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So, welcome again to the new lecture of the course, Properties of materials. So, let us just 

briefly recap what we did in the last lecture.  
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So, in the last class, we looked at basically the band theory and origin of band gap. So, 

essentially, band gap is so basically what happens is that, when electrons are in the travelling 

lattice, so when electrons are in the lattice, electrons undergo diffraction at certain reciprocal 

lattice points. So, let us say those are k plus minus pi by d, plus minus 2 pi by d, and so on 

and so forth. So, for this you will have to read a bit about the reciprocal lattice but basically 

reciprocal lattice space is the same reciprocal space or as we have wave vector. 

So, basically k is the reciprocal you can say the wave vector, which is in reciprocal space, 

which is 2 pi by lambda and then capital K is the reciprocal lattice vector, which is of the 

order of, which is some 2 pi by some distance d. So, it could be plus or minus depending on 

the direction or let us say, n pi by d. So, you can see both of them are reciprocal of length, as 

a result they are called in they are called as reciprocal vectors. 

So, this is wave vectors small k and capital K is the reciprocal lattice vector. We do not have 

time to get into this. The details of reciprocal lattice vector, basically when you have this 

energy band diagram, E k. So, instead of having continuous energy states, at certain point you 



have this diffraction by the lattice and these points are plus pi by d, 2 pi by d, 3 pi by d, minus 

pi by d, minus 2 pi by d, and minus 3 pi by d. 

It is at these points the band structure changes. So, the band structure now is essentially like 

this. So, these states are basically you can say the forbidden gaps. So, these are the gap states. 

Same thing will happen here also. You will have, so these will be the gap states. Now, we 

also saw so, these are forbidden gaps in which there is no energy state available. So, electron 

either exists below this or above this but nothing is there present in the gap state. 
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Now, what might happen in real crystals is that, let us say in real crystals as we say last time 

that, let us say along certain direction we have a gap state which is shown by this diagram let 

us say. So, in one direction, the gap state is like this. So, this is let us say at pi by d. so, this is 

let us say along 100 direction. This is E and this is k. Now, if you take the same thing along 

different direction, so this is again k vector and this is along 110 direction.  

So, we can see that along 110 direction, if situation is something like but 110 k vector will be 

different. So, let us say the k vector now is a square root of 2 pi by d and at this point the 

curve follows like this. So, we can see that, although when the electron is traveling along 100 

direction, at this k value encounters a gap but it can change its direction and find energy state 

in different direction up to this point. 

So, effectively the gap is essentially this. Because corresponding to this region, there are 

states available here, corresponding to this region, there are states available here, so electron 

can always transition from one direction to another direction and find energy state. But in 



between there is a region where there is no state available. So, this is no state available. So, 

this is basically the forbidden gap. So, let us say, so this is basically across the, and if this 

continues across the k space along all the primary reciprocal lattice directions, then you will 

have a forbidden gap. 
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Suppose the situation was something like this, let us say I redraw this diagram in different 

way. This is k, this is k. So, this is again let us say 100 hypothetical situation. This is again 

100. Let us say the situation was that we have, we had a situation like this. 

And then for this direction at square root pi by d, this is pi by d. The situation at this point 

was that the energy gap went like this. I will use a black colour. Then we can see that for this 

region, for this gap region, I have states available in this region and for this gap region I have 

states available in this region. So, I can see you have states available here in 110 and here you 

can see the states available in 100. 

So, basically, this material does not have, it has overlapping bands as a result, electron can 

transmit. So when it reaches here at this point, it sees a gap along this direction, but it can 

transition itself to 110 direction. And when it reaches at this point, it can transition itself to 

100 direction, so there are no, there is not a continuous gap that exists in these materials. So, 

if you have a situation like this, then what we make is a metal and if you have a situation like 

this with the forbidden gap, then what we make insulator or semiconductor. So, we also saw 

that for monovalent and divalent.... 
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For monovalent and trivalent metals for which the electronic configuration is not complete, 

they have partially filled bands. As a result, for these kind of materials if you take this is 

valence band, this is conduction band. So, this is conduction band. This is valence band. But 

valence band is partially filled. So, it is up to let us say you can have a gap here also, let us 

say but there is overlap of states. So, and to avoid the confusion, let us now just draw the 

conduction band. 

So, it is the valence band and this will be the basically you can say the Fermi level at this 

point, so this will be the Fermi level. So, this is you can say a partially filled valence band. In 

this in the case of divalent metals where you have outer shell filled, what will happen is that, 



valence band is filled. So, this is valence band which is filled but then the conduction band is 

partially overlapping. 

So, this is conduction band so, electron can always transition from here to here. This is 

basically overlapping CB and conduction band and valence band. So, this is what happens in 

a divalent metal. 
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In fourth group, four elements such as carbon, silicon, etc what happens is that there is a gap. 

So, this valence band. So, this conduction band is separated with respect to valence band, 

valence band is completely filled. So, this is completely, we are taking at 0 k and this is 

completely empty. And these two are separated by energy gap E g which is called as energy 

gap. 

So, in case of diamond, this magnitude is very large. So, in case of diamond, it is it is nearly, 

which is carbon which is 5.4 e V but in case of silicon this is 1.1 e V, if you come down 

germanium it is 0.7 e V and in case of tin it is 0.08 e V and in case of lead this gap is down to 

0. So, lead and tin are metals because the gap is very small but diamond, silicon, germanium 

are, you can say semiconductors slash insulators. 
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So, the way we define semiconductors and insulators are semiconductors are materials with 

band gap of 2 to 3 e V, E g. Insulators on the other hand greater than 3 e V is the E g for 

insulators. I mean it is the fussy boundary 3 e V. Some people say 2.5 e V, 2.6 e V and in 

case of semiconductors anything when E g is more than 2 e V we call them wide band gap 

semiconductors. Now let us go back to one more thing that we talked earlier. We said earlier 

that when you have conduction, in the E k space if the minimum of conduction band and the 

maximum of valence band they coincide each other. 

So, when k minimum in conduction band is equal to k maximum for valence band then this is 

a direct band gap material. And in the context of semiconductor we call it direct, sorry direct, 

we call it direct band gap semiconductor. And if this conduction band minima and valence 



band minima they do not meet with each other, there is a difference between the k, so, k 

minimum conduction band is not equal to k maximum of valence band then it called as 

indirect band gap semiconductor. So, examples of this are, for example silicon, germanium, 

both are indirect band gap semiconductor. 

And if you take an example of gallium arsenide, this is a direct band gap semiconductor. 

There is a fundamental difference here because if electron has to transition from here to here, 

then it has to change its so, it cannot do so easily because there is a change in k value as well. 

Because if it wants to go from here to here then there is a change in k value. So, there is a 

change in k value. And k is basically you know, we saw that k is nothing but related to 

momentum. So, there is a change in momentum in this case. 

Whereas in this case, the electron directly is able to transfer from here to here so, there is no 

change in k. So, as a result, indirect band gap semiconductors have lower optical absorption 

efficiency or lower absorption coefficient. And direct band semiconductor have higher optical 

absorption. There are other differences as well which we are not going to get into details of. 

But these are, this is a major difference between the two materials. Direct band gap 

semiconductors are those where k min and k max of conduction and valence band coincide. 

As a result, when electron has to transition, suppose you have a light coming at certain wave, 

certain energy. 

If the h mu is more than E g then electron directly goes from here to here, creates a electron 

hole pair. So, there is no change in the k value so, as a result the materials of such nature 

absorb light easily. In the case of this kind of situation, the electron has to transfer from 

maxima of valence band to minima of conduction band. As a result, there is change in k value 

or if it has to go from here to here, then it has to use higher energy. So, basically, when h mu 

is greater than E g, absorption will acquire but either there will be change in k value or you 

will waste more energy. As a result, optical energy absorption efficiency is lower or optical 

absorption, light absorption is lower for the same band gap. Okay.  

So, this is a fundamental difference between the two materials. So, this is a brief background 

on what is, what are the, what are semiconductors, what are insulators and what is the origin 

of bands in materials and stuff like that. We, of course, have not been able to gone into too 

much of details. But there is a bare minimum we can do for such introductory course. 
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Now, let us concentrate mainly on semiconductors and why you want to do that? Because 

semiconductors are very important materials. They are used in lot of electronic applications, 

they are the backbone of electronic industry, microprocessor industry and as a result, we got 

to know about the properties of semiconductors. So, essentially, semiconductors are the 

materials which have a band gap, we can say less than 3 electron volt and this is basically we 

say it is a forbidden energy gap. 

So, essentially, if you plot this energy band diagram of a semiconductor, so, this will be 

valence band and this will be conduction band. If you have electrons here so, at 0 k this will 

all be full. 

So, here energy is going up and this is distance x. So, this is fill at 0 k. This is empty at 0 k. 

The moment you increase the temperature, this electron has certain probability of crossing 

this energy gap. It goes to this conduction band and it leaves a hole here. So, this is basically 

when E is greater than E g, your electron from valence band has or we can say that at T 

greater than 0 k, electron from valence band, electron in valence band has finite probability to 

cross over to conduction band. And this probability is basically 1 over, sorry, exponential of 

minus of E g divided by 2 k T. 

So, at a finite temperature depending upon the, depending upon the band, so, this is 

proportional to n so, n is proportional to P E. So, essentially, at the finite temperature for a 

finite band gap electron has finite probability of being found in the conduction band. As a 

result, even at very low temperatures you will have certain number of electrons in the 

conduction band which can be exited from valence to conduction band. So, essentially, there 



is a, there is a relation between the carrier concentration. So, let us say semiconductor is pure, 

it does not have impurities. In this case, we call it intrinsic semiconductor. 

And most, in most cases we take example of silicon, in most cases we take example of silicon 

and for silicon we will see this as we, for a given temperature there is a finite probability. 

And this is related to conductivity. So, this is conductivity is proportional to n which is 

proportional to probability of finding electron. And basically, you can see that, from this you 

can see as the temperature increases, as temperature increases n increases and then sigma also 

goes up and this is basically opposite to what we see in metals. 

This is one major difference between metals and semiconductors. So, in metals as 

temperature goes up, conductivity goes down. In semiconductors, as temperature increases, 

conductivity increases because n increases. So, essentially, now approximately we can also 

approximate this situation. 

(Refer Slide Time: 20:19)  

 

Let us take example of silicon. Silicon has a band gap of about 1.1 eV. So, this is the E g of 

silicon. And so basically this is approximately the energy difference between the an ion 

which is close to an electron which is or a place which is close to ion core and then a place 

which is away from the ionic core. So, let us say the distance between two such locations, so 

these are silicon atoms let us say, silicon has a diamond cubic structure by the way. 

So, if you make a crystal structure of silicon, so silicon will have so you have silicon atoms 

here, here, here, here, here, here, here, here, here, here, here, here, here, here, and then four 

atoms of silicon in the two here and two there. So, these are all tetrahedricaly coordinated 



silicon atoms. So, diamond cubic structure so, distance between one location to another 

locations let us say is approximately 1 Armstrong.  

So, this is the energy that is required to move the electron from one location to another 

location, which is about 1 Armstrong let us say. So, if you apply so, if you essentially what 

you are saying is that and if you approximate this as 1 eV, what you are saying is that, you 

require a field gradient of, so if we calculate the field gradient, it is 1 volt divided by 10 to 

power minus 10 metre or 10 to the power 10 volt per metre to move an electron from the top 

of valence band to conduction band. 

So, if you look at the valence and conduction band picture, you are going to move an electron 

from so, this is conduction band, this is valence band, you are going to move an electron from 

here to here. This will create electron here and empty state here which is called as hole in the 

language of semiconductors and this will take an energy of basically 10 to the power 10 volt 

per meter. So, it is a lot of field which is required to move. 

And this filed is not possible so, even if you let us say, even if you let us say have a crystal of 

let us say crystal of size 1 micron. Even for 1 micron size you will require a field of 1,000 

volt which is like 10 kV of field, which is a very large amount of field. So, basically applying 

a voltage is not the way to excite electrons. So, the only way by which you can excite the 

electron so, voltage application, large voltage application is not practical to excite the 

electrons. 

So, what do you do? So, as we discussed earlier, the other way is thermal excitation. So, 

thermal excitation is essentially at room temperature. The thermal energy that is available so, 

at room temperature which is about 300 Kelvin, the thermal energy can excite sufficient 

number of charge carriers that is, electrons from VB to CB. And when you excite electron 

from VB to CB, you create electron here and what you create this is called as a hole, which is 

basically empty state. 

So of course, when the gap is very large like diamond or some other materials, it is not 

possible to do, alumina but if it is like silicon or germanium, it is easier to do. 
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So, this is so thermal excitation is possible and feasible in low band gap materials such as 

example silicon, germanium and so on and so forth. So, in intrinsic semiconductors, so this is 

basically, so thermal excitation is the major process which happens, which is applicable for 

mainly for electron density, electron slash hole density in intrinsic semiconductors without 

any impurities being present. 

So, number of electrons that can be excited so, we can say the number of electrons that can be 

excited from top of VB to bottom of CB, they can given as they can be so, for this we use 

what we say Fermi-Dirac statistics. So, we can say the P E, the probability of finding electron 

is 1 plus 1 over 1 plus exponential of E minus E F divided by k T. Now, for a semiconductor 

like this, the position of E F is always in between. 

So, this is let us say, conduction band, the bottom of conduction band is always defined as 

energy E c which is conduction band edge. And this is valence band and the top of valence 

band is defined by energy E v which is valence band edge if you take this as E. And the 

distance between E c and E v in terms of energy is E g which is the energy gap. So, basically, 

E g is nothing but E c minus E v. And the Fermi level for a semiconductor lies midway which 

is at E g by 2 location. 

So, Fermi energy lies always in the midway so, and we say that probability of finding 

electron at E F is 50 percent, even though let us say the, even though there are no energy 

states in this gap. So basically we are saying that E minus E F is equal to E g by 2, where E g 

is basically the, so the denominator here E minus E F that we can write as E minus E g, E 

minus E F as E g by 2. 
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And if you take for silicon, silicon has E g of 1.1 eV. So, E g by 2 will be 0.55 eV and if you 

take (0.), whereas k T at R T is nearly 28 m eV. If you can calculate so, just put the value of 

Boltzmann constant in temperature and room temperature is so basically 1.38 into 10 to 

minus 23 joule per Kelvin into 300 K divided by 1.6 into 10 to power minus 19 Joule per eV. 

So, this will turn out to 28 m eV, which is very large about 20 times smaller. 

So, as a result, one can say that the factor so, you can say that P E was equal to 1 over 1 plus 

exponential of E minus so, this is E g by 2 k T. So, we can say that this factor 1 is basically 

ignored because this is very large. So, as a result, we can write this probability P E as 

exponential of minus of E g divided by 2 k T. And so, this is a very simplistic analysis.  

So, as a result, the number of electrons that can be excited across the gap is equal to some 

constant N into exponential of minus of E g by 2 k T. N has a value which is basically N c 

into N v divided, to the power half and N c, N v have certain expression. So, we can write the 

value of let us say N c and N v. So, this can be written as so, this product of N c and N v can 

be written as 2 m e star k T divided by 2 pi h cross square to the power 3 by 2. 

This is what basically it is. And so, essentially this is this you can say is the electron 

concentration. So, electron concentration is n, some constant which is basically effective 

number of you can say, you can say the number of electrons available for excitation from top 

of valence band to conduction band or you can say effective density of state N c and N v. So, 

N c is the effective density of states in and N v is effective density of states in VB.  



So, we have not done the whole derivation but this is basically what it is. So, and product of 

N c, N v is given as 2 into m e star k T divided by 2 pi h cross square to the power 3 by 2. 

Where h cross is h divided by 2 pi. So, this is what we have done. This is the carrier 

concentration in intrinsic semiconductor as a function of band gap and temperature. And we 

can see as the temperature increases, the number of electron increase in the conduction band 

in intrinsic semiconductor. 

We will do this analysis little bit effect of impurities and conductivity of some 

semiconductors in little lit more detail in the next lecture. Thank you. 


