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Welcome to the fourth week of this open course on diffusion in multi-component solids. This 

is the fifteenth lecture in this series and in this lecture; I will discuss how diffusion in multi-

component system can be described based on Onsager’s formalism of Fick’s law. We will 

also ee how Gibbs-Duhem equation along with use of an appropriate frame of reference helps 

to reduce the number of interdiffusion coefficients from 𝑛2to (𝑛 − 1)2 in an 𝑛 component 

system. 
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We have seen the expression for Fick’s law for diffusion of a component: 

𝐽 = −𝐷
𝑑𝐶

𝑑𝑥
 

Now, in this expression 𝐷 is constant which is called diffusivity, but it is valid when the 

concentration gradient is very small because only then 𝐷 is constant. We have derived this 

expression for D: 

𝐷 =
1

6
𝛼2𝛾 

where 𝛾 is the successful jump frequency and 𝛼 is the jump distance. If the composition 

changes, both 𝛾 and 𝛼 would change. So, 𝐷 is a function of composition. Only when we have 

a dilute solution or small concentration gradient, you have 𝐷 constant and you can use this 

expression, but if the concentration gradient is larger, then we know that 𝐷 has to vary with 

composition because in the concentration gradient 𝐶 varies as a function of 𝑥. Obviously, 𝐷 

will also vary with 𝑥, in fact under these concentration gradient or if the concentration 

gradient is larger and if the thermodynamic interactions between the atoms are stronger then 

the jump in forward direction is not same as in the backward direction. 

So, we need to take that into account and thus expressions for diffusivities will become more 

complicated. 𝐷 is a function of composition, but it does not depend upon the gradient of 

composition just like in Fourier’s law, thermal conductivity does not depend upon the 



temperature gradient and in Ohm’s law electrical conductivity does not depend upon gradient 

of electric potential. 

Similarly, diffusivity does not depend upon gradient of concentration but it does depend upon 

composition, keep that in mind. Infact whenever there is a diffusion occurring at any given 

plane or at any given 𝑥 we should more appropriately write this as: 

𝐽 = −𝐷
𝜕𝐶

𝜕𝑥
 

as the composition also varies with 𝑡. 
𝜕𝐶

𝜕𝑥
 is partial of 𝐶 with respect to 𝑥, and the sign for 

partial, I will call it as 𝜕, because 𝐶 = 𝑓(𝑥, 𝑡). How we take into account parameter 𝑡, we will 

talk in the next class, but right now keep this in mind. In fact this is valid only for binary 

systems. If we have multi-component system then we need to modify the above expression.  
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Let us look at Fick’s law as applied to multicomponent diffusion. The multicomponent 

system means it has typically three or more components.  If we consider 𝑛 component 

systems, let us say components 1, 2, 3…𝑛 then we use Onsager’s formalism. So we extend 

the Fick’s law using Onsager’s formalism. Using Onsager’s formalism we express the flux as 

a linear combination of all the concentration gradients. We can write the flux of component 

say one, let us denote this by 𝐽1 as a linear combination of all concentration gradients. ~ 

denotes that we are considering interdiffusion or diffusion due to the presence of strong 

concentration gradients. 



Since we have 𝑛 components, there are 𝑛 concentration variables and 𝑛 concentration 

gradients. We need to express flux as linear combination of 𝑛 concentration gradients which 

we write as: 

𝐽1 = −𝐷̃11

𝜕𝐶1

𝜕𝑥
− 𝐷̃12

𝜕𝐶2

𝜕𝑥
… − 𝐷̃1𝑛

𝜕𝐶𝑛

𝜕𝑥
 

𝐽𝑛 = −𝐷̃𝑛1

𝜕𝐶1

𝜕𝑥
− 𝐷̃𝑛2

𝜕𝐶2

𝜕𝑥
… − 𝐷̃𝑛𝑛

𝜕𝐶𝑛

𝜕𝑥
 

The effect of component 1 on to flux of 1 is denoted by 𝐷̃11 and obviously we give negative 

sign. Similarly for 𝐷̃12 … . . 𝑛. For contribution from component 𝑛, it is 𝐷̃1𝑛. Similarly, the 

flux of 2 we express as: 

𝐽2 = −𝐷̃21

𝜕𝐶1

𝜕𝑥
− 𝐷̃22

𝜕𝐶2

𝜕𝑥
… − 𝐷̃2𝑛

𝜕𝐶𝑛

𝜕𝑥
 

and we have 𝑛 such flux equations: 

𝐽𝑛 = −𝐷̃𝑛1

𝜕𝐶1

𝜕𝑥
− 𝐷̃𝑛2

𝜕𝐶2

𝜕𝑥
… − 𝐷̃𝑛𝑛

𝜕𝐶𝑛

𝜕𝑥
 

So how many coefficients we have? For each flux we have 𝑛 diffusion coefficient terms and 

there are 𝑛 such fluxes. 𝑛 × 𝑛 or 𝑛2  and these are called interdiffusion coefficients, but all of 

them are not independent, why? Because there are constraints on both the concentration 

gradients and the fluxes, which means not all concentration gradients are independent, 

similarly not all fluxes are independent provided we use the right frame of reference. I have 

introduced you to the different frames of reference before.  

It is worth to mention here that most of the time the volume fixed reference frame is used for 

diffusion measurements, that is most popularly used frame of reference.  In volume fixed 

frame, all 𝑛 fluxes are not independent.  We can reduce some of these coefficients. Let us see 

how do we reduce the number of coefficients using the constraints on gradients and fluxes.  
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First consider the constraint on concentration gradients and its origin lies in the Gibbs-Duhem 

equation which we have seen during the refreshers on thermodynamics. If we apply Gibbs-

Duhem equation to partial molar volumes, what do I get? 

𝑋1𝑑𝑉̅1 + 𝑋2𝑑𝑉̅2 … + 𝑋𝑛𝑑𝑉̅𝑛 = 0 

If we divide both sides by 𝑉𝑚 which is the molar volume, we get: 

𝑋1

𝑉𝑚
𝑑𝑉̅1 +

𝑋2

𝑉𝑚
𝑑𝑉̅2 … +

𝑋𝑛

𝑉𝑚
𝑑𝑉̅𝑛 = 0 

𝑉̅𝑖 here are the partial molar volumes of components 𝑖 varying from 1 to 𝑛 and 𝑋𝑖 denote the 

mole fractions of components 𝑖 from 1 to 𝑛.  Now: 

𝑋𝑖

𝑉𝑚
= 𝐶𝑖 

 Where 𝐶𝑖 is the concentration in number of moles per volume unit, 𝑚3or 𝑐𝑚3. We can write:  

𝐶1𝑑𝑉̅1 + 𝐶2𝑑𝑉̅2 … + 𝐶𝑛𝑑𝑉̅𝑛 = 0 

which means: 

∑ 𝐶𝑖𝑑𝑉̅𝑖 = 0 

But you know what is 𝐶𝑖𝑑𝑉̅𝑖. It is the volume fraction. Remember we have derived this, some 

time back. 



𝐶𝑖𝑉̅𝑖 = 𝜙𝑖 

𝜙𝑖 is nothing but the volume fraction of 𝑖 and: 

∑ 𝐶𝑖𝑉̅𝑖 = 1 

The summation of all volume fractions should be equal to 1.  If we take the differential of the 

above equation we get: 

∑ 𝐶𝑖𝑑𝑉̅𝑖 + ∑ 𝑉̅𝑖𝑑𝐶𝑖 = 0 

 And the first term as we know from earlier is already 0.  So, we have; 

∑ 𝑉̅𝑖𝑑𝐶𝑖 = 0 

If you differentiate with respect to 𝑥 coordinate, we can write more specifically for this as: 

𝑉̅1

𝜕𝐶1

𝜕𝑥
+ 𝑉̅2

𝜕𝐶2

𝜕𝑥
… + 𝑉̅𝑛

𝜕𝐶𝑛

𝜕𝑥
= 0 

This is the constraint that we have to use.  We can write the constraint here as: 

𝜕𝐶𝑛

𝜕𝑥
= − (

𝑉̅1

𝑉̅𝑛

𝜕𝐶1

𝜕𝑥
+

𝑉̅2

𝑉̅𝑛

𝜕𝐶2

𝜕𝑥
+ ⋯ +

𝑉̅𝑛−1

𝑉̅𝑛

𝜕𝐶𝑛−1

𝜕𝑥
) 

If we substitute for 
𝜕𝐶𝑛

𝜕𝑥
 in the equation for 𝐽1we get:  

𝐽1 = − (𝐷̃11 − 𝐷̃1𝑛

𝑉̅1

𝑉̅𝑛

)
𝜕𝐶1

𝜕𝑥
− (𝐷̃12 − 𝐷̃1𝑛

𝑉̅2

𝑉̅𝑛

)
𝜕𝐶2

𝜕𝑥
… − (𝐷̃1𝑛−1 − 𝐷̃1𝑛

𝑉̅𝑛−1

𝑉̅𝑛

)
𝜕𝐶𝑛−1

𝜕𝑥
 

Each of the bracketed term term can be substituted with one term. First one can be denoted as 

as 𝐷̃11
𝑛  in this particular case. Similarly, second bracketed term will be 𝐷̃12

𝑛  until 𝐷̃1𝑛−1
𝑛 .  In 

general we can write: 

𝐽𝑖 = −𝐷̃𝑖1
𝑛 𝜕𝐶1

𝜕𝑥
− 𝐷̃𝑖2

𝑛 𝜕𝐶2

𝜕𝑥
… − 𝐷̃𝑖𝑛−1

𝑛 𝜕𝐶𝑛−1

𝜕𝑥
 

Where: 



𝐷̃𝑖𝑗
𝑛 = 𝐷̃𝑖𝑗 − 𝐷̃𝑖𝑛

𝑉̅𝑗

𝑉̅𝑛

 

 Hence we have only 𝑛-1 independent coefficients for a given flux term. Now how many such 

fluxes are there?  
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There is also a constraint on fluxes and what is that constraint? Constraints on interdiffusion 

fluxes if we use volume fixed frame is: 

∑ 𝑉̅𝑖𝐽𝑖 = 0 

Remember our fluxes here are expressed as expressed in the unit of moles per 𝑐𝑚2 or per 𝑚2 

per second.  

We can write: 

𝑉̅1𝐽1 + 𝑉̅2𝐽2 + ⋯ + 𝑉̅𝑛𝐽𝑛 = 0 

which means 𝐽𝑛 is given as: 

𝐽𝑛 = − [
𝑉̅1

𝑉̅𝑛

𝐽1 +
𝑉̅2

𝑉̅𝑛

𝐽2 + ⋯ +
𝑉̅𝑛−1

𝑉̅𝑛

𝐽𝑛−1] 

Again, not all 𝑛 fluxes are independent, 𝑛𝑡ℎ one is dependent, so only 𝑛 − 1 independent 

fluxes.  Therefore, we have each flux expressed by 𝑛 − 1 independent terms and there are 

𝑛 − 1  such independent fluxes, so in total (𝑛 − 1 )2 interdiffusion coefficients.  



In general, we can express the flux of any components 𝐽𝑖 as: 

𝐽𝑖 = − ∑ 𝐷̃𝑖𝑗
𝑛

𝑛−1

𝑗=1

𝜕𝐶𝑗

𝜕𝑥
       𝑖 = 1 𝑡𝑜 𝑛 − 1 

𝑗 here varies from 1 to 𝑛 − 1 and also 𝑖 is from 1 to 𝑛 − 1. And there are (𝑛 −

1 )2 interdiffusion coefficients. This is how we can express interdiffusion in a 𝑛 component 

system. We can describe interdiffusion in 𝑛 component system by using Fick’s law extended 

to the multi-component system by Onsager’s formalism.  

 So, we need (𝑛 − 1 )2 interdiffusion coefficients to completely describe interdiffusion in an 

𝑛 component system. Moreover, the set of these (𝑛 − 1 )2 interdiffusion coefficients are 

functions of composition, which means with varying composition this set will vary or for a 

given composition we have a fixed set of (𝑛 − 1 )2 interdiffusion coefficients.  
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If I describe this for a ternary system, let us consider a ternary system of copper, nickel, zinc. 

Now which component to treat as dependent component is our choice, we can treat either 

copper or nickel or zinc. If I treat zinc as dependent, then I have two independent fluxes one 

for copper and one for nickel.  I can write: 

𝐽𝐶𝑢 = −𝐷̃𝐶𝑢𝐶𝑢
𝑍𝑛

𝜕𝐶𝐶𝑢

𝜕𝑥
− 𝐷̃𝐶𝑢𝑁𝑖

𝑍𝑛 𝜕𝐶𝑁𝑖

𝜕𝑥
 

 The superscript refers to the dependent component which is Zinc here. And: 



𝐽𝑁𝑖 = −𝐷̃𝑁𝑖𝐶𝑢
𝑍𝑛

𝜕𝐶𝐶𝑢

𝜕𝑥
− 𝐷̃𝑁𝑖𝑁𝑖

𝑍𝑛
𝜕𝐶𝑁𝑖

𝜕𝑥
 

I have four interdiffusion coefficients in a ternary system. (𝑛 − 1 )2 is four for 𝑛 = 3 because 

there are two independent fluxes and two independent concentration gradients. In this case 

𝐷̃𝐶𝑢𝐶𝑢
𝑍𝑛 ,  𝐷̃𝑁𝑖𝑁𝑖

𝑍𝑛  or 𝐷̃𝑖𝑗
𝑛  where 𝑖 = 𝑗 are called main interdiffusion coefficients.  

 So, 𝐷̃𝑖𝑖
𝑛 are called main interdiffusion coefficients, and they quantify the effect of 

concentration gradient of 𝑖 on its own interdiffusion flux. It is basically the contribution of 

concentration gradient of 𝑖 on its own interdiffusion flux. 𝐷̃𝑖𝑗
𝑛  where 𝑖 ≠ 𝑗 are referred to as 

cross or interactive interdiffusion coefficients. In this case 𝐷̃𝐶𝑢𝑁𝑖
𝑍𝑛  and 𝐷̃𝑁𝑖𝐶𝑢

𝑍𝑛  are the two cross 

interdiffusion coefficients. And they are basically the contribution of concentration gradient 

of 𝑗 on the flux of 𝑖.  

 These are basically the quantification of what we refer to as diffusional interactions or the 

cross effects.  These cross coefficients quantify the cross effects. If we consider 𝐷̃𝐶𝑢𝑁𝑖
𝑍𝑛  term 

where zinc is dependent, it means how the gradient of nickel is affecting the flux of copper. 

Similarly, 𝐷̃𝑁𝑖𝐶𝑢
𝑍𝑛   indicates how the gradient of copper is affecting the flux of nickel.  

𝐷̃𝐶𝑢𝑁𝑖
𝑍𝑛  quantify the interaction of nickel with copper and 𝐷̃𝑁𝑖𝐶𝑢

𝑍𝑛  quantifies the interaction of 

copper with nickel during the diffusion. 
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Now, for example in a ternary system if I write: 

𝐽1 = −𝐷̃11
3

𝜕𝐶1

𝜕𝑥
− 𝐷̃12

3
𝜕𝐶2

𝜕𝑥
 

the main term here, 𝐷̃11
3 , most of the time will be positive although it is not necessary. This is 

because for constant molar volume: 

𝐷̃11
3 = 𝐷̃11 − 𝐷̃13 

 the cross effect term 𝐷̃13 would be much smaller compared to the main term 𝐷̃11.  So, most 

of the time 𝐷̃11
3  will be positive. The cross term 𝐷̃12

3  may be negative or positive, what does it 

mean basically? If 𝐷̃12
3  is positive, it means the interdiffusion flux of 1 is enhanced down the 

gradient of 2 and reduced up the gradient of 2. Similarly, if 𝐷̃12
3  is negative it means 

interdiffusion flux of 1 is enhanced up the gradient of 2 and reduced down the gradient of 2.  

Let us try to illustrate this, let us call −𝐷̃11
3 𝜕𝐶1

𝜕𝑥
 as term 1 which is the main term. Remember 

we need to take into account both gradient and the interdiffusion coefficient. Term 2 is 

−𝐷̃12
3 𝜕𝐶2

𝜕𝑥
  including this negative sign.  

Let us suppose 𝐷̃11
3  is always positive then the first term should be depending upon the sign 

of the gradient, so the entire 1 term may be positive or negative.  What is the convention? 

Typically the flux if it moves from left to right it is given a positive sign. If the flux is from 

right to left it is given a negative sign. So, let us consider two cases. I am allowing the 

diffusion between two different compositions in system 1-2-3.  



Let us say first one is 70-30-0 and second terminal alloy is 100 % of 3, i.e 0-0-100. We can 

draw concentration profile for component1, 2 and 3 in the diffusion zone. So, in this case 

component 1 and 2 are moving in the same direction. In other words, the both the gradients 

have same sign, but what is the sign? Negative. 

It means: 

𝜕𝐶1

𝜕𝑥
< 0,     

𝜕𝐶2

𝜕𝑥
< 0 

The second case I am considering when the two gradients are opposite.  Let us assemble 

couple with terminal compositions 70-0-30 with 0-100-0. The second alloy contains 100 

percent of component 2 to start with. For terminal alloy 1: we have 70% and 30% of 

component 1 and 3 respectively. In this case, now the two gradients are opposite: 

𝜕𝐶1

𝜕𝑥
< 0,     

𝜕𝐶2

𝜕𝑥
> 0 

As I am increasing 𝑥, the concentration of 2 is increasing, that is why the gradient is positive. 

For first case, first term is positive as 
𝜕𝐶1

𝜕𝑥
< 0. If 𝐷̃12

3 > 0 and 
𝜕𝐶2

𝜕𝑥
< 0 the second term will be 

positive.  So both the terms are positive which means the flux of 1 is enhanced down the 

gradient of 2 because 𝐷̃12
3  is positive. If 𝐷̃12

3  was negative, what should happen? Term 1 is 

positive but 𝐷̃12
3  is negative, so second term becomes negative. So, the first term is positive 

while second term is negative, so the cross term is having a subtractive effect that is why we 

say the flux of 1 is reduced down the gradient of 2. When 𝐷̃12
3  is positive, this is an additive 

effect when 𝐷̃12
3  is negative subtractive effect.   

Now in the second case we will have the reverse scenario. If 𝐷̃12
3 > 0, then here the gradient 

is also positive. Therefore, second term is negative and we will have subtractive effect. So, 

we say if 𝐷̃12
3  is positive the flux of component 1 is reduced up the gradient of 2. And if 

𝐷̃12
3 < 0, we will similarly have additive effect.  

Now, here we have expressed the fluxes of copper and nickel with zinc as dependent 

component. I can as well write, these equations with copper as dependent component. If we 

write for let us say copper as dependent component then I will get equations for two 

independent fluxes for zinc and nickel as: 



𝐽𝑍𝑛 = −𝐷̃𝑍𝑛𝑍𝑛
𝐶𝑢

𝜕𝐶𝑍𝑛

𝜕𝑥
− 𝐷̃𝑍𝑛𝑁𝑖

𝐶𝑢
𝜕𝐶𝑁𝑖

𝜕𝑥
 

𝐽𝑁𝑖 = −𝐷̃𝑁𝑖𝑍𝑛
𝐶𝑢

𝜕𝐶𝑍𝑛

𝜕𝑥
− 𝐷̃𝑁𝑖𝑁𝑖

𝐶𝑢
𝜕𝐶𝑁𝑖

𝜕𝑥
 

So, I get a different set of interdiffusion coefficients. 

Now, these two sets are different like, 𝐷̃𝑁𝑖𝑁𝑖
𝑍𝑛  is not the same as 𝐷̃𝑁𝑖𝑁𝑖

𝐶𝑢 , but they are inter 

convertible. We can have equations with which we can convert from one dependent 

component to the set with another dependent component for an 𝑛 component system. That 

you do as exercise. 

Basically, there are only four independent coefficients for ternary; we do not say 4+4=8 

interdiffusion coefficients from two different dependent components. Because once you have 

a set with one dependent component, you can obtain the set with other dependent component.  

You can use them depending upon whichever component you want to use as dependent 

component. Now let us try to apply Onsager’s formalism of Fick’s law to binary system, 

binary means two components. We have only one independent interdiffusion flux and one 

independent concentration gradient.  
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If we treat two as dependent we can write: 

𝐽1 = −𝐷̃11
2

𝜕𝐶1

𝜕𝑥
 



and if we treat 1 as dependent you can write: 

𝐽2 = −𝐷̃22
1

𝜕𝐶2

𝜕𝑥
 

In the original Onsager’s formalism we will write: 

𝐽1 = −𝐷̃11

𝜕𝐶1

𝜕𝑥
− 𝐷̃12

𝜕𝐶2

𝜕𝑥
 

𝐽2 = −𝐷̃21

𝜕𝐶1

𝜕𝑥
− 𝐷̃22

𝜕𝐶2

𝜕𝑥
 

And if we substitute for 
𝜕𝐶2

𝜕𝑥
 here or for 

𝜕𝐶1

𝜕𝑥
 here, we will get term in both the equations. That 

is how we are reducing four coefficients to (𝑛 − 1)2 square which is 1 for binary. Again, the 

above two equations seem to be different but they are not. Let us see how. Because we can 

write: 

𝑉̅1

𝜕𝐶1

𝜕𝑥
+ 𝑉̅2

𝜕𝐶2

𝜕𝑥
= 0 

 which means: 

𝜕𝐶2

𝜕𝑥
= −

𝑉̅1

𝑉̅2

𝜕𝐶1

𝜕𝑥
 

If we substitute this in the equation for 𝐽2, we should get: 

𝐽2 = 𝐷̃22
1

𝑉̅1

𝑉̅2

𝜕𝐶1

𝜕𝑥
 

 Let us call this equation 1. But we know, because we are using volume fixed frame: 

𝑉̅1𝐽1 + 𝑉̅2𝐽2 = 0 

which tells me: 

𝐽2 = −
𝑉̅1

𝑉̅2

𝐽1 

and if we substitute for 𝐽1 from here we get: 

𝐽2 =
𝑉̅1

𝑉̅2

𝐷̃11
2

𝜕𝐶1

𝜕𝑥
 



Let us call this equation 2.  If you compare the right hand sides of 1 and 2, it tells me: 

𝐷̃11
2 = 𝐷̃22

1  

Both the coefficients should be same. So, in binary in effect we have only 1 coefficient. 
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We can express both the fluxes using 1 coefficient. 𝐽1 we call it as: 

𝐽1 = −𝐷̃
𝜕𝐶1

𝜕𝑥
 

and  

𝐽2 = −𝐷̃
𝜕𝐶2

𝜕𝑥
 



The binary interdiffusion simplifies to just knowing one interdiffusion coefficient.  

Now, varying partial molar volumes is a complicated case. Typically, during the 

experimental measurements it is commonly assumed that the molar volumes remain constant. 

If the molar volume is constant, what does it imply? It implies that all the partial molar 

volumes are also constant and that means: 

𝑉̅1 = 𝑉̅2 = 𝑉̅3 = ⋯ = 𝑉̅𝑛 

 for an 𝑛 component system. This makes the life simpler because it not only simplifies the 

constraint, for example: 

∑ 𝑉̅𝑖𝐽𝑖 = 0 

and since all 𝑉̅𝑖 are same this just implies that: 

∑ 𝐽𝑖 = 0 

It also means that 𝑈𝑣, the velocity of volume fixed frame is 0 because there is no change in 

volume, there is no net flow of volume even in lab fixed frame. And because of that: 

𝐽 = 𝐽𝑜 

or the volume fixed frame coincides with the lab fixed frame.  

𝐽𝑜 refers to the fluxes determined in lab fixed frame, and that is why for experimental 

analysis, most of the time molar volumes are assumed constant. In fact we will show it later 

even for the case when the partial molar volumes are constant, but changing. Which means: 

𝑉̅1 ≠ 𝑉̅2 ≠ 𝑉̅3 ≠ ⋯ ≠ 𝑉̅𝑛 

 but are constant with composition, even in that case 𝑈𝑣 equal to 0. And the lab fixed frame 

coincides with volume fixed frame. 


