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Welcome to the sixteenth lecture in the open course on diffusion in multi-component solids. 

In this lecture, we will derive continuity equation which along with Fick’s law establishes 

dependence of concentration on time and distance coordinate. We will also solve diffusion 

equation for steady state diffusion condition in this lecture.  

Now, we have gone through Fick’s law and also the application of Fick’s law in multi-

component systems. We saw that we need at least (𝑛 − 1)2 interdiffusion coefficients to 

describe diffusion in 𝑛 component system. It means if we have a ternary system, we need 4 

interdiffusion coefficients, for quaternary we need 9 and on. And they are again all functions 

of composition. Let us come back to binary system, so in binary system we showed that we 

need only one interdiffusion coefficient. The diffusion flux of both the components is 

described based on only one interdiffusion coefficients and this interdiffusion coefficient 

again varies with composition. 
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If we write Fick’s law for binary system: 

𝐽𝑖 = −𝐷̃
𝜕𝐶𝑖

𝜕𝑥
 

 Tilde sign here denotes that we are talking about interdiffusion or inter mixing or diffusion 

along the strong concentration gradients. 𝐽𝑖 is the interdiffusion flux of 𝑖 is equal to −𝐷̃ times 

the gradient of concentration of 𝑖 with respect to the distance coordinate 
𝜕𝐶𝑖

𝜕𝑥
. Now we know 

that the concentration varies as a function of distance coordinate as well as time.  

If we consider a particular diffusion zone and at some time 𝑡1 if this is the concentration 

profile, then after some time 𝑡3 we might see the profile like this. So the concentration is 

continuously evolving at 𝑡1, 𝑡2 and 𝑡3. At any particular time, let us say at 𝑡1, 𝐶𝑖 is varying as 

a function of 𝑥 but if you consider at any particular 𝑥, 𝐶𝑖 is also varying as a function of time.  

So: 

𝐶𝑖 = 𝐶𝑖(𝑥, 𝑡) 

And that is the reason we are using the partial differentiation sign here. Now you will see one 

of the limitations of Fick’s law here that it talks about concentration variation with respect to 

𝑥 but it is not explicitly talking about concentration variation with time. If you want to predict 

the evolution of concentration this equation alone cannot be used. That is one of the 

limitations of Fick’s law. But anyway that does not mean that Fick’s law is not applicable 



when 𝐶 is varying as a function of time. In fact at any given time you can apply Fick’s law at 

any given plane along this concentration profile.  

Now there is one more thing 𝐷̃ is a function of composition and since composition varies 

with 𝑥 and 𝑡 so diffusion coefficient in this equation is also varying with 𝑥 and 𝑡. 𝐷̃ is not 

constant, it is not independent of composition but it varies with composition and since 

composition varies with 𝑥 and 𝑡, 𝐷̃varies with 𝑥 and 𝑡. That has to be taken into account 

whenever we solve the equations for predicting evolution of concentration profiles.  

Now, how do we overcome this? Or take into account the variation of concentration with 

time also? In order to take into account the variation with time we use what is called as 

principle of conservation of species. Consider a box into which there is a species 𝑖 entering 

from some directions and there is also species leaving from other directions. It is a simple 

equation the rate of inflow minus rate of outflow will give me the rate of accumulation of 

component 𝑖 inside this box. 

I am making one assumption here, what is that? I am assuming that there is no production or 

loss of component 𝑖 within this box. One example where this can happen is if there is a 

radioactive decay of component 𝑖. You might lose some of the species of 𝑖. When this 

happens you have to take into account the rate of production or loss also. Let us assume that 

there is no production or loss of component 𝑖 and let us consider the case of unidirectional 

diffusion. I am considering here the situation where, I have a specimen along which there is 

some concentration gradient and the diffusion is occurring. The diffusion is unidirectional, let 

us call this plus 𝑥 direction. I consider a small volume element which is bound by two 

vertical planes which are perpendicular to the diffusion direction, let us call them plane 1 and 

plane 2. And the cross sectional area of this specimen is, let us say it is A. We know since the 

concentration gradient here is negative, this way the diffusion flux is from left to right. Let us 

say at plane 1 the flux is 𝐽𝑖(𝐼) and this is at given time 𝑡. And at plane 2 the flux is denoted as 

𝐽𝑖(𝐼𝐼). Width of this volume element is let us say 𝛿𝑥. Exactly at the centre of this, I consider 

one more plane and the flux there is denoted as 𝐽𝑖.  

If 𝛿𝑥 is very small, I can express 𝐽𝑖(𝐼) and 𝐽𝑖(𝐼𝐼)in terms of 𝐽𝑖 and the gradient of flux with 

respect to 𝑥. I can write: 

𝐽𝑖(𝐼) = 𝐽𝑖 −
𝛿𝑥

2
(

𝜕𝐽𝑖

𝜕𝑥
)

𝑡

 



𝐽𝑖(𝐼𝐼) = 𝐽𝑖 +
𝛿𝑥

2
(

𝜕𝐽𝑖

𝜕𝑥
)

𝑡

 

Now, the flux at plane 1 is basically the incoming flux or the inflow into the volume element 

𝛿𝑥. And the flux at plane 2 is the outflow basically rate of outflow per unit time per unit area 

that is the unit of flux. Inflow minus outflow will give me the accumulation. 
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If I write this equation accumulation of 𝑖 in small time interval 𝛿𝑡 it should be equal to inflow 

minus outflow or 

{𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖 𝑖𝑛 𝑡𝑖𝑚𝑒 𝛿𝑡} = {𝐽𝑖(𝐼)𝛿𝑡𝐴 − 𝐽𝑖(𝐼𝐼)𝛿𝑡𝐴} 

Where inflow is the first term. I write accumulation of i in time δt as 
δni

δtA
. And if I substitute 

for J̃i(I) and J̃i(II) from above, I get: 

𝛿𝑛𝑖

𝛿𝑡𝐴
= −𝛿𝑥 (

𝜕𝐽𝑖

𝜕𝑥
)

𝑡

 

And 𝐴𝛿𝑥 is nothing but the volume of the element that I am considering.  

𝛿𝑛𝑖 by volume is just nothing but the concentration in the units that we usually use, i.e.,  

moles per centimetre cube or number of atoms per centimetre cube according to the unit in 

which 𝑛𝑖 is expressed. So LHS becomes 
𝛿𝐶𝑖

𝛿𝑡
 and this I am considering at location 𝑥.   So: 



(
𝛿𝐶𝑖

𝛿𝑡
)

𝑥
= − (

𝜕𝐽𝑖

𝜕𝑥
)

𝑡

 

And if I consider a very small time interval that is as  𝛿𝑡 → 0, I can replace this with again 

the partial derivative of 𝐶𝑖 with respect to 𝑡: 

(
𝜕𝐶𝑖

𝜕𝑡
)

𝑥
= − (

𝜕𝐽𝑖

𝜕𝑥
)

𝑡

 

And this is the so-called conservation equation or continuity equation. Now this gives 

me  𝐶𝑖as a function of both 𝑡 and x. This is the fundamental equation, the continuity equation. 

Now remember again while deriving this I assume that there is no production or loss of the 

species 𝑖. Typically, in the diffusion in solid that we consider, especially, when the diffusion 

is defect mediated like for example through vacancies, there may be production of excess 

vacancies or loss of vacancies to the sink. And that might affect this term 𝐶𝑖 here, because it 

affects the site fraction of species 𝑖. In that case we need to also consider the rate of 

production or rate of loss of the particular sites or vacancies.  

For now, we are assuming that there is no production or loss of species 𝑖. Let us try to analyse 

the consequences of this equation. 

(Refer Slide Time: 15:00) 

 

If I substitute Fick’s law equation in the continuity equation I get: 

(
𝜕𝐶𝑖

𝜕𝑡
)

𝑥
=

𝜕

𝜕𝑥
(𝐷̃

𝜕𝐶𝑖

𝜕𝑥
) 



Now remember again as I mentioned earlier 𝐷̃ is a function of composition and since 

composition varies with 𝑥, 𝐷̃ also varies with 𝑥. you cannot straight away take this out as a 

constant. Only when 𝐷̃ is constant or 𝐷̃ is independent of 𝐶𝑖 we can write: 

(
𝜕𝐶𝑖

𝜕𝑡
)

𝑥
= 𝐷̃ (

𝜕2𝐶𝑖

𝜕𝑥2
)

𝑡

 

And this is commonly known as Fick’s second law. It is not exactly appropriate to mention 

this as Fick’s second law, but it is popularly known as because the fundamental equation is 

Fick’s law equation: 

𝐽𝑖 = −𝐷̃
𝜕𝐶𝑖

𝜕𝑥
 

And the continuity equation is simply the principle of conservation. One more thing this 

continuity equation is valid only in stationary frame of reference. 
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I should more accurately write the continuity equation as: 

(
𝜕𝐶𝑖

𝜕𝑡
)

𝑥
= − (

𝜕𝐽𝑖
𝑜

𝜕𝑥
)

𝑡

 

where 𝐽𝑖
𝑜 is the interdiffusion flux in stationary or which is also referred to as lab-fixed frame. 

Now, based upon our previous discussion when I wrote this, what is the assumption that I 

have made here? What is the frame of reference that we usually use when we write the above 



equation? That it is in volume fixed frame. And if I am substituting the flux in volume fixed 

frame as the flux in stationary frame of reference, what is the assumption that I am making.  

Student: Volume fixed frame is equal to lab-fixed frame 

Professor: Right. Volume fixed frame is coinciding with the lab fixed frame, that is when the 

velocity of volume fixed frame, 𝑈𝑣 is 0. Only then this can happen. Otherwise, we know: 

𝐽𝑖
𝑜 = 𝐽𝑖 + 𝐶𝑖𝑈𝑣 

𝐽𝑖 is in volume fixed frame. When I substitute this original equation becomes: 

(
𝜕𝐶𝑖

𝜕𝑡
)

𝑥
= −

𝜕𝐽𝑖

𝜕𝑥
− 𝑈𝑣

𝜕𝐶𝑖

𝜕𝑥
− 𝐶𝑖

𝜕𝑈𝑣

𝜕𝑥
 

If I want to write the diffusion equation in terms of fluxes in volume fixed frame, I also need 

to consider the velocity of the volume fixed frame. And only when 𝑈𝑣 is 0, I get the original 

form of continuity equation in the stationary frame because in that case the stationary frame 

and volume fixed frame coincide. And as I said this happens when the partial molar volumes 

are assumed constant, in other words when there is no net volume change occurring because 

of diffusion. 

If the partial molar volumes are functions of composition, then with diffusion there will be a 

change in volume. There will be net contraction or expansion of the diffusion zone. 

Obviously, when there is an expansion or contraction you can visualize that along with the 

diffusive flow or the Fickian flux, there will also be a net mass flow because of the expansion 

or contraction. That you need to consider when you write the flux in lab fixed frame. 

When I write this equation: 

(
𝜕𝐶𝑖

𝜕𝑡
)

𝑥
= − (

𝜕𝐽𝑖
𝑜

𝜕𝑥
)

𝑡

 

 I am assuming that my lab fixed frame is coinciding with volume fixed frame which in other 

words means the velocity of volume fixed frame, 𝑈𝑣 is 0. Again, 𝑈𝑣 also varies with 𝑥. 𝑈𝑣 is 

not constant, it change as a function of 𝑥 and 𝑡. We will talk about this in more detail later, 

but at this point just understand that continuity equation applies only in stationary fixed 

frame. 



Now, with that assumption let us try to solve continuity equation. We should call it as 

diffusion equation. This is the basic diffusion equation which we should solve for different 

boundary values and initial conditions. You can see this is a partial differential equation of 

second order in 𝑥 and first order in 𝑡. So, how many conditions are needed to solve these 

equations? We need one initial condition, the condition in time and two boundary conditions, 

condition in 𝑥, in order to solve this partial differential equation. Let us try to solve these 

equations for different boundary and initial conditions in next few classes. 
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Let us start with the very simple case which is known as steady state diffusion. What is a 

steady state?  

Professor: Right. The diffusion is occurring but it is not causing any change in concentration 

at any given position. And the classic example is the experiment done by Fick, remember. 

What he did he studied the diffusion of salt in water and he developed the steady state for that 

explained this in previous class. 

And the way he conducted the experiment was a vertical tube through which salt was 

diffusing. The vertical tube contains solution of salt and water. At the bottom, this was 

basically the source of salt or has the saturated solution of salt in water. Its concentration was 

fixed which will not change because of diffusion, so this was almost an infinite source of salt. 

Similarly, top container had pure water which was a sink for salt. The water container was 

very large. 



The addition of salt from bottom tube by diffusion into top will not cause significant change 

in the concentration. This remained pure water. So, 𝐶𝑖 for salt of concentration was 0 here 

and it was fixed at the saturated concentration at the bottom. And through the middle tube the 

salt diffused through the solution from bottom to top and the steady state was developed. 

Steady state means at any given 𝑥 position (𝑥 axis is vertical here), the concentration did not 

vary with time. Although, the concentration varies from bottom to top but at any given 𝑥 it 

was fixed. Now, what should be the flux condition for this to happen? Think of the volume 

element that we used to derive continuity equation. The accumulation is equal to inflow 

minus outflow. So here there is no net accumulation or loss which means inflow should be 

equal to outflow. The flux should be constant at any given position for steady state to 

develop.  

In this case 𝐶𝑖 varies only as a function of 𝑥 not as a function of 𝑡 or: 

𝐶𝑖 = 𝐶𝑖(𝑥) 

𝜕𝐶𝑖

𝜕𝑡
= 0 

which means from this diffusion equation we can write: 

𝐷̃
𝜕2𝐶𝑖

𝜕𝑥2
= 0,       

𝜕2𝐶𝑖

𝜕𝑥2
= 0 

I am replacing the partial sign with ordinary derivative sign, because now 𝐶 is only function 

of 𝑥, it is not a function of 𝑡 because of the steady state. Now, you can easily solve the above 

equation.  

𝑑𝐶𝑖

𝑑𝑥
= 𝑏 

𝑏 is a constant. If we solve this further we get: 

𝐶𝑖 = 𝑏𝑥 + 𝑎 

and this is an equation of straight line. When 𝐷̃ is constant, the steady state profile that 

develops is a straight line. This is obvious from here itself, the second derivative is 0 which 

means the curvature is 0 which is basically the straight line. 
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Another example of steady state, I can give here is consider a thin slab of low carbon steel. 

which is subjected to continuous carburizing on one side and decarburizing on the other side. 

Carburizing is addition of carbon onto the steel surface. Decarburizing means carbon is 

getting removed from the steel surface.  

Now, if we maintain the right conditions, which are the carbon potentials at the two end are 

kept constant, there will be a continuous carburizing occurring from one side, continuous 

decarburizing occurring from the other side and in some time a steady state will be developed 

across the steel slab thickness. A profile like this will be developed. Now if I assume that 

diffusion coefficient is constant then I know it should be a straight line. 
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Let us draw the concentration profile here, I draw 𝐶𝑖 versus 𝑥.  𝑥 is from 0 to L, L is the 

thickness of the slab. And on left side concentration is 𝐶𝐿, 𝐶𝑅 is the right side concentration 

and obviously right side is decarburizing. 𝐶𝑅 < 𝐶𝐿 and I know a steady state will develop if 

the 𝐷̃ is constant. And what should be that? We know at 𝑥 equal to 0, 𝐶𝑖 = 𝐶𝐿. This will give 

me: 

𝐴𝑡 𝑥 = 0,     𝐶𝑖 = 𝐶𝐿 → 𝑎 = 𝐶𝐿 

𝐴𝑡 𝑥 = 𝑙,     𝐶𝑖 = 𝐶𝑅 

𝐶𝑅 = 𝑏𝑙 + 𝐶𝐿  → 𝑏 =
𝐶𝑅 − 𝐶𝐿

𝑙
 

𝐶𝑅−𝐶𝐿

𝑙
 is basically the slope of this straight line. We can write: 

𝐶𝑖 = (
𝐶𝑅 − 𝐶𝐿

𝑙
) 𝑥 + 𝐶𝐿 

This is the steady-state equation when 𝐷̃ is constant. Now what happens if 𝐷̃ is not constant 

which should be typically the case. If 𝐷̃ is not constant, we cannot take simply 𝐷̃ out. 
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We can write: 

(
𝜕𝐶𝑖

𝜕𝑡
)

𝑥
= (

𝜕𝐷̃

𝜕𝑥
) (

𝜕𝐶𝑖

𝜕𝑥
) + 𝐷̃ (

𝜕2𝐶𝑖

𝜕𝑥2
) 

And when the steady state develops, we can replace dou with d and (
𝜕𝐶𝑖

𝜕𝑡
)

𝑥
= 0: 

𝑑2𝐶𝑖

𝑑𝑥2
= −

1

𝐷̃

𝑑𝐷̃

𝑑𝑥

𝑑𝐶𝑖

𝑑𝑥
 

Now, we need to know 𝐷̃ as a function of 𝑥 or in other words we need to know 𝐷̃ as a 

function of 𝐶𝑖. If 𝐷̃ varies with composition, we need to know how 𝐷̃ is varying with 

composition. Otherwise, we cannot solve this equation. We can qualitatively see how the 

profile will look like, will it be a straight line? Obviously not. 
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Suppose 𝐷̃ increases with 𝐶𝑖, then what should happen? 𝐷̃ is increasing with 𝐶𝑖 and we know 

the concentration is decreasing from left to right. So, 𝐷̃ is decreasing with 𝑥 or this derivative 

𝜕𝐷̃

𝜕𝑥
 is negative. Now 

𝜕𝐶𝑖

𝜕𝑥
 is here is negative because concentration is decreasing. So, the 

curvature in this case will be negative. 

Qualitatively the concentration profile will look something like this, it will have a negative 

curvature. Oppositely if 𝐷̃ decreases with increasing 𝐶𝑖, then the profile will develop positive 

curvature. Qualitatively, it will look like this, clear? Any question? This was about the steady 

state. 

Now when concentration changes with time that is a non-steady state condition. We will 

solve this equation for different boundary conditions and initial conditions. We will like to 

assume 𝐷̃  is constant then we can have analytical solution. So, we will assume 𝐷̃ constant, so 

that we have an idea of how the concentration profiles will behave for different boundary 

conditions. Any doubt?  

Student: In the curvature, would not there be a 
1

𝐷̃
 effect as we have in the denominator 𝐷̃.  

Professor: But 𝐷̃ is positive. For binary, 𝐷̃ will always be positive. The magnitude obviously 

will be affected but the sign will not. Anything else? All right, thank you. 


