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Self-diffusion+Examples

So, to make things simpler we will assume that there is this surface.
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This is the surface which we will take as x equal to 0, and this is the distance which is

going through the depth of the gear. So, this is increasing x and somewhere over here we

will have extending to infinity for the matter of diffusion, because in diffusion very large

x you can take as extending to infinity.

Now here add the surface, because you have introduced a carburizing surface. You can

assume that there is a very large concentration of carbon. Let us call it C as meaning

carbon at surface. And there is a background carbon inside the material. So, this is given

by this dotted line which will represent by C naught.

Now, what are the boundary condition that we know? C at x equal to 0, what is the value;

this is equal to C s that we have already mentioned because this is the atmosphere that

we are exposing where this is the carbon concentration. Now carbon at x equal to infinity

like we said that this is how you can represent in terms of diffusion, we are not talking



about miles and miles of distance. Only if you are talking about few millimetres then in

terms of diffusion it  becomes infinity, because we are talking about  very small  time

scale. So, at x equal to infinity C is equal to C naught.

Now, here usually if you have some concentration gradient,  then diffusivity which is

these  are  the  diffusion  coefficient  of  carbon;  usually,  increases  with  increasing

concentration  meaning  our  D  would  not  be  constant.  But  again  we  will  make  a

simplifying assumption; assume that, in the region of interest D is constant ok.

So, what you will see is that, if you put these values in the equation that we have derived

earlier, then putting these boundary conditions you would get a equation the solution of

this form; C which is the concentration as a function of x and t. So, this is the function of

s and t is equal to C s minus C s minus C naught erf, I will tell you what this erf is many

of you would already know 2 root Dt.

So, this is x meaning how much far you are looking at, this is t, how many how much

time later you are looking at, D is the diffusion diffusivity coefficient which we have

assumed to be constant.  So, this is the relation that you would be able to derive not

derive, but the solution for the equation when we use those ficks first and second law,

then this is the solution that you would get.

Now, here erf is nothing but a function which so, I will use this corner erf if we are

talking about erf z, then this is the function how it looks like. So, this is z this is erf. And

usually I will tell you some of the important values what are the; for 0 erf z is equal to 0,

for infinity if you go to very large value of z, then erf z becomes 1.
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If you are talking about 0.5, then erf z is equal to 0.5, and same is in the negative values.

So, these are some of the important values, but this is just describing a function and thus

so, this is a mathematical function erf is nothing but one mathematical function. And you

can find various values for z what should be the erf. And so, accordingly you would be

able to solve this or get the concentration of C as a function of x and t.

Now, this is how the concentration would change. And if you want to plot it, this is how

it would look like. So, initially it would so, at some very small time, this is how it would

look like with increasing time, because we have kept C s as constant; which is already

included in our solution. So, we have included in the solution these 2 conditions these 2

boundary  conditions  remain  same  throughout  the  time.  And  therefore,  concentration

increases like this. And like I said that this erf 0.5 is equal to 0.5. So, there is a very nice

relation that you can obtain at 0.5 of this value which is C s 1 by 2 C s plus C naught,

whatever you get this is equal to root Dt. So, this root Dt is a you can say approximate

way of finding how much is the depth of carburization.

So, if you know the diffusivity coefficient, and you know for how much time you have

let it diffuse, then square root Dt gets the approximate depth of carburization. And at this

value this and this root Dt is nothing but the value of concentration at this half midway

point. So, this is how the carburization works, and you can predict accurately what will



be the depth and what will be how the concentration profile would look like. And just as

matter of information there can be carburization so, there can also be decarburization.

So, let us say you have exposed your sample material, particularly steel to atmosphere

where carbon concentration  is  much lower than what  you have inside the surface or

inside the bulk. And it is at very high temperature where over all diffusivity would be

higher then what you can have is also reduction in the concentration or something like

this. So, if this is the average concentration then near the surface the concentration would

decrease and with time it will becomes a smaller. So, this is decarburization and not

approximate and you can also show that the relation for this in terms of x and t would be

like  this.  So,  this  is  the  relation  for  decarburization  so,  it  is  just  the  inverse  of

carburization.

So, we have looked at 2 examples and what you would later understand is that although

we have so far derived only interstitial diffusion, but the overall form of the equation

would  remain  same  whether  we  when  we  even  when  we  talk  about  substitutional

diffusion. And so, similar type of examples can also be solved and using exactly same

methodology, even when we ae talking about substitutional diffusion.

What  changes is the q parameter? The delta  q that  we talked about the enthalpy for

activation, and you would see for that interstitial it is much lower and for substitutional it

is very much higher. And how what does that lead to? What it leads to is that you will

have very high diffusivity when you are talking about interstitial diffusion and very low

diffusivity when you are talking about substitutional diffusion.

So, let us try to understand what how is it different the substitutional diffusion.
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So, in the substitutional diffusion first thing that we will look at is self-diffusion. Yes,

you are so far we talked only about defects, but when we are talking about diffusion than

actually even the atoms inside the same or pure material they diffuse. They jump from

one side to side one side point to one point, and that is called self-diffusion.

And why we are including here in terms of when we are talking about defects is because

the relation that we derive for this one would also be valid for substitutional when we are

talking about impurity atoms. And what do we how do we calculate,  how do we not

calculate? But how do we observe how do we measure in terms of experiments. So, what

you what one does is that you introduce radioactive isotopes.

Let us say you are talking about a atom self-diffusivity, then you introduce radioactive

isotopes of a atom which will denote as a star in a matical. And then at the other end you

can measure or basically taking the slices you can measure the concentration at different

points, how many radioactive atoms you are getting and therefore, you will be able to

measure it ok.

And since they are isotopes; so, they will have almost same vibrational frequency, and

that would mean that D star would be equal to D A. And here also the first part that is the

relation for D in terms of tau would remain same; which we had earlier derived as 1 by 6

alpha square tau. Alpha square is the spacing between the atoms, and tau is the jump

frequency the successful jump frequency.



Now, if we say if like we said earlier if activation energy for jump is equal to delta G m

then now here this is the part that will be little different, we remember we had nu z;

where z is the coordination number nu is the vibration frequency, and we had this term

exp  minus  delta  G  m  which  is  the  activation  energy  by  RT.  However,  now  these

neighbouring  site  when you are talking  about  the substitutional  atom are not always

available, right. Here when we are talking about interstitial so, let us look at.

So, somewhere one atom here one atom is over here in interstitial. So, in this particular

case all these neighbouring sides are available. But when we talk about substitutional or

even self-diffusion, let us say this is and this is our radioactive atom. So, let us say there

is 1 vacancy on side of it.

So now you can clearly see that only this particular site there is a vacancy, at in this

particular case that we have drawn other sides are not available. Even this side would not

have been may not be available for jumping. So, the jump would depend on how many

sites  are  available,  and will  the  how will  we know that?  That  is  simply  fraction  of

vacancies and if you are talking about equilibrium condition then x vacancy equilibrium.

So, this factor this factor alone is able to solve this, but you must remember that this is a

very very small factor. If equilibrium we are talking about 10 to the power minus 4, that

is the fraction of equilibrium vacancy. So, it is a very small factor and therefore, the

number  of  successful  jumps  actually  reduces  by a  long margin.  So,  that  is  where it

becomes  very different.  And now we can expand this  relation  which  we know X v

equilibrium if you remember is equal to exp minus delta gv by RT.

So now we put it over here, both of them are RT. So, they will get this multiplication

would lead to addition of this these 2 terms and therefore, you will have; and if we look

at diffusivity A if you are calling at D A then this becomes, and we will also expand delta

g to delta h minus t delta s therefore, this becomes delta s to components for delta s also.

So, this is enthalpy now. Now you can clearly see this is the thermal component, this is a

thermal  component.  And therefore,  this  will  be your  relation  D naught  exp minus  q

substitutional diffusion by RT. What is the difference? That major difference is in Q sd.

So now Q sd is earlier if you remember Q sd was just delta delta. Now Q sd is equal to

delta plus delta hv; when we have increased the barrier. So, the barrier is now higher. If

the barrier is higher what does that mean that number of successful jumps have become



much smaller. So, if we compare over here and here; so, this is let us say so, this is for

interstitial, and if you are talking about substitutional then this is substitutional.

So,  you  can  see  that  the  jump  the  activation  energy  barrier  has  become  larger  and

therefore,  the number of successful jumps would become smaller. That is the biggest

implication, but as far as the formal equation or the formalism is concerned, you see that

it is still the same formalism. And that is the best part about it whether you are talking

about interstitial diffusion or you are talking about substitutional diffusion, the form of

the equation remains same.

And you can just  you have to  just  measure it  to  understand that  there will  be a big

difference between the Q sd and the Q id which is the interstitial diffusion versus the

substitutional diffusion. Or the diffusivity if you look at diffusivity of interstitial atoms

could be much faster may be orders of magnitude higher than diffusivity of substitutional

atoms.
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And to give you a or rough numbers to be able to appreciate diffusivity in let us say in

copper. So, we are talking about now substitutional diffusion. So, let  us look at 800-

degree C, D copper and alpha which is a spacing is given as 0.25 nano metre. So, from

this you would be able to derive that tau which is the successful jump is equal to 5 into

10 to the power minus 5 jumps per second. And hence, you can also calculate root Dt is

approximately equal to 4 micro metre after one hour, this is a self-diffusion of copper.



Now, if you extend the data given the thermal and a thermal component to 20 degree

Celsius which is room temperature; so 293 k you know, that it will it should reduce, but

how much let us look at it, you would see the first thing that becomes very small is this

diffusivity  coefficient,  D  cu  because  there  were  the  a  thermal  and  the  thermal

components. Because of the thermal components, this has reduced and how much it is of

the order of minus 34, it is very very small quantity.

And accordingly tau which is the frequency of successful jump becomes 10 to the power

minus 20; this is also very very small quantity. If you want to understand it,  what it

means is one successful jump in 12 years. So, obviously, if you look at root Dt, it will be

approximately 0 after one hour. And that is why you do not observe so much diffusivity

at room temperature. Because this tau which is the jump a successful jump frequency

becomes very small. And D cu in effect becomes very small. So, this is the one aspect of

substitutional diffusion which is the diffusion of thus same species also called as self-

diffusion.

Next what we can look at inside the material, you have even in a pure material, you will

have the material and also the vacancy. Now when if the atoms are moving so can the

vacancies move? So, we can also talk about vacancy diffusion.

So, next we will look at vacancy diffusion.
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Which is again a important phenomena with respect to defects. But you would see that is

this  particular  case  would  be  much much easier  to  understand or  to  extrapolate  the

relation. Why? Because now let us look at what we have looked at earlier. So, we said

that these are some atoms ok.

So, let us say this is one pure atom, and over here the one particular atom moves from

here to here. But this also means that this place which was actually vacancy, it has moved

from over here to here. So, the vacancy diffusion is similar to the self-diffusion. The only

difference being that for this vacancy if you look all these sites are available, all these

sites are available.

On the other hand, for this particular site or the selfdiffusion as you remember we said

that,  the we have to calculate what is the fraction of available sites. And for that we

multiplied it by that factor x 1 v. But in this particular case you can realise that you do

not need to multiply that factor and therefore, D v which is equal to 1 by 6 alpha square

tau  v can  be  given as  1  by  6  alpha  square  z  mu;  so for  vacancy diffusion no X v

equilibrium term.

And therefore, again the energy barrier as come down. So, it means that vacancy can

diffuse much faster. And therefore, what we have is that D v is D A D A you remember

we talked we called as the self-interstitial so, D A by X v equilibrium. So, in the same

material let us say we are talking about copper whatever is the diffusivity of that self-

diffusion.

You divide it by the fraction equilibrium fraction of vacancies at that concentration and

you get the diffusivity of vacancy. So, this is a very strong (Refer Time: 22:38) or the

very important information regarding diffusivity of vacancy. And at the same time it tells

you how these 2 are related. You do not need to do any extra derivation; all you need to

know  is  this  particular  quantity  X  v;  which  is  the  concentration  of  vacancy  at

equilibrium.

Therefore, D v is many orders of magnitude greater than D A. So, this is something that

you that we have shown over here. So now, next we will look at is a little bit more

complex. Do you remember we said that A and B can go and or b a can go in terms of

impurity? So, a can act as a impurity on b or b can act as a impurity on a.



And therefore, according to that there will be different diffusivities this will not be self-

diffusion;  this  will  be what is  called  as inter  diffusion.  So, a  is  diffusing b and b is

diffusing a. And this would be of you can say the most important in terms of diffusion.

And also in terms of understanding how these defects would behave.

So, what we are talking now?
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About is diffusion in substitutional alloy. So, we have more than one type of atom, and

that is what we will make it a little bit more complex rate of A and B migration, what

should be the relation between these 2. We are talking about A on B and B on A should

they be same? Of course not, so they will not be same they will be different.

And if you want to talk about just a then we can use the self-diffusion coefficient and

you can write something like this, ok. Now this is the starting point as you would realise,

because we want to finally, understand when A is in B and B is in A. And of course, J A

and J B are fluxes across a particular plain. So, I will sorry this is so, what are J A and J

B? That we have already something similar to self-diffusion and interstitial diffusion; J

and J B are fluxes across a particular lattice plain.

Now, if total number of atoms you are already given. Now here we will need to introduce

some additional concepts as you will see. If total number of atoms per unit volume is

equal to C naught. Then you would realise that C naught should be a constant. So, C



naught will have to be constant, you cannot it would not be changing with time even if

diffusion is taking place.

So, C naught must be constant, but C naught is what C naught is equal to C A plus C B it

has either  A or B. So, that concentration of A plus B would give you C naught  and

therefore, if we have this if we take the differential C naught is a constant therefore, this

becomes del C A by del x is equal to; again we are looking in only one dimensional form,

minus del C B by del x; which implies that J A, so we are now we have this relation.

So, we can extend the earlier relations that we have obtained, and write this in terms of

only one concentration gradient which is del C A by del x. So, J A and J B can now both

be written in terms of; so, here this is remains the same, but this one the minus sign goes

away, and we are now instead of del C B we are writing it as del C A by del x, because

the concentration gradient of one is the inverse of the other.

Now, here we are we have to assume that one of these are of course, one of them will be

diffusing faster than the other; and therefore, for that let us assume that will just be a

matter of for matter of simplification, nothing more it is not going to in general terms it

is not going to change the final outcome of the solution. So, we will one of them is larger

and we are assuming that J A is greater than J B. So, this is assumption which does not

change generalization; which does not take away generalization. So, if now we are we

have assumed that J A is greater than J B ok.
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So now let us look at this derivation. Now we will have also vacancies there. We will

also have A atoms moving we will also have B atoms moving. So, what should be the

relation between the J v J A and J B? There are 3 basically 3 entities now in terms of

flux. So, what should be the relation between these 2? And the simple relation that you

have is that J A plus J B plus J v is equal to 0; which means that if a 1 and 2 are moving

in one direction, the third is moving in the opposite direction.

That is what it means, and this is again coming from the principal of conservation of

concentration.  So,  these  whole  things  remain  same,  and  at  the  same  time  another

assumption that we have over here is that the concentration of vacancy remains constant

throughout; which also leads to another fact, that we will see later on. But we will leave

you leave you with this relation for now. And we will come back and extend this to

extend our understanding about inter diffusion, when you are talking about A moving in

B or B moving in A.

So, we will see you in the next class.


