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So, in the previous module, we found how the shear strength of the material increases

with increase in the dislocation density. But, how does dislocation density increase, now

that is a question that we will try to answer our part of it in this particular module.

So, the our topic right now is origin and multiplication of dislocation. Now, if we are

talking about increment or decrement in the number of dislocation, the first question is,

is there any equilibrium number of dislocation or in other words our dislocations also a

thermodynamically stable structure like we found that the point defects are. And when

the an when a particular entity is thermodynamically stable, then there is a inherently

equilibrium density of these entities that is what we saw, when we look at point defects

like vacancies. So, the first question we will answer is, is it a thermo dynamical stable

quantity, and what will be its equilibrium concentration. 

So, let us start with the equation which we started for point defects, which is delta G

equal to delta H minus T delta S. So, delta H is the energy of formation, and it can be

given as approximately so this value. And I am not again going into the details 5 electron

volt  by b,  and T delta  S 2 k T by b,  and this  is  per  unit  length.  So,  of  course the

denominator of length would be so common in both of these. 

Now, so the you can see that this quantity is increasing with temperature, and therefore

this will become more and more negative as we increase the temperature. But, at what

temperature will it be sufficiently high this quantity, so that it becomes negative. So, for

delta G to be negative which is when we can say that that at this particular temperature,

this is a thermodynamically stable quantity. So, is maybe that whole range of temperature

is  possible  that you can find out  by putting T over here.  So,  for delta  G with to  be



negative, which would mean that this becomes a thermodynamically stable quantity, we

have to find a temperature range.

And when you equate this, you would find that T must be very high, what is what do we

mean by very high in almost all cases, it means T should be greater than T melting point.

So,  the dislocations  are  thermodynamically  stable  only at  temperature  above melting

point, where the crystal structure does not exist anyways. So, it means that dislocations

are not thermodynamically stable; at least until the crystal structure exists, unlike point

defects. We saw that point defects can be stable. 

But, then the question arises, then why do we see dislocations I mean if you anneal it, no

matter for how much time. And if you try to grow a single crystal, you still we talk about

dislocations presence of dislocations something order of the order of 10 to the power 10

per meter square, so why is there dislocation, and that is because no matter how you have

created your material, if it is a even a little bit large decent amount of size, there will be

enough stresses inside it that dislocations will get generated. So, however real materials

are  never  stress  free.  And when they are  not  stress  free,  it  implies  dislocations  will

always be present. 

And  approximately  depending  on  the  stress,  you  will  get  the  different  amount  of

dislocation density. But, on an average for a material, for a metal or in the lower system,

there  is  an  approximate  range,  and  what  is  that  range  that  in  a  annealed  material

approximately 10 to the power 10 per meter square. And why do we write the unit per

meter square, if you remember from part one, it is meter per meter cube. And therefore, it

becomes per meter square. 

While a deformed if you have done some process like rolling, forging, extrusion, then the

dislocation density increases. And it does not increase like two times, three times, four

times, it is increasing by order of magnitude. So, four orders of magnitude increase can

be seen. And these are approximate numbers;  it  will be here and there depending on

which particular system we are talking about. 

So, now there are dislocations inside it, and if you talk about a single small amount of

stresses acting on to the material very very small, then and inside a single crystal what



would happen is that the dislocations would be moving on only one set of parallel planes,

and that is something that we discussed, when we talked about critically it is all shear

stress.

So, let us say you have different sets of the slip planes inside a single crystal, and you are

applying stress the one which reaches the critical results shear stress first, we will start to

have dislocation glide on it initial for in the first and foremost. So, initially, dislocations

glide on single set of parallel planes. And when you increase the stress, then that critical

resolved shear stress of more than one plane is a achieved and so more than one plane

can get activated. 

Now, when we have more than one set of plane, then of course somewhere some of some

of these planes will intersect. And if the planes are intersecting, then the dislocations

moving on these will intersect.  And this is what leads to dislocation intersection, and

their  multiplication.  So,  you  get  rapid  multiplication  and  work  hardening.  So,  rapid

multiplication because of intersection is one way the dislocations increase in number, and

we will come back to this which leads to work hardening.

But, there is also at least theoretically, another way that dislocations can originate, and

that is homogeneous nucleation of dislocations. So, first we will look into this theoretical

in the sense that such high stresses are required that you may assume that this happens, it

is  not  the  most  preferred  way  buts  it  gives  us  a  lot  of  insight  about  the  material

behaviour. So, first let us look at how does a nucleation nucleate homogeneously. 

So, the next topic we want to look at is ok. So, when the dislocations are created, inside a

defects  region that is  what we mean by homogeneous nucleation.  So, when just like

nucleation of the particular phase or the like the solidification, so there are solids forming

inside  the  liquid.  And  when  it  is  forming  uniformly,  homogeneously  all  across  not

because of any defect region, but is throughout in the defect free region that is called

homogeneous nucleation, and just like that.



The dislocations when it is happening across the material throughout uniformly, and not

at a particular preferred site or at energetically high energy site or at in preferred site,

then it is called homogeneous nucleation, so when nucleate when dislocation is created

in  a  defect  free  region.  And  now  like  I  have  already  warned  you  that  the  stress

requirement will be very high, which is what we will see very large stress is required.

And hence it is not preferred phenomena by which dislocations now density increases

ok. 

So, now let us say that a dislocation loop has been created, what is the shape of this

dislocation  loop.  So,  we will  say that  let  us  say a  square  dislocation  loop has  been

created. And why we are talking about dislocation loop and not a straight line, because if

a dislocation straight line dislocation is created,  then it  must  end at  one of the grain

boundaries or at the surface and both of which are another defect, so it would mean that

it is a preferred site. But, we do not want to talk about those preferred site, we want to

talk about homogeneous nucleation. So, only we can think about dislocation loop. 

So, it the budget vector is in the plane, and let us say the lengths of the sides are a. So,

what will be the energy of total dislocation length? Now, you can see if this is b, then this

is screw, and this is also screw, and this is edge, and this is edge. Now, in part one we

have seen,  how to write  the  equation  for  a  screw dislocation,  and how to  write  the

equation for a for a edge dislocation.  And here we know the total length usually the

energy is written in per unit length, but now we can multiply it with that length to get

total energy not per unit length. 

So, the energy of the loop can be written as 2 into a into E edge per unit length plus 2 a

into E,  so this  is  energy of the screw dislocation  per unit  length.  And these are  the

quantities which we have derived for a screw dislocation, and for the edge dislocation we

directly introduced it in part one of this course. Therefore, E loop can now be written as

if you put it is not a very complicated task, you will see that it will come out to like this.

So, nu is the poison ratio. And we could have simplified our task if we take nu equal to

zero, and the overall discussion that we do can still be continued. But, we will let it be

here, because it does not interfere with our equation derivation. So, this is the energy of

the loop meaning this much energy must have been done.



And when a dislocation loop has been created, there is also some amount of work done.

And this work done is basically, because the dislocation loop you can assume that it is

going from a point towards loop, so some work was done. So, this work must have been

done by the loop. So, the work done can be given as area into the force acting on to it, so

it can be written as a square tau b. Now, this is the energy higher and increase in the

energy, this is the decrease in energy. So, the change in energy can be written as minus a

square tau b, so this is the delta E or the extra amount of energy that must be presented. 

Now, this can be looked at in some few in one another way. So, if we are plotting delta E

versus a. So, this plot would have a variation like this. So, if the this delta E a variation

delta E variation, you see over here. If the size of this loop is beyond certain critical size,

then on further increase of the loop because of this force acting on to it, then on further

increase on the of the size of the loop delta E would decrease.

On the other hand, if the size of the loop is below this critical size that any increment in

the size of the dislocation loop would cause or would require or cost extra energy. So,

this side is not stable. On the other hand if the dislocation loop is formed with size more

than critical, then it will be stable, because its energy can decrease with increasing size of

the dislocation loop, so that  is  what we mean by delta  that  is  what we mean by the

critical size of the loop. And how do we find that critical size of the loop, it is not very

difficult. We just need to you have to differentiate delta E with respect to a, and that will

give you the critical size of the loop. 

So, let us do this to find out what will the critical size be, so this is delta E. And you have

a over here, a over here, so we differentiate it over here. And therefore, I will write down

what we get, so G a b square, so you will have to do it in parts, because a is over here, a

is over here. So, you can take this as common. And one times once you will have to

differentiate this keeping this constant. Once you will have to differentiate, this keeping

this constant.

So, first we will keep this constant and differentiate this, so this becomes G a b square by

p, and on differentiating this, we become it becomes 1 by b into ln 1 by a by b becomes

ln b by a plus now this time we will keep this constant, and will differentiate this. So, this



becomes G b square by pi, and this remains constant ln a by b. And the whole thing is

can be multiplied by 2 plus nu by 1 minus nu, and differentiating this it is 2 a tau b. 

So, from here we can get the critical size. So, let us take this common, so p this b gets

cancelled, and what we get is that a critical now this is a implicit equation. So, the a c is

on the left hand side, and also a c will be on the inside we are not in a position to convert

it to a explicit equation. So, this will have to be solved in an implicit in the way implicit

equations are solved to be able to get the value of a c. Other things would be known in

such a equation.  And now that we are calculating a c, let us also exercise something

which is calculating the delta E at this critical size, which would be this value or the

maximum  amount  of  energy  that  would  be  required  by  let  us  say  some  thermal

fluctuations to cause the generation of such dislocation loops. 

So,  here  we will  put  this  a  critical  value  that  we have  obtained  over  here  into  this

equation that we have over here, but in a slightly you can say we will apply some trick

over here to make this equation simpler, what is that trick we will see in a moment. So,

this is the equation we had, if you put it like this. Now, here the trick that we will apply is

that we will put this a tau a square tau b as a c into a c tau b, why we have done this.

Now, if you go over back over here, you will see that this is a c tau can be brought here.

And if you multiply it by b, then there is a b square term over here, so it becomes G b

square by 2 pi times this term, which is very similar to this term and that is where it

makes our task easier. So, this term becomes a c into G b square, so we have this minus

this. And how do we handle that we can take out some of the common terms G a c b

square, and this we will multiply by 2 on the numerator and denominator, so that we

have 2 pi as the common, and this 2 plus nu is still the common factor by 1 minus nu. 

And therefore, this is 2 ln a c that we have here or delta E critical the amount of critical

energy that is required for by any mechanism, so that a dislocation loop can be created,

which is stable. If you create smaller loop, then you will require lesser energy. So, this is

the critical energy required to form a loop of criticals of size a c critical. 



So, as long as you can provide this smart this type of energy as long as this amount of

energy is available maybe by thermal fluctuations, then dislocation loops can generate

stable dislocation let me add stable dislocation loops can be generated. And remember

that a c over here is your critical loop size, which has been defined earlier. 

And let me just add one point here, when I say a c, it is the critical loop size and loops

bigger than this size will be term will be stable meaning, they will not contract. Because,

if  they  want  to  contract,  you  will  need  more  energy,  so  that  is  energetically  not  a

favourable thing, they will you will have to supply additional energy. So, it will like to

increase the size, because that way the energy can be reduced. So, any amount of work

that is done on this, it will lead to increase where it can increase in the size, then it will

reduce in that total energy. 

Now, that we have this equation there is something very interesting that we can talk

about  or  we can  obtain  from this  relation.  Now, let  us  say that  there  is  no thermal

fluctuation. In absence of any thermal fluctuations, what will happen? How much is the

delta E that can be provided, the delta E that can be provided is z a 0 actually. Now if

delta E is E 0, then from this what do we get? We get that ln a critical by b is equal to 1,

because these terms cannot be 0, so this must be 0. So, ln a c by b is equal to 1, so we get

that in the terms of critical loop size, this is the relation that we obtain.

Now, let us put this equation back into the a c, so we have this a c equation. And let us

see what it predicts for us, because there is a tau term which talks about the amount of

stress that is being applied. So, let us say so this implies a critical so a critical is equal to

2.71 b, so on the left hand side we have this. So, this is coming from this equation, you

just keep in mind this is the equation that we are using which is a critical.

So, on the left hand side a c we are using 2.71 b as we just obtained, when we have no

thermal fluctuation meaning delta E is equal to 0. So, 2.71 b is equal to G b by 2 pi tau 2

plus nu, and over here we have ln a c by b which is nothing but 1. So, this is ln a c by b



we have seen is 1. So, this is 1 plus 1, so this is equal to 2, and this 2 gets cancelled over

here, and this badger vector gets cancelled over here.

So, what we have, we have this tau this shear stress that is applied on to the dislocation.

So, this is the tau that is applied not on to the dislocation, but on to the system. So, this is

the shear stress that is being applied can be given in terms of when there is no energy

external energy, then this can be given by G by 2.71 pi into this sum factor which is close

to one. Now, what is this approximately equal to this is equal to G by 10. You remember

seeing this equation somewhere, this is the same value that we obtained as the amount of

stress required to deform a material, if there are no dislocations inside the material. 

So, again we come back to the same relation, which describes that the shear strength of

defect free material is of the order of G by 10. So, we have obtained similar the same

thing, but in a different way where it shows that a defect free material will have very

very high strength.

So, we started with talking about how the dislocations multiply, and we found that first

thing  that  we  found  is  that  thermodynamically,  the  dislocations  are  not  stable  at

temperatures below melting point.  Then we said that  dislocations  generate on in one

plane or dislocations glide on individual plane as you keep increasing the applied stress.

When the applied stress exceeds more than the critical resolved shear stress of more than

one plane, more than one plane starts to glide or the dislocations on more than one plane

starts to glide. And they can interact,  and they can multiply. We will  look about that

multiplication again in the next module which later on. 

However, here we talked first about, if there is a possibility of homogeneous nucleation

of dislocation loop, and we show that yes it is possible, and that there is a very large

amount of energy required for that there is a critical size of the loop below above which

it will be stable. And we took that analysis further ahead, and showed that when there is

no thermal fluctuation which can provide the delta a c, then the stress required to deform

the material is very high of the order of G by 10 something we had seen earlier from a

different kind of analysis, so that is what we have discussed today. And next time, we

will talk more about dislocation multiplication.

Thank you, and see you in the next module.


