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So, welcome to lecture 9 of the course on Solar Photovoltaics Principles Technologies

and Materials. So, let us just recap what we did in the last couple of lectures. 

(Refer Slide Time: 00:25)

So, we started our discussion on band structure very briefly, I mean without going into

any details and basically what happens is that when you plot energy versus wave vector,

there is a continuous gap and the E k diagram which is basically the band gap. And

semiconductors and insulators have a finite band gap and if it is less than generally 2 2 2

and a half volt E electron volt then it is semiconductor and for band gap higher than 2.5 e

b its we define the material normally as insulator.

Now, there was also something called as direct and indirect band gap semiconductor this

direct and indirect band gap semiconductors, important to know at least we cannot get

into details of this, but basically when the conduction band minima and the valence band

minima and the E k space, when they coincides with when they coincide with each other,

then it is a direct band gap semiconductor and when then when they do not coincide with



each other, when they shift. So, if you have a maxima here minima here maxima there.

So, there is a shift in the k space then it is a indirect band gaps in here.

So,  this  is  direct  and this  is  indirect  and this  has  influence  on the  way carriers  are

generated and carriers are recombined in semiconductors, we will get back to this later

on. And then we moved on to what semiconducting materials are so, we defined intrinsic

semiconductors and we define extrinsic semiconductors. 
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So, moving forward on this discussion intrinsic semiconductors are the ones for which n

is equal to p and this is mainly those semiconductor which are where carrier generation is

because of thermal excitation.

So, you have conduction band you have valence band, and electrons from this are excited

to the conduction band. So, this is conduction band this is valence band leaving rise to

so, these are now holes giving behind the hole. So, these are electrons and these are holes

so, these are mainly because of thermal excitation and as a result you have n is equal to p

which is also called as n i some books also write as n e is equal to n h is equal to n i ok. 

Now, the concentration is given as n e is equal to N c into exponential  of sorry into

exponential of minus of E c minus E F divided by k T and n h is N v into exponential

minus of E F minus E v divided by k T where N c and N v are effective density of states

in conduction band and this is effective density of states  in valence band. 



Now, we were talking about where the Fermi levels are Fermi levels will is it the middle

of the band gap in case of intrinsic semiconductor whereas, it is closer to, it moves closer

to conduction band edge in case of n type semiconductor it moves to valence band edge

in case of p type semiconductor. So, let us move ahead with that discussion that we did

last time.
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So, the way these carrier concentrations are come about so, the carrier concentrations are

basically calculated as so, from E g to in E c to infinity sorry next. So, this is E c to

infinity for conduction band. So, this is for conduction band so, this would be f E D E

into d E. 

So, this is basically you can say probability of occupation D E is density of states and

this is over and interval D E. So, interval and we have integrated it from E c to infinity to

calculate the carrier concentration in the whole of conduction band for holes so, this is

for n e this is for for n h for valence band it would be minus infinity to E v ok. And in

this case since we are looking at holes it would be one minus f E D E into small d E

again it is probability of occupation of holes density of states and this is the interval D E

ok.

So, and we know what Fermi Dirac statistics is and gs and the density of states to be

precise is given as for conduction band at least is given as 1 over 2 pi square to m e star

which is effective mass of electron we have not gone into effective mass of theory and all



that,  but I will give you references from which you can read about effective mass E

minus E c to the power half.

And that for let me give you also the expression for holes just bear with me for a minute.

And density of states for valence band is 1 over 2 pi square 2 M h star divided by h cross

square to the power 3 by 2 into E v minus E to the power half so, this is valid for E

greater than or equal to E c and this is for E less than or equal to E V. So, now when you

make the appropriate substitutions you may you will and if you do the integral and of

course, you know the expression for Fermi Dirac statistics.
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You will get n as N c into exponential of E F minus E c divided by k T and n ne and n h

as N v into exponential exponential E v minus E F divided by k T, alternatively you can

write is that exponential of minus of E c minus E F divided by k T. And this would be N

v exponential minus of E for E F minus E v divided by k T and when you multiply these

two together n e into n h, it becomes N c into N v exponential of minus of E c minus E v

divided by k T and E c minus E B is equal to E g divided by 2. 

So, we get n e into n h which is equal to n i square which is equal to N c into N v into

exponential of minus of so, this is sorry E c minus E v is equal to E g this is minus E g

divided by k T. And hence n i becomes equal to N c N v to the power half exponential of

minus E g divided by 2 k T ok. What is now N c N v?
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So, this N c N v is basically N c N v is N c is 2 into me star k T divided by 2 pi h cross

square to the power 3 by 2 and N v is equal to 2 m h star k T divided by 2 pi h cross

square to the power 3 by 2, these are the expressions for N c and N v which we did not

look at last time. 

These  are  the  expressions  for  basically,  this  is  the  expression  for  intrinsic  carrier

concentration, in a intrinsic semiconductor that is how you derive it.
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Now, for extrinsic  semiconductors  we defined last  time,  extrinsic  semiconductors  we

said there are two types one is n type and second is p type, n type is doped by so if it is in

the context of silicon doped by phosphorus and silicon for example, silicon is the base

material phosphorus is the dopant and this is doped by things like arsenic in silicon. So,

this is plus 5 this is plus 3, silicon is plus 4 as a result they create extra electrons and

extra holes.

So, basically since you have in these semiconductor so, n type we said you have n e

which is much larger than n h and p type you have n h which is much larger than n e.

(Refer Slide Time: 11:45)

So, if you look at the band diagram of n o p type semiconductor ok. So, for n type

semiconductor there are high electron density and very few holes. So, this is n type and

the  Fermi  level  lies.  So,  this  is  let  us  say  the  E  F  i  the  Fermi  level  of  n  type

semiconductor lies little bit ahead, little bit above the E F i and the donor level lies very

close to so, this is E c this is donor level.

In this case what happens is that there are more holes and fewer electrons ok. So, here

this is E v again the mid gap position is this, but the Fermi level lies here. So, this is E F

p this is E F i; E F i is equal to E g by 2, but E F p is little bit lower we will see the

expressions of those in a little while this is E c ok. And in this case the acceptor level lies

here. So, we said last time that the donor and acceptor level are very close to E c and E v



so,  that  they  are  completely  so  that  the  atom  sitting  in  them  are  completely  donor

acceptor and donor atoms are completely ionized. 

(Refer Slide Time: 13:29)

So,  ionization  energies  of  these  so,  for  donors  we  have  impurities  like  antimony

phosphorus which have if you put it in silicon for example, and the antimony has a value

of 0.0039 sorry am I writing it 0.0039 E v. And for phosphorous this value is 0.045 E v

for in this case in case of antimony in case of p type doping let me correct it, it should be

boron or aluminum not arsenic, arsenic is plus 5. 

So,  it  should  be  boron  or  phosphorus  boron  or  aluminum  phosphorous  typically

antimony, phosphorous antimony is used for n type doping and boron or aluminum or

gallium or indium they are used for p type doping. So, let me correct myself there. So,

this is p type. 

So, this  would be phosphorus dope silicon or antimony doped silicon in this  case it

would be aluminum, or boron doped silicon. And if you look at acceptors in case of

acceptors  the  aluminum  common  impurities  are  boron  and  aluminum  for  boron  the

ionization energy is 0.045 electron volt. And for aluminum it is 0.057 E v. 

So, you can see that these are very small energies as a result near complete ionization of

these is obtained. And since these energies are very small all the extra electrons which

they bring are able to get into the conduction of valence, into the conduction band all the



extra holes which are created they go they are created in the valence band. So, as a result

since their energies are very small they are completely ionized we can write that n e in n

type is equal to N d which is the donor concentration and n h in p type is equal to n a

which is the acceptor concentration. So, this is for n type and this is for p type. 

(Refer Slide Time: 16:33)

So, when we say that, but at the same time we also make sure mass conservation ensures

that n e and n h is equal to n i square ok. Which means for n type n e is equal to N d

hence n h is equal to N d n i square divided by N d. For p type in h is equal to N A as a

result n e is equal to n i square divided by N A. So, these are the concentration of carriers

that we have alright.
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So, we can also write these expressions little bit differently so for example, we said that n

i is equal to we said that n e is equal to N c into exponential of minus E c minus E F by k

T and n h is equal to N v into exponential of minus of E F minus E v divided by k T ok.

We also know that this n e this is equal to n i for intrinsic semiconductors right ok. So, if

you just turn the equation upside down and for intrinsic semiconductor E F is equal to E

F i then we can write expression for N c as n i exponential of E c minus E F i divided by

k T and N v as n i into exponential E F i minus E v divided by k T ok.

So, now for intrinsic semiconductor since n is equal to p is equal to n i. So, which means

that N c into exponential of minus of E c minus E F divided by k T is equal to N v into

exponential of minus of E F minus E v divided by k T ok. 



(Refer Slide Time: 18:55)

If that is true then we can get the expression for and if E F is defined as E F i, then we

can write an expression for E F i; E F i is equal to E c plus E v divided by 2 plus k T by 2

into ln N v by N c and this will turn out to E c plus E v divided by 2 plus 3 k T by 4 ln of

m h star divided by m e star effective mass of hole electron.

So, if the effective mass of hole and electron were equal then E F i would be right at the

mid gap position; however, if they were different then E F will be different ok. And you

can also see there is a strong there is a temperature dependence of E F as well. So, as the

temperature changes the Fermi level also goes its increases ok.

Now, another thing that you need to worry about a solid is since, now if you create

electron and hole which means you have positive or negative charges, if you dope it with

n type impurity you have n type impurities ionized atoms, if you have p type doping you

have p type impurities; however, as a solid; solid must remain charged neutral.
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So, which means no matter  what happens is that a solid must always be be charged

neutral  which means that  for a given semiconductor  q into n e so,  minus n e  is  the

negative charge plus holes n h plus N d plus which is the donor atoms minus the acceptor

atoms which are negatively charged minus N A minus that overall charge must be equal

to 0 and we know that n h is equal to n i square divided by n e.

So, if you substitute in the above equation you can get n e is equal to N d minus N a

divided by 2 plus N d minus N a divided by 2 square plus n i square to the power half

and n h you can obtain as n t N a minus N d divided by 2 plus N a minus N d to the

power 2 to the power to the power 2 plus n i square to the power half.

Now, if we make an approximation that for n type; if N d is equal to is a lot greater than

N a which is true for n type semiconductor donor impurities are much larger than the

acceptor impurities remember, you will always have some donor and acceptor impurities

present in every semiconductor even in intrinsic 1, but the effect is almost effect almost

cancels  out  each  other. Because  you cannot  completely  purify  a  semiconductor  to  0

impurity nothing is completely pure on the based on the laws of thermodynamics.

So,  as  a  result  you always have some impurity  some donor impurity  some acceptor

impurities.  Now, if  you  intentionally  dopar  semiconductor  to  become  n  type  which

means N d is a lot greater than n a which means its predominantly p type. And if N d is a

lot greater than N a, then if you plug this in the above equation we get p is equal to n i is



square divided by N d that is what we said previously also right. And for p type N a is a

lot greater than N d which leads to so, sorry let me just not write as p let us write it as n h

and in this case N a will be equal to n i square divided by N a ok.

So, and of course, n e will be equal to N d and in this case n h will be equal to N a ok.

So, these can also be derived.

(Refer Slide Time: 23:39)

Now let us look at quantitatively the change in E F upon doping so, we said that you

have a conduction band you have a valence band ok. So, this is conduction band, this is

valence  band  alright  and  this  is  your  band  gap  E  g  your  intrinsic  Fermi  level  is

somewhere here. And the Fermi level moves up for n type moves down for p type and

this is at E g by 2 for an intrinsic semiconductor alright. And for n type semiconductor

you will have this as E d and for p type you will have this as E a this is conduction band

edge and this is valence band edge ok. 

Now, for a Fermi level of n type semiconductor we can define E F n is equal to E F i plus

k T into ln of N d divided by n i. And this is for N d being a lot greater than N a as well

as n i ok. And for a p type semiconductor the E F p on the other hand is equal to E F i

minus k T into ln N a divided by n i for N a being greater than N d. So, it is getting a

small a and it should be greater than n i ok. 



So,  basically  you  can  see  from  this  expression  that  as  you  increase  the  donor

concentration in the first equation, as we increase the donor concentration the term on the

right increases right and it is multiplied by k T. So, when your impurity concentration,

donor impurity concentration increases it when it is much larger than n i, then E F tends

to move up. So, you add something on E F i ok. For a p type semiconductor on the other

hand since you have a minus term here as you add more and more to acceptor impurities

the Fermi level  tends to  decrease  or  go lower with respect  to the Fermi  level  of  an

intrinsic semiconductor ok.

So, this explained, so if you want if you have a p m type semiconductor your Fermi level

will is likely to lie here. So, this is your E F n and if you have a p type semiconductor the

Fermi level is likely to lie here so, this is E F p so, this is what we have done so far we

have just in this lecture we have looked at the carrier statistics and effect of doping on

Fermi level. And some things about the p and n type semiconductors, what we will do in

the next class is we will so, this is let me just go through it.

So, we looked at the carrier statistics in intrinsic semiconductors. So, basically simple

expression without going through complete derivation. So, this is how you get this n i is

equal to N c N v to the power half exponential minus E g by 2 k T. And then we looked

at  extrinsic  semiconductors,  the  band  diagram the  ionization  energies  of  donor,  and

acceptor impurities the relation between the carrier concentration and so, if I just draw

these this is for n type and this is for p type ok. And then we looked at  some other

relations with respect to carrier concentration the Fermi position. And the Fermi position

charge  internally  aspect  which  gives  which  ships  ties  to  again  carrier  concentration

expressions and the change in Fermi energy upon doping. So, we will continue with this

carrier  statistics  and  carrier  mobility  carrier  motion  and  semiconductors  in  the  next

couple of lectures.

Thank you. 


