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So,  welcome  to  this  lecture  number-8  of  Solar  Photovoltaics  course  Principles,

Technologies and Materials. So, we will first do a bit of recap of last lecture, and then

move onto the contents of this lecture. So, in the last lecture, we learned about energy

band diagrams, which are basically  E-k diagram. E is  the energy, and k is  the wave

vector.

So, these diagrams for a single electron the curve is like this. So, this is the parabolic

curve, because E is equal to h cross square k square divided by 2 m. Then you plot it for

a  lattice,  the  situation  changes  for  a  lattice  you  have  to  plot  this  energy  on  all  the

reciprocal lattices space points. This is you can say capital K, which is the reciprocal

lattice spaced points. And then you get a kind of many curves for different zones. So, you

have curves like these, and you know you can have curves like these, and then we have

this curve, this curve, and so on and so forth. 

Now, here what is important is that you so basically material if these band, if these lines

or curves are continuous across the space, and you can always jump from one state to



another  without  having  a  discontinuity,  then  it  is  not  a  insulator  or  semi-conductor.

However, if you have a gap like what you see here, across the k-space there is a gap,

there are no energy states present within this state, then this represents what we call as a

semiconductor or insulator with the energy gap E g.

And if this maxima and minima of conduction band and valence band this, the band on

top is called as conduction band, on the band at the bottom is called as valence band. And

if the maxima and minima of valence in conduction band coincide with each other, then

it  is  called as a  direct  band gap semiconductor. So,  maxima and minima maxima of

valence band, and minima of conduction band, they coincide in k-space. 

And if the maxima’s and second one is indirect band gap semiconductor, if these two do

not  if  maxima  and  minima  do  not  coincide  ok.  So,  for  example,  direct  band  gap

semiconductor is like gallium arsenide is about direct band gap semiconductor, indirect

band gap semiconductor is a but you like silicon, you can read the details from other

books such as solid state physics by KiHel. This is a very nice physics book.

You can also read electronic and magnetic properties of materials by R.E Hummel. These

are a few good books, which you can consider for building background on these topics.

We have not covered them in full detail. So, as a result you need to get better exposure, if

you want to learn more about these things.

So, key thing is if you have energy states which are continuous across the E-k space, and

you can  always  find  energy  state  any  at  any  given  energy level  that  means,  it  is  a

continue it is a conductor. But, if you have a forbidden energy gap, where you do not find

energy state, then it is a semi-conductor insulator depending upon the magnitude of Eg

ok. So, presence of Eg presence of a forbidden gap will mean it is a semi-conductor or

insulator. 
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Now, having known this now next thing we want to know is what is the so in order to

calculate that in order to work out the carrier concentration. So, carrier concentration, we

require  first  thing  is  density  of  states,  so  which  means  how many energy states  are

available per unit volume let us say.

And then what is the probability of occupation, the product of these two will give you

what  is  the number of carriers,  because suppose you have 100 energy states ok,  but

probability of occupation is only 0.5 which means, there are 50 carriers which are there

alright. So, that is what we need to do we need to find out first what is density of states

and what is probability of occupation. 

So, let us first look at what is density of states. So, density of states in a semiconductor,

so density of states is given as we write it as D E, which is proportional to E to the power

half ok. However, for a semiconductor we can write it in a little bit more precisely. So,

for semiconductor the band structure is like this, you have conduction band, you have

valence band. So, this is conduction band, this is valence band. And we have a forbidden

energy gap ok.

So, if you plot just D as a function of E, and it will it is basically a parabolic sort of

behavior basically my square root relationship D E goes as E in this fashion alright. Now,

when you plot it now for a semiconductor, you have a conduction band, and you have a

valence band, so you need to plot that density of states in both the bands. 



So, density of states in a conduction band is given as D c E is given as we write it as M n

star or we M e star rather into square root of 2 M e star into E minus E c, so this is E c.

So, here it goes from E c to infinity, and here it goes from E v to minus infinity or some

negative energy; so, basically E c to negative energies and E v, E c to positive energies,

and E v to negative energies basically ok. 

So, this goes from the equation is M e star into square root of 2 M e star into E minus E c

divided by pi square and h cross q, where h cross is nothing but h divided by 2 pi h is the

Planck’s constant. And this is valid for energies E greater than or equal to E c. So, of

course at E c this will become equal to 0. So, you have 0 density of states at E c, and

higher density of states at higher energies. So, the energy so states increase in number as

you go to higher energies and then D v E is analog of it.

So, this is basically m h star 2 square root of m h star into E v minus E divided by pi

square into h cross cube this is for energies E less than or equal to E v ok. So, if that is

the case, then you can plot these. So, if let us say this is E ok, then if I make a Y axis

here, let us say this is the Y axis, then in this direction it goes as this, and in this direction

it goes as this ok. So, these are you can say this is D v E and this is D c E. So, we have

found the density of states.

Now, the next thing we want to find out is so this comes from the quantum mechanical

analysis, and we have not gone into details of that, but basically we want to find out. So,

basically  you can say that  D c E d E what would that be,  that would be number of

conduction band states per cc right, which are in the present in the range present in the

energy range what is the energy range here, energy range will be E and E plus d E were

in that energy range right.

Similarly, you can say D v E would be into d E would be number of valence band states

per cc present in interval d E to sorry E to E plus d E ok. So, here we say that E is greater

than E c. And here we say that E is less than E v all right. So, basically these are and they

are numbers number of energy states per unit volume. So, we can say that numbers per

centimetre  square  E per  E v ok.  So,  we can  you can  do energy distribution  in  that

fashion.
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Now, what we need to know next is: what is the probability of occupation. This comes

from what we call as Fermi Dirac statistics Fermi ok. So, basically here Fe so we write a

function here. This basically the Fermi function, we can say this basically is a function.

Fermi function depicts how many of the energy states will be filled by an electron or in

the case of a valence band we can call it as a hole. 

What happens in semiconductors is basically, when you have so this is conduction band,

this is valence band, you have energy gap Eg, these are electrons which are present. So,

at 0 k you will not have any electron in the valence band, all of them are filled up to here,

because they do not have energy to cross over. But, as you increase the energy, some of

them will cross over. And they go to conduction band, and then leaving empty states

behind, and these empty states behind are called as holes. So, these are electrons, and

these are holes. Holes are also carriers, because they provide states for conduction of

electrons.

So,  f  E  f  E  the  probability  the  probability  with  which  an  electron  probability  of

occupation of energy state by an electron is given as 1 over 1 plus exponential  of E

minus E F divided by k T, where E F is a reference energy which is called as Fermi

energy. And k is the Boltzmann constant, T is the temperature. So, if you plot this now

here, so this function as a function of temperature if you plot it, for example at 0 k, when

you plot f E as a function of E at 0 Kelvin for temperatures for energy less than E F.



When E is less than E F at 0 Kelvin, then this will be e to power minus infinity. So, this

will be equal to 0. So, probability of occupation will be 1.

However, when E is greater than E F, then this will be equal to E to the power infinity

basically right. And E to power E infinity is a very large number, which means it will

become 0. So, at temperature at energy is greater than E F, so this is energy E F. So, at

energy greater than E F, the probability of occupation is 0. So, this is 0 at energy less

than E F, the probability of occupation is 1.

And for of course,  the function is sort  of undefined at  E is  equal  to E F, because it

becomes E exponential 0 by so you can say that every energy state up to E F is filled

when so you can take this as sort of one. So, but the mean value will come at half. So,

this function is this asymptotic around half. So, however so what this tells you is that at 0

Kelvin for E less than E F, the f E is equal to 1. For E greater than E F, f E is equal to 0,

which means all the energy levels are filled up to Fermi level, and at 0 Kelvin, and above

E F all the energy levels are empty.

And as you increase the temperature as you increase the temperature, this curve goes in

this fashion. So, as you increase the temperature, the curve becomes like this. So, this is

at T greater than 0 Kelvin.  So, basically what happens is that this curve on this side

follows the relation f E is equal to 1 minus so basically you can say approximately equal

to 1 minus e to the power E minus E F divided by k T. And at these energy levels, it

follows f E is approximately equal to e to power minus E minus E F divided by k T ok. 

So, now this number becomes negative, so the Fermi energy at these so the probability at

these energy levels reduces, and probability of these energy levels arises. So, basically

what it means is that the state that carriers in this range have left, and they have gone

here. Now, this is what, so basically essentially you can say that this function and the

function changes around half the function changes around a value half. So, if you raise

the temperature further, this will this curve will go in this fashion ok, so it is node it is

node is that half. Now, if this is the case, then so at E is equal to E F, you can say the f E

is half. So, at E is equal to E F, you can say f E is equal to half. 
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And then if another observation that you make is when E is greater than equal to f E F

plus 3 k T, then you can write exponential of E minus E F divided by k T is much larger

than 1. And f E is generally given as exponential of minus of E minus E F divided by k T.

And for E less than or equal to E F minus 3 k T, this exponential of E minus E F divided

by k T, this becomes less than one. As a result you can write f E as 1 minus exponential

of E minus E F divided by k T, and this is what we have written there right. 

So, if you recall that is what we have written here, this is the behaviour. So, this energy is

so at these temperature, these temperatures of the temperature which depict the energy,

which is E less than E F minus 3 k T’s with this 3 k T sort of a number beyond which

you  start  having  significant  changes  in  the  curve  on  the  both  sides.  And  you  can

approximate this function, because this value becomes significantly higher as at these

magnitudes.

So, now if you want to find out the carrier concentration now, the carrier concentration is

for a given semiconductor, we say that this is our conduction band, this is our valence

band that de goes as this so this is D E ok. So, this is C B, and this is V B ok. And our for

a  intrinsic  semiconductor,  so  this  is  for  a  pure  semiconductor  pure  or  intrinsic

semiconductor.

For a pure or intrinsic semiconductor, the Fermi level right lies right at the middle. So,

this is the position of Fermi energy this is f E ok. So, you can you can see that so this is a



so the if you if you if you now plot the, let us say this is the value of f E, and this is the

value of sorry this hang on this is E, and this is D E in this direction. So, y axis is energy

ok. This is f E. So, if I now plot f E, this is one here. So, the f E will go as something like

at a finite temperature, it will go in this fashion right. 

So, this value is approximately this is 1, and this is 0 on the y axis ok. So, basically this

region, and this region they are equal in area its it is symmetric around, this value that is

half. Now, what is n E? So, if you want to now plot n E, this is conduction band, this is

valence band, this is Fermi energy, so n E is now equal to f E into D E. So, when you

plot these, you get these lobes which show you. So, this is energy, and this is n r p, so

electron  hole  concentration.  So,  this  is  basically  the  hole  concentration,  and  this  is

electron concentration. 

And in an intrinsic semiconductor n is equal to you can say a n e or n h instead of n and

p. So, we can say n e is equal to n h, because the Fermi function is symmetric around the

Fermi energy. And Fermi energy lies right in the middle of the band gap ok, this changes

when you make a p or n type semiconductor. So, we would do that when we come back

again to this. 
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So,  now  what  we  do  is  that  we  go  to  essentially  so  we  say  that  for  an  intrinsic

semiconductor. For an intrinsic semiconductor, n e is equal to n h, this is taken as n i ok.

And e and E g is equal to taken as the difference of E c minus E v ok, we can take mod



of this basically. So, if this is your conduction band edge, this is your valence band edge,

this  is  valence band, this  is  conduction band, this  is  E c,  this  is  E v; then whatever

reference you take the E g is the difference between E c and E v. 

So, this is your band gap. And this is given as this n e is equal to n h for operant for

operant intrinsic semiconductor, this n e is given as N c into exponential of so we can

calculate using quantum mechanical calculations same density multiplied density of a

states basically, you will calculate n e E as a function of D E into f E. So, this is what

will give you the electron concentration.

Similarly, you can calculate the hole concentration n p E as D, so this is D c E, this is D v

E into one minus f E, because we are looking at the other side that is 1 minus f E. So, if

you do that, then we get n e is equal to N c into exponential of minus E c minus E f

divided by k T. And we get n h as N v into exponential of minus of E F minus E v

divided by k T, where N c is essentially effective density of a states density of states in

the conduction band, and N v is equal to effective density of a states in valence band.

And you can see this from this expression, if you look at this N c is equal to nothing but

n e divided by is some exponential function this is E c minus E f divided by k T. So,

basically this is the probability function ok, you can take this upstairs you can take this

up and it becomes exponential E c minus E f divided by k T. So, this is the probability

function  one  over  exponential  whatever  and  this  is  nothing  and  this  becomes  the

concentration.  So,  essentially  the  concentration  divided  by  probability  function  is

nothing but the defective density of a states, so that is why this N c is taken as effective

density of a states in conduction band, and N v is taken as effective density of a states in

the valence band.
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Now, so we say that n e is equal to n h is equal to n i. So, we can also say that n i square

is equal to n e into n h, which means it will be N c into N v into exponential of minus E c

minus E f divided by k T into exponential of minus of E F minus E v divided by k T. And

if  you put  them together,  it  becomes  N c  N v  into  exponential  of  so  this  becomes

exponential minus of E c minus minus E v divided by k T. And E c minus E v is equal to

E g. So, this becomes equal to N c into N v exponential of minus E g divided by 2 k T.

So, n i is N c N v to the power half exponential of sorry two will not be here, now the

two will come ok.

So, basically you can see that intrinsic carrier concentration is an exponential function of

temperature and band gap. So, as the band gap decreases, the n i will increase for a given

temperature. And as the temperature increases, the n i will increase. So, the lobes that

you saw there, they will so this is at let us say temperature T 1. So, this lobe will be let us

say at temperature T 1. If the temperature t 2 is higher, then this will become bigger. So,

this will be at T 2, but they will remain equal in size. So, T 2 is greater than T 1. So, you

can say that n i at T 2 will be higher than n i at T 1 ok. So, this is what will happen for

intrinsic semiconductor. 
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Now, intrinsic semiconductor is has lower conductivity and to make devices generally

we dope the semiconductor with a dopant. And these doped semiconductors are called as

extrinsic semiconductors. And these extrinsic semiconductors have two types; one is of

n-type, and second is of p-type. n-type is the one, where you have doped with ions which

donate or doped with impurities which are also called as dopants, which donate extra

electrons.  And  these  are  doped  with  impurities  which  donate  extra  holes.  So,  these

electrons will go in conduction band, and these holes will go in valence band.

So, generally for as far as some for something like silicon, if you have silicon, silicon has

4 of these electrons. And so you have multiple silicon atoms, and these silicon atoms are

coordinated in such a manner, so that each silicon is coordinated by 4 silicon atoms. So,

you have one silicon atom here, another silicon atom here, another silicon atom here,

another silicon atom. This is a simplistic design, although the tetrahedral coordination is

not like this So, this is silicon, this is silicon, this is silicon, this is silicon. So, it has

fourfold coordination from each silicon so that you have covalent bonding and you have

a s p 3 hybridization.

Now when you replace this silicon with phosphorus let us say so this is silicon, this is

silicon, this is silicon, this is silicon, these have four extra. So, this electron, this electron,

this electron, this electron, they are all they all are shared, but phosphorus brings an extra

electron because phosphorus is plus 5 impurity, silicon is plus 4. So, this extra electron is

the  one  which  is  because  of  phosphorus  atoms.  And  this  extra  electron  goes  to



conduction band and it makes with a n-type semiconductor. So, this extra electron is in

goes to conduction band leading to a n-type behaviour.

So, what it leads to in terms of band representation is, we have silicon whose valence

band is here, we have conduction band here. This is E v, this is E c. When you dope it

with phosphorus; phosphorus creates an energy level which is called as donor energy

level E D. And phosphorous for each phosphorous atom if you are able to ionize all of

them,  then  these  electrons  cause  to  conduction  band  provided  this  donor  ionization

energy the difference between E v minus E D is a small enough of the order of k T, so

which  is  generally  the  case and phosphorus  will  ionize  and give  rise  to  give  all  its

electrons extra electrons away to conduction band.

So, in this case the number of carriers basically N d becomes equal to almost equal to n

e. So, if you for example, dope with 10 ppm phosphorous, 10 ppm will become 10 to the

power minus 6 parts per million right, so one part per million which means 10 to the

power minus  6 for  every part.  So,  basically  if  in  a  million  you have  one 10,  10 of

phosphorus atoms, so based on the concentration of phosphorus atoms, you will have the

carrier concentration.

So, in a given lattice, if the number of atoms is 10 to the power of 24 per centimetre

cube, and electron instant an intrinsic carrier concentration is about 10 to the power let us

say I do not know 14 per centimetre cube at a given temperature let us say at about 298

Kelvin. So, let me get the exact numbers. So, n i is about 10 to power 10 for silicon. For

silicon it  is  about  10 to  power  10 per  centimetre  cube at  298 Kelvin ok.  Now, this

number can increase to if you if you dope phosphorus with 10 to power minus 10 ppm,

then ppm is 10 to the power minus 5 ok.

If you have 10 to the power 24 atoms per centimetre cube, this becomes so N d will

become 10 to the power 19 per centimetre cube. So, you can see that N d is much higher

than n i. And if all the N ds are able to contribute to electrons which means N d is almost

equal to n e, and this is much more larger than n i. So, for a n-type semiconductor n is

equal to N d. However, because of mass conservation n e into n h is always equal to n i

square. When we increases,  when the electron concentration suddenly increases,  then

recombination also decreases increases.



So, when the recombination increases, then of course the hole concentration also tends to

decrease in the valence band. So, as a result this relation has to be always followed. So,

for a n-type semiconductor this n h is equal to n i square divided by n e or it is equal to n

i square divided by N d. So, for an n-type semiconductor some in summary you have n e

is large almost equal to N d, and n h is small as against the intrinsic semiconductor.
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If  you  take  for  an  of  p-type  semiconductor,  p-type  semiconductors  are  doped  with

impurities such as a boron which are trivalent impurities ok, phosphorous - pentavalent,

these  are  trivalents.  So,  when  these  are  trivalents,  then  if  you  make  the  same

configuration you have these silicon atoms, silicon, silicon, and then you have boron. So,

boron comes with only 3 electrons; silicon has 4 electrons to share. So, this boron atom

now it basically you can say now where does it need to bring an electron from, it does

not it cannot bring an electron it short of electrons right. So, this creates a hole in the

valence band.

So, in the in the in the so this will be basically you can say 3 electrons are shared and this

is basically you can say there is a hole there. So, basically what happens is that in the

band diagram perspective, this is conduction band, this is valence band this is E c, this is

E v, the p doping will causes energy will create energy level E, E A accepted energy level

which will take the electron from here to here to fulfil its configuration for the bonding



and leaving a hole. So, it will take a electron some from somewhere here, leaving a hole

in the lattice somewhere ok.

So, to make this fourfold to make this covalent bonding, it will create a hole somewhere

else. So, this is the hole that is created. It is taken electron away from some silicon ok.

So, essentially it will create holes because these electrons will go here to the so this is

acceptor energy level. So, this is again this energy level as E E A minus E v is of the

order  of  k  T and that  is  how p-type  doping  will  work.  For  a  p-type  doping  in  the

analogous manner, this n h is equal to N A as a result n i square is equal to n e into n h,

we can write this is equal to N A into n e. So, n e is equal to n i square divided by N A.
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Another thing that happens in these semiconductors p and n-type is the Fermi level tends

to shift. So, change in Fermi level. So, the Fermi level for a intrinsic semiconductor is

here; this is E F i. For a p and n-type semiconductor; so, this is E F p sorry E F E F N,

and this will be E F p. The Fermi level tends to ship shift up for a n-type towards the

conduction band, this is E c, this is E v, and Fermi level tends to shift down for a p-type

semiconductor ok. Now, this has repercussion in terms of what we do earlier the energy

band diagram.
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Now, you can also you can do the similar energy band diagram picture that we did earlier

for a we drew that. So, now if I draw this in this fashion, let us say this is E c, this is E v,

and for a n-type semiconductor this is E F somewhere on top. This is E c; this is E v. If

you plot density of states D E, D E will go in this fashion on this side like this on this

side in this fashion. If you now plot the Fermi energy, the Fermi energy would be, the

Fermi energy will go. So, this is so this is from energy.

Now, we want to plot the probability of occupation. Probability of occupation will go as

if this is 0, this is 1, this is half, it will be symmetric around this point. So, essentially

you can say it will go in this fashion. So, this is 1, this is 0, this is f E. So, the center

point has shifted to top now. So now, if you want to plot the electron concentration, so

electron concentration I can use the same color for lines, these are the blue lines here,

again the blue lines here.

Now, if I want to plot the electron concentration since there is more area here this gives a

bigger lobe and this gives a smaller lobe much smaller lobe. So, this is n e and this is n h.

And you can see that n e is much larger than n h. And this is because the Fermi function

has shifted. So, it is not drawn very nicely, but it is sort of little just like this ok. For a p-

type, on the other hand, you can draw it in a different manner for a p-type if this is E c,

this is E v, the Fermi level is now here E F p, this is E F n.



Again I want to make the same things. So, here I want to plot D E, I want to plot f E and

I want to plot n e or p e right n e or n h your basically carrier concentration. So, if I want

to plot for this, this will remain same the same behaviour. In this case, now the Fermi

level is come here. So, Fermi level has come here. Now, you can see that the Fermi level

will sorry if this is let us say 0, this is 0, this is half this is 1 ok. It will go something like

this in this fashion ok. So, it will have more area. So, this is one. So, it will have more

area here, but it will have no area on the other side. If it is in fact, I am not drawn it very

well, but it would be something like this. So, there will be some area on this side.

Let me see if I can draw it a little better [music] ok. Basically you can say this curve will

go something like this and it will go something like this on the other side touching 0

here. And now if you plot electron and hole concentration, the hole concentration will be

bigger, and the electron concentration will be smaller. So, this is n h and this is n e. And

n h will be much larger than n e. So, this is the difference between the p and n-type

semiconductors in terms of their concentration. Now, so this semiconductor last thing I

would come to what is n c and n v. So, expression for n c and n v we will see in the next

class and, but we will just see how the semiconductor behavior changes as a function of.
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So, what happens is that when so this is your n-type, this is your p-type. This is E v; this

is  E  c.  For  a  n-type  semiconductor,  if  this  is  the  intrinsic  level,  for  a  n-type

semiconductor, this Fermi level is somewhere here; and for p-type the Fermi level is



somewhere here. This Fermi level keeps shifting to upside as you dope more and more.

So, with doping, it increases F. So, n-type doping right and this will shift towards E v

with more p-type doping. And if you keep doping them, they will keep shifting up or

down. So, when the difference between E c and E F n is less than 3 k T or when the

difference between E F p and E v is less than 3 k T, then they tend to become what we

call as degenerate semiconductors, they become degenerate semiconductors or more like

a metallic behaviour, they become more and more conducting.

So, you will see in certain circumstances n-type is heavily doped, p-type as a heavy dope

which means their Fermi levels are very close to conduction band or valence band. So,

this is what we are done today we have looked at the carrier concentration and the reason

behind having higher and lower concentrations and the expressions. And, this on this we

will further dwell in the next class to look at little bit more analytical treatment of a

carrier concentration and Fermi energy in the next lecture ok.

Thank you.


