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So welcome back. So, last  lecture was about introduction introducing you to various

kinds of defects, now we move on to one particular type of defect. Let us start with the 0

dimension point defects and what is the simplest point defect that we can have? It is the

vacancy or the mono vacancy. So, to begin with let us ask the question what are point

defects ok.
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So, I  said discontinuity in crystalline system is  defect,  but what  is  point  defect  how

would you define point defect. So, point defect is defined as imperfect point like region

in crystal. So, it is very much like a point which extends up to approximately 1-2 atomic

diameter.

So, in a crystalline material you would be seeing some defect which is extending only 1-

2  atomic  diameter,  then  you  can  call  it  point  defect.  Because  point  if  you  go  by

mathematical definition is no dimension and therefore, it should be it should not exist at

all for that matter.



But in terms of this subject,  we define point defects when they are extending to 1-2

atomic  diameter.  However,  it  may  be  just  point  a  very  small  dimension  1-2  atomic

diameter; however, there distortion field and their effect stresses and forces can be felt up

to a very very large extent. So, that is something that we must keep in mind that defects

are not look very localized they always have effect on a very broad or larger scale.

Next  we need  to  understand  how these  defects  are  generated.  Now in  there  can  be

equilibrium for processes or there can be non equilibrium process. Equilibrium processes

are simple like slow heating, if you start a material which is already at equilibrium with

equilibrium concentration of point effects and if you keep heating it at a very slow rate,

then with increase in temperature, there will be some generation of point effects which

will be at equilibrium with that temperature.

However there are other non equilibrium processes which lead to generation of point

defects and that point effects may not be in thermal equilibrium, meaning that is the

density of the defects may not be equal to what is expected, it may be higher or lower in

such cases most of the time it will be higher. So, what are these methods for example,

crystal growth?

Growing interphase does not have to produce equilibrium amount of defects.  So, for

example, you are growing a crystal let us say in a single crystal method or a poly crystal

method, now there will be a liquid solid interface. Now that interface does not have to

produce that equilibrium amount of defect it can produce more than that it can produce

less than that most of the time like I said it is higher temperature. So, it will produce

higher number of defects and therefore, this will also lead to point defects.

Quenching. So, you are let  say at higher temperature obviously, if because of higher

kinetics or higher mobility, the defects may whatever the larger fraction of defects that

are  supposed  to  exist  at  that  temperature  would  be  generated  and  they  will  attain

equilibrium. So, there will be large fraction of defects, now you suddenly cool it. Now

the defects do not have enough mobility to anneal out and therefore, all those defects

have been quenched in. So, they will remain in the material.

Plastic deformation; when you do plastic deformation there will be dislocation claims

and  whenever  dislocations  claim  they  leave  behind  vacancies.  So,  this  is  again

generation of point defects and when we are doing plastic deformation we have density



dislocation density of the order of 10 to the power 14 per meter square, the unit is per

meter square because as we dream as we remember from the descriptors dislocations

have length per unit volume. So, it will boil down to per meter square. So, it is of the

order of 10 to the power 14 per meter square.

Now, the plus these defects can also be generated because of irradiation, irradiation of

electrons, irradiation of ions, irradiation of neutrons for example, in at atomic reactors

they produce large  very very large number of  point  defects.  In  fact,  irradiation  with

neutrons leads to increase in volume. So, that is one place we are you can actually see

change in density because of presence of point defects.

Another  source  for  generation  of  point  defects  is  oxidation  of  silicon.  So,  whenever

oxidation of silicon takes place then some amount of silicon gets injected into interstitial

sites. Similarly whenever nitridation of silicon takes place then some amount of silicon

vacancies are injected. So, all these are processes by which defects are generated.

To begin with to, in order to understand to be to extend our course, we will start with one

of the simplest point defects and what is one of the simplest point defects let say we are

in a single pure material and to be even simpler we will talk about metals then we are

talking  about  vacancies.  And even vacancies  can be mono vacancies,  dye vacancies,

there can be cluster vacancies, but we will not get up to begin with we will just start with

mono vacancies. So, we are talking about unit point defects or unit missing atoms which

are mono vacancies.

So, now let us look at to begin with what we will do is, we will try to understand what is

the enthalpy of formation.
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So, let say it has given that the enthalpy or the Gibbs free energy of formation. So, I will

say subscript F is and the superscript is 1V to denote one vacancy minus T S again F. So,

this is entropy, now this entropy you must be careful this is entropy of formation.

Now, later on we will deal with entropy of mixing. So, this is not the same entropy we

are talking about, this is the entropy of formation and this is usually 0. To begin with and

again to make it simpler, our calculation will take this as 0 and this is not entropy of

mixing.

 Now our next step is that since there is energy reduction with the formation of vacancy.

So, there will be more and more vacancies getting formed. So, what is that equilibrium

concentration? Because as you keep increasing the vacancy there will be change in the

entropy of the overall system, where is that change in the entropy? Because when you do

the mixing then there is a configurational entropy or how many ways you can mix it,

reduces the overall energy of the system. So, that way the total energy reduces and, but at

the same time the H factor the H term keeps increasing. So, there would be our you can

say counterbalance to H by this entropy term and therefore, there will be a minima in the

G which is what we want to find at what fraction of vacancies in the system that minima

occurs.

So, let us say that as a result we what we need to find is, to find equilibrium vacancy

concentration. So, what we need to do is find change in G as a result of. So, let us define



some numbers as a result of mixing n vacancies. So, we want this is a unknown number

n into a crystal with N lattice sites ok. So, what we are assuming here is that, there is a

system where there are N lattice sites and we will be introducing n number of vacancies

into it.

Now, what will be the change in this? So, this change can be denoted by delta G which

will be G n minus G naught. So, G naught is when you have 0 vacancies, N is when you

have n number of vacancies and since you have since you are mixing it in the lattice sites

the vacancies  are  being mixed in the lattice sites.  So,  this  can be related  as delta  H

formation n. Here I am putting the superscript n meaning this is the formation enthalpy

of formation for n number of vacancies and this time the delta is that I am using is the

delta S mix.

So,  let  us  call  it  equation  one  for  the  timing.  So,  this  is  the  change  in  delta  G.

Approximately what we are saying is that something like this will occur, where delta HF

is increasing like this and we are assuming that delta S which is the entropy is leading to

the lowering because there is a minus term over there. So, this is minus T delta S mix and

as a sum of these two the delta G is varying like this.

So, somewhere delta G is minimum and the. So, here let us define this is fraction of

vacancies.  So, let  us call  it  X V and this is energy, which can be Gibbs free energy,

enthalpy energy or anything. So, this is delta G minus T delta S is also in the energy

units. So, all these are energy and one is increasing the other is decreasing, and because

of that the there will be a counter balancing act on the delta G and we should get some

minima is what we are saying.

Now, here again let me clarify what we have said earlier that it is N is equal to number of

atom sites n is equal to number of vacancies. Now if we are already incorporating let us

say in the final state the number of vacancies have been incorporated therefore, n plus N

would be the total number of sites. So, now, this is another quantity that we have to

remember which is n plus N.

Now, like I said this reaction which is equation 1 will proceed until delta G is less than 0,

delta G meaning change in the. So, here we are talking about del delta G by del n. So,

this will keep on in we can keep adding vacancy is as long as delta G change in the delta

G with respect to n is less than 0.



Now, for that what we need to find here is what is what will be delta HFN we have

already defined delta HF 1v, but we do not know yet what will be delta HFN for that we

can take an approximation that delta HFN is nothing, but n H 1v. So, the change in

enthalpy in the formation of n number of vacancies is equal to change in the enthalpy of

one vacancy times n vacancies. So, since we had n vacancies this becomes n times HF.

Actually it should be an delta HF, but since we have already we are talking with respect

to initial and final. So, this will become delta HF, but for the sake of simplicity we will

let it be as it is right now. Next what we need to find is this term T delta S.
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Now, this is delta S mix what is delta S mix? According to statistical thermodynamics,

this  configurational  entropy  which  is  also  which  is  the  other  name  for  mixing  this

configurational  entropy  which  is  delta  which  is  also  delta  S  mix  equal  to  delta  S

configurational originates from many possibilities of arranging these vacancies.

So,  now let  us  take  example  of just  0 vacancy how many ways can 0 vacancies  be

distributed or arranged in a N lattice system. So, that will be only 1 ok. So, in that case it

would mean that delta X is equal to 0 that we will see. So, let say now. So, what is this

statistical  thermodynamics  saying  that  according  to  this  statistical  thermodynamics,

configurational entropy originates from many possibilities of arranging vacancies among

sites.



So, now let us move on to what will be the definition of this S configurational which is

also the S mix. then according to the Boltzmann rule this can be given as KB ln W now

again this new term is with KB is the Boltzmann constant. So, this is from Boltzmann

law.

So, now again a new term is being defined. So, we started with the understanding delta s

mix, but now we have come up with another term which is W what is this W? This W is

thermodynamic probability which represents number of different ways of distributing n

vacancies  of  distributing  n  vacancies  at  n  plus  N  sites  and  again  this  is  simple

combinatorics and if you have n vacancies and n plus N sites, it can be easily shown that

this W is equal to n plus N factorial divided by N factorial divided by small n factorial.

So, now we have this W, but now this W is which was earlier unknown, but the way it

has been defined now we are able to find a relation for it find a value for it. So, if we find

value for it we already know Boltzmann constant. So, we will be able to find entropy. So,

the change in entropy which is from the state where there is no the vacancy to the state

where there is a vacancy will be given like this KB ln W n minus KB ln W 0.

What is this W 0, W 0 is number of ways of arranging vacancies even if we talked about

1 vacancy it would become lot more ways, but we are talking about 0 vacancies. So,

now, just imagine that there is a perfect crystal and you want to add 0 vacancy meaning

no vacancy into it meaning the overall site remains as it is. So, there is only one way and

therefore, this W naught becomes equal to 1 and therefore, this ln W naught becomes

equal to 0 ln W ln one is equal to 0.

Therefore delta S configuration is now defined as ln W n now we need to find this ln W n

which is already given here. So, it is KB ln n plus N factorial by N factorial by n factor

by small n factorial. So, this is our delta S configuration.

So, now we have seen that to find what is the change in the energy with respect to adding

of vacancies there are two terms delta H formation, which we have for n vacancies which

have you have equated as n times delta H formation of one vacancy and the other term

which was the entropy term we have now defined it in these terms.



So, now we have both the relations. So, now, we should be in a position to simplify it ok.

So, because what we have right now is delta S configuration in a factorial  term, log

inside the log we have a factorial term and for this.
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The well known Stirling approximation is used. So, using Stirling what is this Stirling

approximation this is ln times X factorial is equal to x ln x minus x, this is true only

when x is much much greater than one much larger than 1 and therefore, our relation

which said that  delta  S configuration  is  equal  to  KB ln and you can say this  is  the

denominator can be put as negative of log. So, minus ln N factorial the upper case N and

then also the smaller case n.

So, now we will have to apply the stirling approximation on all the three terms and it is

not very difficult it will become something like this minus. So, this is for now for the

second term we will  expand the  second term using  stirling  approximation  minus  of

minus becomes plus therefore, delta S configuration is equal to KB. Now we will put the

terms with log in one place. So, this is the full form of delta S configuration which can

be easily evaluated now we do not have any factorials over here. In fact, now with what

we have we can even for a simplified further.

For example as you can see that this n plus N over here number of vacancies would

always be very very smaller compared to number of atomic sites. So, therefore, this will

quantity n plus N by N this can become can be approximated as N because N is much



smaller than N now here n plus N can be approximated as N and therefore, this is since

ln 1 where this becomes 0. So, we have only two terms and KN ln and if we reverse this

why will reverse this is I will tell you say moment is n by N.

Now, why did we reverse it because this quantity this represents nothing, but fraction of

vacancies. So, this becomes minus n KB ln X 1v or v, but I think we have used earlier v.

So, I  was put it  as v and what  is  this  X v, this  is  fraction of mono vacancies.  It  is

important to keep this word mono vacancies mono because we will see that similarly you

can also calculate for dye vacancies or tri vacancies or higher fractions or higher orders

and  simultaneously  you  would  be  able  to  show that  their  fractions  are  much  much

smaller.

So, now this is the relation and if you put delta G delta G will be equal to delta n delta H

formation 1v plus now because this is minus term. So, this will become T although this

quantity itself will be negative. So, the this term will itself still remain negative and this

becomes  nT KB ln  X 1v actually  let  me use  this  1v in  all  these  places  because  to

differentiate it with respect to mono vacancies.

Now, earlier we have, when we were deriving these relations now let me go to the next

page.
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So, let me write it again here the relation, now earlier when we were deriving if you

remember we said that the S or the delta S if we are looking with respect to difference

delta S formation is approximately 0.

Now, if we do not ignore that then we will have some more terms over here. So, we will

have another delta SF coming over here, but before that let us get to what we need here

what we want to what we started with was to find out what is the concentration of X 1v

right.

Now, when we have what we said that when you keep increasing the concentration of

mono vacancies, there will come up point where the energy will not reduce any further

which means this will become 0 or something like this you will get a relation that we will

derive next time, we will get a relation something like this and this n by N is nothing, but

our fraction of single mono vacancies, this will be given by and like I said that if you had

not ignored if you had not ignored the SF delta SF formation term, then this would be

further accurately represented by this relation. So, this is a approximation this is more

accurate because here we are not ignoring. So, this we have using this derivation we have

been able to obtain the value of the fraction of mono vacancies. So, this is the relation

that gives it.

And next time what we will do is try to understand, what is the effect of addition of these

mono vacancies  on delta  G; how does a delta  G and delta  S change when we keep

increasing mono vacancies particularly when in the initial period when we have almost

no vacancies too small number of vacancies? So, well end here and we will come back

and extend what we understood today.

Thanks.


