
Project of Materials (Nature and Properties of Materials: III)  

Professor. Ashish Garg 

Department of Material Science & Engineering,  

Indian Institute of Technology, Kanpur 

Lecture 24 

Theoretical Strength and Role of Dislocations  

So, welcome again to the new lecture of the course Properties of Materials. Let us just briefly 

recap what we did in the last lecture.  
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So, in the last lecture we saw determination of the resolved shear stress basically which was 

tau RSS was equal to cos phi 1 cos phi 2 into F divide by A, so where phi 1 is the angle 

between tensile axis and slip plane normal and this was the angle between tensile axis and 

slip direction. So, you need to take care of all the slip systems.  

Consider all slip systems. So, if you have, let us say tensile axis with 1 1 1 and the slip 

system is 1 1, let us say bar 1 and then 1 bar 1 0 then you work out the phi 1, cos phi 1 will be 

equal to 1 plus 1 plus minus 1. So, basically 1 into 1, 1 into 1 and 1 into minus 1. Divided by 

square root of 1 square plus 1 square plus 1 square into square root of 1 square plus 1 square 

plus minus 1 square and this will work out to, you can see 1 divided by 3.  

cos phi 2 will be equal to 1 into 1 plus 1 into minus 1 plus 1 into 0 divided by square root of 1 

square plus 1 square plus 1 square into square root of 1 square plus minus 1 square plus 0 and 

this you can see, this will become 0 and this will become 0. So, essentially in this case, cos 

phi 1 into cos phi 2 will be equal to 0.  



So, this is how you work out the angles and then you work out, what you call as tau RSS and 

so, slip system which will be first active where tau RSS is maximum, tau RSS maximum will 

be the active slip system. However, for slip to occur, the tau RSS max has to exceed tau 

CRSS for slip to occur. 
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And then we started looking at the model for critical shear strength and there we are saying 

that, we have atomic configuration of atoms is. So, you may have, the touching sphere model 

in which atoms are placed like this and when you apply stress to this, let us say, when you 

apply stress to this crystal.  

Let say like this, then what will happen is that, let us say the bottom layer remains the same. 

So, basically there will be relative movement. So, this is the state let us say state 1, then you 

reach state 2, when the green atoms will now sit on top of these red atoms and then when you 

want take it further, state 3 then you have the green atoms will then move to again these 

positions.  

So, basically this atom will have come here, this has gone there, this has gone there, this has 

gone there, this has gone there. So, they have moved from one minimum. So, this is first 

minimum, there is a second minimum but in between they go through a position when they 

are right on top of each other. So, this basically leads to a situation which is like this.  

So, in terms in terms of potential energy, potential energy shows a minimum at these 

position. So, let us say this is 1, this so I said this is 0, this is 1 and this is again 0. So, for 0 it 



will show a position like this but again it will go to a position 0 and then between we have 

position 1 where it is maximum.  

So, if you now plot the shear stress accordingly, the shear stress will show a variation like 

this, did not have space there. So, let me just, something like that. So, this will correspond to, 

if this is the position, lets said b and this is a then this will be at b, this will be at 0, this will 

be at b by 2. So, this tau as a function of distance. So, basically we want to work out what is a 

simple model for theoretical shear strength. 
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So, as a first approximation, so due to the nature of variation of energy and strength to a first 

approximation, one can write the shear stress as, tau m into sin of 2 pi x divided by b. So, 



essentially this is the behaviour that we are sinusoidal varying behaviour. So, this is x, this is 

0, this is b by 2 and this is the maximum value which is tau m or you can say tau CRSS.  

So, this is the as a first approximation the stress can be written as tau equal to tau m into sin 

of 2 pi x divided by b. Now let us say, the deformation is not large. So, for small 

displacement, for very small displacement let us say only elastic deformation occurs and that 

Hooke’s law is valid. That is, tau is equal to G into gamma.  

So, shear stress is equal to shear modulus multiplied by. So, let us say, tau is equal to G 

multiplied by gamma. So, this is shear modulus, this is shear strain. This is the maximum 

amplitude. This is the, so 2 pi is the period, x is the, at any point x, so along direction x a 

point along direction x and b is the equilibrium distance, equilibrium distance over which 

complete cycle happens.  

So, when x is equal to 1 2 pi divided by b will be equal to 1 as a result, 2 pi will be equal to 

basically this, this will be equal, numerator will be equal to denominator. That is when 

complete the whole. So, at x is equal to be, this will be equal to 2 pi. So, tau will be equal to 0 

and when, when x equal to b by 2 then, you can see that this will become.  

So, at x is equal to b by 2 you can write here. So, sin 2 pi into b by 2 divided by b. So, this 

will be sin pi. So, this will again become 0 and when you write this x equal to b by 4 or 3 b 

by 4 then we can see that at x is equal to b by 4, tau will become tau m into sin of 2 pi divided 

by b into b by 4.  

So, this will be sin pi by 2 which is equal to 1. So, tau pi by b, tau the shear stress will be 

equal to tau m at b by 2 and 3 b by 4 and so on and so forth. So, let us say, to a first 

approximation, the displacements are very small and we only have elastic regime that is 

Hooke’s law value. So, we can write, tau is equal to G into gamma and gamma that is the 

shear strain can be written as. So, this is the shear strain. So, let us say, the movement is x 

and this is a, so we can see that here. 

So, you are moving in this direction and this is the shear strain u cos. So, the shear strain will 

be equal to x, gamma will be equal to x divided by a for small x. Otherwise, it would have 

been tan of, it would be tan gamma. So, basically we are saying that tan gamma is equal to 

gamma. For similarly, for very small values of x by b, we can write sin of 2 pi x by b as 2 pi 

x by b. So, if we make all these approximations and plug in there.  
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So, tau will become equal to tau m into 2 pi x divided by b. So, tau m will be equal to 

essentially it will be equal to G divided by 2 pi. So, we know that on one hand we are saying 

that tau is equal to tau m into 2 pi x divided by b and then we say it is equal to G into x by a. 

So, this becomes equal to tau m becomes equal to G divided by 2 pi a into b divided by a.  

Assuming b is approximately equal to a. So, in that case, tau m is equal to G divided by 2 pi. 

So, maximum shear stress that is needed to move atom from one position to another is equal 

to G divided by 2 pi. G is basically the shear modulus. So, this is what the value of maximum 

shear strength is. So, or you can say the ideal or theoretical strength of the materials. We can 

say this is ideal or theoretical strength which is G is equal to 2 pi. Now, let us say, where 

what is the value of G?  
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For metals, G varies anywhere from 20 to 150 GPa a lot of metals. So, for a lot of metals, this 

varies from 20 to 150 GPa. So, we can say that if this is the case, then tau m will be equal to 

since equal to G divided by 2 pi, basically, we are saying let us say, this is equal to 6. So, 3 to 

nearly 30 GPa. So, theoretical strength is somewhere between 3 to 30 GPa. Now, what is 

happening here, basically you can see that atoms are bounded with respect to each other.  

Let us say, you have top row of atoms, then you have bottom row of atoms. So, this atom and 

this atom they have bonds with each other, all of them are bounded. So, all of these atoms are 

bounded with respect to each other. So, when you move this atom. So, if you just consider 

this particular atom. 

So, the atom was seating here earlier, let me draw black one. It was seating here earlier. Now, 

it goes to this position and what happens at this position? The separation between this and 

this is large. So, we can see that this bond has stretched. On other hand, this particular bond 

has, is of different length. So, you can see that there is a increase in the energy that is 

required. There is an increase in the energy of the system.  

So, this basically you, what you need to do is that, you need to break bond here, break the 

first bond then you go to the next position and then when it goes to the next position, it sits 

here. So, it breaks the bond with the first atom. So, first is the breaking of bond with first 

neighbour and then it re-establishes a bond with next neighbour and in this process, this bond 

the bond which was there in between first it was like this, then it becomes like this and then 

again it goes like this. 



So, there is a huge stretching of bond as well as breaking of old bonds and creation of new 

bond. So, this is what requires lot of energy and that is why because of, so due to breaking of 

old bond and formation of new bonds. One require very large strength theoretically speaking.  

So, theoretically speaking if you calculate for a few materials.  
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Like iron, let say or copper or for zinc, iron is BCC, copper is FCC, zinc is HCP. So, 

theoretically, tau m theory let us say is in GPa, it is 12, 7 and 5. So, iron will show to GPa, 

copper will show 7 GPa and zinc will show 5 GPa. This is the theoretical strength which is 

very high strength. But when you look at the experimental values. So, it is fine because it has 

to break a bond and form a new bond and it is not just one atom, it is all atoms which have to 

(())(17:17). If you look at this picture.  



All the atoms which are present in this row. So, all of these atoms. So, all the atoms have to 

break the bonds and then re-establish and that is why this theoretical strength is very high. 

However, when we see the practical values, experimentally observed values, they are not in 

GPas, they are more in MPas. So, experimental values, they are like 15 MPa for iron pure 

iron. For pure copper it is 0.5 MPa. For zinc it is 0.3 MPa. 

So, if you look at the ratio between the two, ratio between tau theoretical and tau experiment, 

the ratio is of the order of 800, 14000 and 17000. So, there is a large discrepancy between 

experimental values. So, we can understand why theoretical strength is higher because 

theoretically speaking if material is perfect, all the atoms when they slide across each other, 

the slip happens. 

The next row of atoms has to be re-establish all the bonds that it had. So, first it has to break 

all the bonds with the nearest neighbours and has to then it re-establishes. So, the process of 

breaking bonds to a first neighbour, stretching the other bonds and then going to next 

equilibrium position requires lot of energy aa a result lot of stress and that is why, the 

theoretical strength is very high. The question is why is that experimental stress required is 

low.  
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So, we look at certain values of various other materials. So, if we look at silver, if you look at 

aluminium, if you look at copper, if you look at nickel, iron and let us say cadmium we can 

look at various values. For iron, if you look at G divided by 2 pi, then it is 4 point. For silver 

it is 4.6. For aluminium it is 4.2. For copper it is nearly 7 and for nickel it is nearly 12 and so 

let us say, it is nearly 4.5. Just write the nearest possible values.  



Iron it is about 13, cadmium is about 4 and if you look at the values which are experimental 

values, experimental sigma y, then it is in MPa. So, this is in GPa. This is in MPa and these 

values are 0.37, 0.78, 0.49, this is 3.2 to 7.3, this is about 27 to 30 and this is about 0.6. So, 

you can see there is a huge discrepancy and this huge discrepancy of few orders of magnitude 

is because of presence of what we call is defects.  

So, this discrepancy is due to imperfect. Materials contained defects and these defects 

basically lower the lower the strength. So, you do not have to move. Basically, we will see 

that how these defects lower the strength of the materials and presence of these defects 

basically causes a substantial difference decrease in the strength of these materials. So, this 

the credit of looking at why the strengths are, why the experimental strengths are lower goes 

to few scientists. 
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So, people who investigated the causes behind these discrepancies, they were, Polyani 

Mihaly in 1934 and then G. I Taylor in 1934. So, and then Egon Orowan again in, roughly 

1934, 1930s. So, these three gentlemen basically postulated that defects named mainly 

dislocations are responsible for lower experimental values of yield stretches, order of 

magnitudes lower than theoretical values. 

So, basically these are the guys who suggested that who postulated dislocation theory and the 

role of dislocations in reducing the strength of these, strength of materials. So, basically what 

these guys suggested is that.  
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When you have this piece of material and let us say the slip, this is the slip plane and you 

apply stress then essentially the slip produces a step. So, this is the step which is formed. So, I 

mean if you have let us say, perfect crystal you have an atom here, atom here, atom here, 

atom here, here, here, here, here, here. You have these atoms rings here.  

For this step to form essentially, these group of atoms all of these have to move by one step 

here with respect to the other group of atoms. So, forming leading to a step. Now, if the, if the 

crystal was perfect, all atoms would, with their neighbours and that will lead to larger stress. 

So, basically this will lead to large stress.  

However, if the if the crystal was imperfect, let us say, all the atoms do not have to break the 

bonds you may create situation in the form of a dislocation in such a manner and all the 

atoms do not have to break their bonds. Then the stress required is lower. So, we will see how 

does this work?  
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So, first for this. So, we need to look at the mechanism of how dislocations assistant reducing 

the stress needed for deformation or yielding. So, this is the question that we ask first. Now, 

so if this is the case then, in the previous picture we saw that all the atoms move. Instead of 

moving all the atoms what we do is that we introduce a dislocation.  

So, here what you use that, you introduce a, introduce a dislocation. In that case, what 

happens is that bond breaking is not at the scale of all the atoms only a few or may be one 

atom need to break its bond for the neighbours and moves gradually from one place to 

another requiring much lower stress and now we are sort of spending out of time. We will 

look at this in a little bit more detail in the in the in the next lecture. 



So, what we have done in this class is basically we looked at the estimation of theoretical 

stress that is required to deform a material and we found that this value is exceptionally high 

G divided by 2 pi. So, if the as we know that the modulus values are of the order of few Gpas, 

the theoretical strength also tends to be of the order of few Gpas.  

Which is exceptionally high as compared to when we look at the experimentally observed 

value which are in the, which are of the order of few mega Pascals to few tens of mega 

Pascals, for pure metals. Of course, when you when you put impurities in them, they become 

stronger but for pure metals, their strengths are much smaller. So, and then we looked at, then 

we saw a briefly discussed that and this is because the, and this is because all the atoms need 

to break their bonds when they deform.  

In the next class we will see, how dislocations can elevate this problem of breaking all the 

bonds so that only a few bonds are needed to be broken which leads to significant reduction 

in the stress that is required to deform the materials. So, you do that in the next lecture. Thank 

you. 


