Again let us try to prove this. Since 𝑓 is a function of 𝑡, 𝑓′ is nothing but: 

𝑓′ =
𝑑𝑓

𝑑𝑡
 



Laplace transform of 𝑓′ using integration by parts would be: 

𝐿{𝑓′} = ∫ 𝑒−𝑘𝑡
𝑑𝑓

𝑑𝑡
𝑑𝑡

∞

0

= [𝑓𝑒−𝑘𝑡]0
∞ + 𝑘 ∫ 𝑒−𝑘𝑡𝑓(𝑡)𝑑𝑡

∞

0

 

Here,  

𝑢 = 𝑒−𝑘𝑡 

𝑑𝑢 = −𝑘𝑒−𝑘𝑡 

𝑑𝑣 =
𝑑𝑓

𝑑𝑡
𝑑𝑡 

𝑣 = 𝑓 

So, 𝐿{𝑓′} is nothing but: 

𝐿{𝑓′} = 𝑘𝐿{𝑓} − 𝑓(0) 

 This proves our first formula.  
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For the second one, if we have the first one it is simple because: 

𝑓′′ = (𝑓′)′ 

We just substitute: 



𝐿{𝑓′′} = 𝑘𝐿{𝑓′} − 𝑓′(0) = [𝑘𝐿{𝑓} − 𝑓(0)] − 𝑓′(0) 

𝐿{𝑓′′} = 𝑘2𝐿{𝑓} − 𝑘𝑓(0) − 𝑓′(0) 

This proves our second formula. We can use this to find again Laplace transforms of more 

complicated functions, let us see an example. 
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Suppose, we have to find the Laplace transform of 𝑡𝑒𝑃𝑡, so: 

𝑓(𝑡) = 𝑡𝑒𝑃𝑡 

Obviously: 

𝑓(0) = 0 

 And 

𝑓′ = 𝑒𝑃𝑡 + 𝑃𝑡𝑒𝑃𝑡 

𝑓′(0) = 1 

and 𝑓′′ will be: 

𝑓′′ = 𝑃𝑒𝑃𝑡 + 𝑃𝑒𝑃𝑡 + 𝑃2𝑡𝑒𝑃𝑡 = 2𝑃𝑒𝑃𝑡 + 𝑃2𝑡𝑒𝑃𝑡 

And, if we use the second formula here, we will get: 



Laplace transform of 𝑓′′ should be equal to: 

𝐿{2𝑃𝑒𝑃𝑡 + 𝑃2𝑡𝑒𝑃𝑡} = 𝑘2𝐿{𝑡𝑒𝑃𝑡} − 𝑘 × 0 − 1 

On rearranging terms what we get is: 

(𝑘2 − 𝑃2)𝐿{𝑡𝑒𝑃𝑡} = 1 + 2𝑃𝐿{𝑒𝑃𝑡} = 1 +
2𝑃

𝑘𝑃
=

𝑘 + 𝑃

𝑘 − 𝑃
 

We can get Laplace transform of 𝑡𝑒𝑃𝑡 by this as: 

𝐿{𝑡𝑒𝑃𝑡} =
1

(𝑘 − 𝑃)2
 

We can write another formula here. 

𝐿{𝑡𝑒𝑃𝑡} =
1

(𝑘 − 𝑃)2
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We will stop here today.  


