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Welcome to the course on Diffusion in Multicomponent Solids. Today is the 10th class in this 

course and I hope you guys are enjoying the class. Today, I am going to go over four exercise 

problems which I believe will help you guys to make clear some of the concepts. First three 

problems are from the assignment that you did last week and there will be one more problem 

that I will try to solve based on the Gibbs free energy composition diagrams. 
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The first problem from the last assignment is: 

Which of the following are correct expressions for enthalpy of mixing for a regular solution 

of 𝑛 components?  

 we have derived the expression for enthalpy of mixing for a regular solution in a ternary 

system. This problem is about an 𝑛 component system. If you remember the expression the 

enthalpy of mixing for a regular solution, it has the contribution from difference in the bond 

energies of dissimilar atom pairs and the average of the bond energies of the corresponding 

similar atom pairs. 

If we compare the expressions, the first expression, i.e., option A seems to be the correct 

expression. Since, we need all the dissimilar type of atom pairs and there are 𝑛 components, 



so  𝑖 has to be varied from 1 to 𝑛 − 1 and 𝑗 ≠ 𝑖 for the dissimilar type of pairs.  This varies 

from 𝑗 equal to 𝑖 + 1 to 𝑛. 

Based upon this expression if we deduce the expression for ternary, we will see that it will 

come out to be same expression as we derived in the class.  For a ternary system 𝑖 will be 

from 1 to 2 and 𝑗 will be from 2 to 3.  For 𝑖 equal to 1 there will be 𝐸12, and 𝐸13, and for 𝑖 

equal to 2, there will be dissimilar pair of type 𝐸23, of course the average of the bond energies 

of similar type of pairs. So, first one is the correct expression but there is one more 

expression which is also correct and that is the fourth one, option D. 

Let us try to look into this. We know: 

∆𝐺𝑚 = ∑ 𝑋𝑖Δ�̅�𝑖
𝑚 

where ∆𝐺𝑚 is the molar Gibbs free energy of mixing of the solution and Δ�̅�𝑖
𝑚 bar denotes the 

partial molar Gibbs free energy of mixing of 𝑖 in the solution. 𝑋𝑖 is the mole fraction of 𝑖 and 

we know: 

Δ�̅̅�𝑖
𝑚 = 𝑅𝑇𝑙𝑛 𝑎𝑖 

So, 

∆𝐺𝑚 =  𝑅𝑇 ∑ 𝑋𝑖𝑙𝑛 𝑎𝑖

𝑛

𝑖=1

 

But,  

𝑎𝑖 = 𝛾𝑖𝑋𝑖 

where 𝛾𝑖 is the thermodynamic activity coefficient. Therefore: 

∆𝐺𝑚 =  𝑅𝑇 ∑ 𝑋𝑖𝑙𝑛 𝛾𝑖

𝑛

𝑖=1

+ 𝑅𝑇 ∑ 𝑋𝑖𝑙𝑛 𝑋𝑖

𝑛

𝑖=1

 

Now, when we consider a regular solution, for regular solution: 

∆𝐺𝑚,,𝑟𝑒𝑔 = ∆𝐻𝑚,𝑟𝑒𝑔 − 𝑇∆𝑆𝑚,𝑖𝑑 

Here, we assume that for a regular solution entropy of mixing is same as that for an ideal 

solution. So: 



∆𝐺𝑚,   𝑟𝑒𝑔 = ∆𝐻𝑚,𝑟𝑒𝑔 − 𝑇∆𝑆𝑚,𝑖𝑑 = ∆𝐻𝑚,𝑟𝑒𝑔 + 𝑅𝑇 ∑ 𝑋𝑖𝑙𝑛 𝑋𝑖

𝑛

𝑖=1

 

Now, if you compare this with the general expression for ∆𝐺𝑚, these two terms will cancel 

out from both sides. So, we get: 

∆𝐻𝑚,𝑟𝑒𝑔 =  𝑅𝑇 ∑ 𝑋𝑖𝑙𝑛 𝛾𝑖

𝑛

𝑖=1

 

This is the option D or the fourth expression here that should also be correct.   

(Refer Slide Time: 06:09) 

 

The second problem is, if the partial molar Gibbs free energy of mixing of A in a regular 

solution containing 70 mole percent of A and 30 mole percent of B is -1000 joule per mole at 

600 ℃, what should be the thermodynamic activity coefficient of component A in the 

solution at 600 ℃? What is given here is partial molar Gibbs free energy of mixing of A: 

∆�̅�𝐴
𝑚 = −1000

𝐽

𝑚𝑜𝑙
    , 𝑇 = 873 𝐾 

What should be the thermodynamic activity coefficient of component A? 

The mole fractions are given as: 

𝑋𝐴 = 0.7,     𝑋𝐵 = 0.3,             𝛾𝑖 =? 

We need to find out 𝛾𝑖, the thermodynamic activity coefficient of 𝑖. Based on the last problem 

that we solved: 



∆�̅�𝐴
𝑚 = 𝑅𝑇𝑙𝑛 𝑎𝐴 = 𝑅𝑇𝑙𝑛 𝑋𝐴 + 𝑅𝑇𝑙𝑛 𝛾𝐴 

If we rearrange the terms: 

𝛾𝐴 = exp (
∆�̅�𝐴

𝑚 − 𝑅𝑇𝑙𝑛𝑋𝐴

𝑅𝑇
) 

If we substitute the values of terms in the bracket we get: 

𝛾𝐴 = exp (
∆�̅�𝐴

𝑚 − 𝑅𝑇𝑙𝑛𝑋𝐴

𝑅𝑇
) = exp (

−1000 − 8.314 × 873 × 𝑙𝑛0.7

8.314 × 873
) 

The answer comes out to be: 

𝛾𝐴 = 1.245 
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The next problem deals with evaluating the enthalpy of mixing at some higher temperature 

starting from the constituent elements at room temperature.  The problem states, evaluate the 

enthalpy required to form a liquid copper-silver solution at 1356 Kelvin. T here is given as 

1356 Kelvin starting with 0.5 moles of copper and 1.5 moles of silver, and initially they were 

at 298 Kelvin. The molar enthalpy of mixing of liquid copper and liquid silver.  ∆𝐻𝑚 for this 

liquid solution at 1356 Kelvin can be given as: 

∆𝐻𝑚 = −20590 × (𝑋𝐶𝑢𝑋𝐴𝑔) 

And the latent heats of melting of both copper and silver are given as well as the heat 

capacities of solid copper, solid silver and liquid silver. Now, when we form this solution at 

1356 Kelvin, it is to be remembered that the melting point of silver is 1234 Kelvin and 

melting point of copper is given is 1356 Kelvin.  The melting point of silver is lower than the 

temperature. As we heat silver from 298 Kelvin it will undergo melting at 1234 Kelvin and 

then from 1234 to 1356 Kelvin we need to heat the liquid silver. 

Copper, we will heat from 298 Kelvin to 1356 Kelvin and then we will melt copper at 1356 

Kelvin which is the equilibrium melting point of copper and then we mix the two liquids to 

form a liquid solution.  There are the steps involved: 

(a) First we need to heat 0.5 moles of copper from 298 Kelvin to 1356 Kelvin  

(b) Melt 0.5 moles of copper at 1356 Kelvin. 

(c) Heat silver and 1.5 moles of silver from 298 to its melting point 1234 Kelvin 

(d) Melt 1.5 moles of silver at 1234 Kelvin. 

(e) Heat 1.5 moles of liquid silver from 1234 Kelvin to 1356 Kelvin 



(f) Now, once we have both silver and copper in liquid form at 1356 Kelvin, we will mix 

them to form a solution.   

We need to evaluate the enthalpy change for each of this process from 𝑎 →  𝑓 and we need 

to add them to get the total enthalpy required.   

(a) If we consider the step a heat required for heating 0.5 moles of solid copper from 298 

Kelvin to 1356 Kelvin should be: 

∆𝐻𝑎 = 0.5 ∫ 𝐶𝑃 (𝐶𝑢.  𝑠)𝑑𝑇

1356

298

 

𝐶𝑃 (𝐶𝑢.  𝑠) is basically CP of solid copper. 

If you look into the expression for 𝐶𝑃 of solid copper here, we can write: 

∆𝐻𝑎 = 0.5 ∫ 𝐶𝑃 (𝐶𝑢.  𝑠)𝑑𝑇

1356

298

= 0.5 {22.64 × (1356 − 298) +
6.28 × 10−3

2
× (13562 − 2982)}

= 14724 𝐽 

If we evaluate this, this comes out to be 14,724 Joules. 

Remember we are considering 0.5 moles of copper we need to multiply integral 𝐶𝑃 (𝐶𝑢.  𝑠)𝑑𝑇 

by number of moles which is 0.5.  

(b) Then, for melting 0.5 moles of copper the enthalpy required is : 

∆𝐻𝑏 = 0.5 × 12970 = 6485 𝐽 

 ∆𝐻𝑏 is 0.5 times latent heat of melting of copper, which is given here as 12970.   

(c) The process c is heating 1.5 moles of silver, solid silver from 298 Kelvin to 1234 

Kelvin: 

∆𝐻𝑐 = 1.5 ∫ 𝐶𝑃 (𝐴𝑔.  𝑠)𝑑𝑇

1234

298

 

This 𝐶𝑃 is of solid silver: 



∆𝐻𝑐 = 1.5 ∫ 𝐶𝑃 (𝐴𝑔.  𝑠)𝑑𝑇

1234

298

= 1.5 {21.3 × (1234 − 298) +
8.54 × 10−3

2
× (12342 − 2982) − 1.51

× 105 × (
1

1234
−

1

298
)} = 39666 𝐽 

(d) Then process d is melting of silver, 1.5 moles of silver. ∆𝐻𝑑 would be 1.5 times latent 

heat of silver given as 11090: 

∆𝐻𝑑 = 1.5 × 11090 = 16635 𝐽 

(e) Once the silver is melted, process e is heating 1.5 moles of liquid silver from 1234 to 

1356 and: 

∆𝐻𝑒 = 1.5 ∫ 𝐶𝑃 (𝐴𝑔.  𝑙)𝑑𝑇

1356

1234

 

𝐶𝑃 (𝐴𝑔.  𝑙) given here is a constant. So: 

∆𝐻𝑒 = 1.5 × 30.5 × (1356 − 1234) = 5581.5  𝐽 

(f) And process f is mixing 0.5 moles of copper and 1.5 moles of silver both in liquid 

form to form the final liquid solution. The enthalpy of mixing for forming this solution is 

given as: 

∆𝐻𝑚 = −20590 × (𝑋𝐶𝑢𝑋𝐴𝑔) 

Remember this is the molar enthalpy of mixing. We are considering the total number of 

moles to be: 

𝑛𝑇𝑜𝑡𝑎𝑙 = 0.5 + 1.5 = 2 

𝑋𝐶𝑢 =
0.5

2
= 0.25 

𝑋𝐴𝑔 = 0.75 

The molar enthalpy of mixing at 1356 Kelvin would come out to be: 

∆𝐻𝑚 = −20590 × 0.25 × 0.75 

∆𝐻𝑓 = 2∆𝐻𝑚 = −7721 𝐽 
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The total enthalpy change or the total heat required to form the solution at 1356 Kelvin 

starting from copper at 298 Kelvin and silver at 298 Kelvin would be the summation of  heat 

exchange from a to f: 

∆𝐻 =  ∆𝐻𝑎 + ∆𝐻𝑏 + ∆𝐻𝑐 + ∆𝐻𝑑 + ∆𝐻𝑒 + ∆𝐻𝑓 = 75371  

This is how we can evaluate the enthalpy of mixing to form a solution from its pure 

constituents. 
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Now let us look into fourth problem, the first three problems were from the assignment last 

week. Now, I want to go over this because this will make some of the concepts clear of how 

do we use the Gibbs free energy composition diagrams to get to the phase diagrams.  



Typically in computational thermodynamics we will need the Gibbs free energy data. We will 

draw the Gibbs free energy composition diagrams for the solutions and from there we will 

decide the phase stability and draw the phase diagrams. But, for simplicity of understanding 

let us go in a reverse way i.e., the phase diagram is given and we would like to draw 

schematically the Gibbs free energy versus composition diagrams which would represent the 

given phase stabilities. 

So, this is an aluminum magnesium phase diagram. I would like to note here that this is a 

schematic diagram and not an accurate phase diagram. This is not complete because there is a 

r phase which appears between the 𝛽 and 𝛾 phases which is missing and also the 𝛽 phase has 

some solid solubility on both sides but I have shown it as a line compound for this exercise. 

So we have to draw the schematic Gibbs free energy composition curves at 400 and 437 ℃.  

First look into 400 ℃ line.  Let us mark this points as 𝑎, 𝑏, 𝑐, 𝑑, 𝑎𝑛𝑑 𝑒. We can see that up to 

𝑎 there is a single phase 𝛼 solution that is stable. This is basically the FCC solution of 

magnesium and aluminum and 𝑏 corresponds to the line compound 𝛽 which is an 

intermetallic Al3Mg2. Between 𝑎 and 𝑏 there should be a two phase region 𝛼 + 𝛽. 

Similarly, between 𝑐 and 𝑑 there is a single phase stability of 𝛾 which is another intermetallic 

with the stoichiometry Mg17Al12 and between 𝑏 𝑎𝑛𝑑 𝑐 there is a two phase stability region 

𝛽 + 𝛾 and beyond 𝑒 again the single phase solid solution is stable. This is basically the HCP 

solid solution of aluminum and magnesium.  Between 𝑑 𝑎𝑛𝑑 𝑒 there is a two phase stability 

region of 𝛾 +  𝑀, 𝑀 is the magnesium solid solution. 

Now, when we draw the Gibbs free energy composition diagram, we will first fix the 

reference points or what we call as standard states and the reference points for G we take as 

the stable state of pure element at the given temperature.  So at 400 ℃ both pure aluminum 

and pure magnesium are stable as solid phases more specifically aluminum as FCC solid and 

magnesium as HCP solid.  So zeros will be at 𝐺𝐴𝑙 (𝛼)
𝑜 , this phase is called 𝛼 FCC and the 

reference point for magnesium would be 𝐺𝑀𝑔 (𝑀)
𝑜  or HCP and we have four phases at 400 ℃, 

𝛼, 𝛽, 𝛾 𝑎𝑛𝑑 𝑀 and there is a fifth phase which is not stable at this temperature but we can see 

in the phase diagram. 

So, we need at least 5 Gibbs free energy curves one for each of the phases.  We will draw two 

curves for the terminal solutions 𝛼 and 𝑀. This is Gibbs free energy curve for 𝛼 and let us 

say this is for 𝑀 phase. Now, there is a two phase region between 𝛼 and 𝛽 when we draw the 



Gibbs free energy curve for 𝛽 which is a line compound, we expect the curve to be very 

sharp. We should be able to draw a common tangent between the curve for 𝛼 and 𝛽. And that 

common tangent should give the two phase configuration which has the lowest Gibbs free 

energy between points 𝑎 𝑎𝑛𝑑 𝑏 which are the touching points of the common tangents of the 

two curves. 

Since the curve for 𝛽 is very sharp whichever tangent we draw it should almost touch at the 

same point.  This is point 𝑏. Then there is also a two phase region between 𝛽 and 𝛾 as well as 

a two phase region between 𝛾 and 𝑀.  We should draw the curve for 𝛾 such that there should 

be a common tangent between 𝛽 and 𝛾 and another common tangent between 𝛾 and 𝑀 and 

there is some solid solubility range from 𝑐 𝑡𝑜 𝑑 for 𝛾. The curve for 𝛾 should not be as sharp 

as that for 𝛽. So, we draw one tangent between 𝛽 and 𝛾 which will give contact points 

𝑏 𝑎𝑛𝑑 𝑐 and another common tangent between 𝛾 and 𝑀 which will give contact point 

𝑑 𝑎𝑛𝑑 𝑒.   

Now when we draw this curve, we have to take care that the curve for 𝛾 should not lie 

entirely above the common tangent between 𝛽 and 𝑀. Otherwise what would happen? 

Stability will change because then two phase equilibrium will be between 𝛽 and 𝑀 and the 𝛾 

field will not be stable at all. Because, then any composition between the two touching points 

will split into two phases 𝛽 and𝑀, then that will give the lowest Gibbs free energy 

configuration.  So, as we can see up to point 𝑎, 𝛼 phase has a lowest Gibbs free energy and 

this is the 𝛼 stability region. Between 𝑎 𝑎𝑛𝑑 𝑏, 𝛼+𝛽 are stable. Because 𝛽 it is a line 

compound it is stable only at composition b. Between 𝑏 𝑎𝑛𝑑 𝑐 again the two phase stability 

region 𝛽+𝛾 exists, between 𝑐 and 𝑑, 𝛾 single phase stability exists, beyond 𝑒 single phase 𝑀 

is stable and between 𝑑 𝑎𝑛𝑑 𝑒 there is a two phase stability 𝛾 + 𝑀. 

Now, liquid is not stable at any composition, the liquid will lie above all these tangents. So, 

this was at 400 ℃ and we are drawing ∆𝐺𝑚  versus 𝑋𝑀𝑔. Now how the situation will change 

at 437 ℃? We see a specific feature at 437 ℃, there exists a eutectic or the three phase 

stability region at 437 ℃. Now if we label these points as 𝑓, 𝑔, ℎ, 𝑖, 𝑗, 𝑘 between points 

𝑖 𝑎𝑛𝑑 𝑘, there is a three phase stability region, 𝛾 + 𝑙𝑖𝑞 + 𝑀. 

That means I should be able draw a common tangent to all the three curves. The curve 

between 𝛾, 𝑀and liquid.  The liquid curve has come relatively downwards such that now the 

tangent to 𝑀and 𝛾 is also touching the liquid curve. 



The others will not change much except that the solubility range for 𝛾 has now increased a 

little bit.  So, if we draw ∆𝐺𝑚  versus 𝑋𝑀𝑔 this is for 𝛼 and this is for 𝑀. 𝛽 is line compound, 

so its curve will be sharp and we can draw a common tangent. This gives me point 𝑓 𝑎𝑛𝑑 𝑔 

as common tangent points. Then, curve between 𝛾 and 𝛽 will give common tangent points  

𝑔 𝑎𝑛𝑑 ℎ.  Common tangent for 𝑀 and 𝛾 will give points 𝑖 𝑎𝑛𝑑 𝑘. The liquid curve would lie 

such that the common tangent between 𝛾 and 𝑀 should also touch the liquid curve which will 

give touching point 𝑗. 

So, if you look at the phase stability again, up to point 𝑓,  𝛼 is stable, 𝑓 𝑡𝑜 𝑔, 𝛼+ 𝛽 two phase 

equilibrium. Exactly at point 𝑔 𝛽 is stable, between 𝑔 𝑎𝑛𝑑 ℎ two phase stability region 𝛽+𝛾, 

between ℎ 𝑎𝑛𝑑 𝑖 single phase 𝛾 exists and between 𝑖 𝑎𝑛𝑑 𝑘, there is a three phase stability 

region, the phase stability is 𝛾 + 𝑙𝑖𝑞 + 𝑀 and beyond 𝑘 single phase 𝑀 exists.   

This is how we should be able to draw the Gibbs free energy composition diagram from 

phase diagrams.  We will stop here for today. Thank You. 


