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So, let us get back to where we left last time. 
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So, we derived this relation for flux, diffusion of flux and this has a form like this minus

and this 1 by 6 tau B alpha square and then it is multiplied by concentration gradient and

since the flux is going in the direction where the concentration is decreasing. So, there is

a negative sign and together we have lumped it together to call it D B, the term is D B.

Now, there are a few more things that we need to learn at this stage, one is, what is this

tau B? That we have already described as jump frequency. But this jump frequency can

be further expanded to write like this; z into mu into exp minus delta G m by RT; where

does this come from? So, let us say there are there is a site. So, let us draw. So, this is

some material and over here. So, we were talking about interstitials. So, there are some

interstitials and let me draw it with different colour. So, there is one interstitial over here

let us say one interstitial over here.



So, now let us say this interstitial moves from here to over here. So, as you can see that

this  has  lowest  and  this  is  a  low  energy  position,  this  is  a  low  energy  position.

Somewhere over here it will have to have higher energy and this will be your activation

energy for migration.  So, this  is  what  I  have tried to schematically  draw here is  the

energy plot when it moves from this position to this position.

So, this is a one minima this is another minima and it has to go through energy activation

energy, meaning it must be provided this much energy, before it can migrate and this is

the term delta G m. And we can therefore, write it as pre x some pre exponential factor

times exp this delta G m. Now what this term will denote is the number of the fraction of

jumps that will actually take place; meaning, if delta G m is if the energy for migration is

delta G m, then the total number of vibrations that will actually result in migration is this

fraction.

Now, fraction of what? So, this is where this first term comes into picture this is z, this is

the coordination number or site, neighbouring sites where this atom can move. So, this is

telling you the number of look sites where it can move. What is nu? Nu is the in effect

vibration frequency or that is total  number of attempts you can say. So, nu is in any

particular direction. So, in for one particular site it is nu. So, it is for z neighbouring sites

it is z nu.

So, this is the z nu is the total number of attempts out of this fraction is that results in

successful jump. So, that is where we get this relation tau B and now if we expand delta

G m equal to delta G delta H m minus T delta S m we get, we can actually differ parts

basically  we  can  put  together  the  thermal  component  and  a  thermal  component

separately and therefore, we will have something like this and this is z. So, this is the

thermal  component,  this  hole  is  the  eternal  meaning  it  does  not  get  influenced  by

temperature.

And now when we put this back over here, what we get is that D B is equal to 1 by 6

alpha square z nu exp delta S m by R. So, this is like I said a thermal component and to it

you multiply the thermal component, winning the one which will get affected or which

denotes how this value will change with temperature. So, this is your. So, no matter what

is the temperature, this value is supposed to stay like this.
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So, let me rewrite this over here in a new page. So, this comes out 1 by 6 alpha square z

nu exp delta  S m by R, exp minus delta  Hm by Rt,  which can now be written like

something like this D naught exp minus delta Q 1 d by R T where delta Q is equal to

delta H m. So, in this particular case which is the interstitial diffusion, which is written as

id. So, delta Q I d is equal to delta Hm meaning the activation enthalpy for migration this

is equal to delta Hm and you would see why we are writing it like this because in the

next part it will get changed.

So, this is  your form of the relation D B D B which is used to define the flux you

remember.  So,  now, these  are  some 2  important  relations  with  respect  to  interstitial

diffusion. So, these are our relations which define interstitial diffusion.

Now, next thing that we so, we have seen how this interstitial defect has led to diffusion,

and we have derived a relation for this and this is how it comes down to. So, this is the

flux the flux is proportional to the negative of of concentration gradient, and there is a

proportionality  constant  this  proportionality  constant  has  a  thermal  component  and

thermal  component.  So,  this  is  how it  looks  like.  And the  activation  energy or  that

enthalpy is. So, activation energy is related to this D B and when we when we separate,

the entropy term and the enthalpy term this is how this relation would look like.

Now, let us look at 2 different conditions for this one is steady state, and one is non

steady state diffusion. So, when we say steady state, what does it mean it means that del



C by at any particular x by del t is equal to 0. Meaning the concentration at that particular

x is not changing with time. And you will see that this will only be possible when you

have a concentration gradient like this it has to be a straight line like this. However, if

you have a concentration gradient something like this, will show that this is a del C by

del t here is not equal to 0 which is what is called as non steady state.
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So, now let us move ahead to describe this non steady state diffusion. So, let us say this

is a bar and for this the concentration gradient is given like this, cx, concentration is

moving like this is we are talking about x, this is at some distance x plus delta x similarly

we will draw here this is some distance x and this width is delta x. So, we will call this

plane 1 we will call this plane 2.

So, let us say the flux of atoms across plane 1 is given as this J 1. So, the flux of atom

across plane 2 and we can call it something as J 2 and let us say the area because we will

need this which will get cancelled out eventually, but let us say that for now this area is

a. So, now, this j we know will depend on 2 things, one is D, and the other is right now I

am not writing in differential form because let us say we are talking about a little longer

width. So, we are putting it like this delta cb by delta x.

Now, what we need to calculate we have already said that this is a condition where del C

by del t is not equal to 0 therefore, we need to find or calculate C as a function of x and t.

Now let us say that number of interstitial b atom that diffuses into the slice in this small



slice is jJ 1 a delta t. So, J 1 is per unit area per unit time, and if we are giving it time t

and we are talking about this area a then therefore, the number of interstitial atom that

gets into this is that diffuse into the slice in time t. So, we have already described some

time ok.

So, flux is number of atoms per unit area per unit time. So, we are talking about not

number of atoms. So, we have to find what is the area and we have to find what is the

time. So, we have both of the quantities here. So, this is J 1 A delta T ok.
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A So,  nd  similarly  concentration  of  atoms  that  would  increase  is  equal  to;  now  if

something is going in. So, similarly we can find what is going out and that will be equal

to; so, going. So, I have missed this part this is going out will be equal to J 2 A delta t.

So, the concentration of atoms that would increase; so, the obviously, the number that is

coming in is higher, because the consan there the concentration gradient is higher at x

and lower at delta x x plus delta x. So, going in is equal to J 1 A delta t going out is equal

to J  2  delta  t  where J  2 is  smaller;  so,  now, J  1.  So,  the number of  atoms that  has

increased over time is equal to J 1 minus J 2 a delta t.

But we know that J 2 is equal to and say sorry and we are talking about concentration.

So, we have to divide by delta x. So, J 2 is equal to J 1 plus del j by del x into del x this is



again approximate now putting this over there is del C B by del t putting the del t over

here from this side to this side and J 1 minus J 2 this is to be divided by delta x.

So, we can get J 1 minus J 2 by delta x from here, which will be equal to minus del J by

del x. Because we have divided by del x. So, this is over here which is now if we take it

in the limiting case, then this will become minus del J B by del x or in other words del C

B by del t is equal to del by del x we instead of J B we will put the what the relation we

already know from first law which is equal to C B del C B by del x.

Now, this is what is called as continuity relation which is also commonly known as Ficks

second law. Now here we can make an approximation that this quantity dV is, if dB is

approximately constant through the range, then we can further simplify it to write it like

this. So, both these relations would be called the continuity relation. Basically what it is

saying is that the concentration overall concentration of the or the total number of atoms

remain constant.

So, there is a particular flow of atom and we are just maintaining the continuity of this.

So,  you  can  see  that  where  we started  from we just  started  through  that  there  is  a

concentration which is changing with x and therefore, there are 2 different fluxes at 2

different axes from there we get a relation like this, and what we are able to see is that

therefore, del C B, but we can we are in a position to find a relation for concentration in

terms of x and t.

So,  this  is  in  the  differential  form  and  when  you  solve  it  depending  on  the  initial

condition and the final conditions, then you will be able to get this will give you C B as a

function  of  x  and  t.  So,  this  will  have  to  be  solved  depending  on  initial  and  final

conditions.

So, we the only thing that we have talked about here is the change in concentration. Now

if you put this as a straight line what will happen? Del 2 C B by del x what will this

become this quantity will become 0 del C by del x will become constant and del 2 C B

by del x square will become 0 and therefore, you will see that del cv by del t is comes out

to be 0. So, as I said that the steady state will only be possible when you have a straight

line like behaviour for concentration. So, this is the steady state when del C B by del x is

equal to constant, and whenever there is a curvature then you would know that it is non

steady state.



Now, let us talk about some applications. So, now, we have seen the relation for Fick’s

first law and Fick’s second law, which were derived assuming interstitial diffusion we

will also talk about the other kind of diffusion, which is when you have substitutional

atoms, but before that let us look at some applications. 
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Now, let us say you have cost an alloy, let us talk about a simple alloy like a copper zinc,

which is supposed to be and we are talking about 5 percent zinc. Up to 30 percent zinc

you are supposed to get single phase, but let us say that because of the casting condition

or  because  of  difference  in  the  weight  atomic  weight  of  the  2,  there  is  certain

compositional difference from point to point and just as a matter of understanding or to

understand this concept in a better way, we will assume that this concentration, let us say

we are talking about zinc concentration then the zinc concentration should have been 5

percent  which  is  given  by  c  bar,  but  because  of  different  conditions  different

solidification condition or like I said because of the mask conditions there may be some

segregation and therefore, you end up with a constitution a compositional variation like

this.

So, this is not desirable, we would have want that when you say copper 5 percent zinc, it

is  uniformly  homogeneously  distributed  and  therefore,  comes  the  concept  of

homogenization, how does this homogenization takes place? It takes place by diffusion.

So, right now copper and zinc they are not actually interstitial diffusion. So, what I will



do is I will replace this example with let us say iron carbon where let us say we were we

wanted only we are talking about as small as 0.07 percent carbon ok.

So, as you would see later that the equations are similar in form, only that the delta g

value would change, but since we have only talked about interstitial diffusion. So, I will

give I  will  just  stay with this  particular  example which is  where carbon stays as an

interstitial.

And let us say with this is the 0.07 percent. So, this should have been your car this is

carbon and this should be this will become your c bar and this is the maximum and

minimum  that  is  varying  and  this  is  a  completely  theoretical  framework  you  are

assuming a very you know you can say systematic fluctuation in the concentration, but

this will let you understand what a homogenization means.

So, let us say this is the concentration C is equal to C bar plus beta naught where beta

naught will become beta naught is nothing, but the amplitude. So, this is the wave 2, l

will be the wavelength. So, l is the half wavelength. So, this is given here over here you

could have as well write written is that written it as 2 pi by lambda where lambda would

be the wavelengths times x, but since we have taken wavelength as 2 l. So, 2 cancels out

and you are left with pi by l times x.

Now, here since it is also varying with time, you would be able to see that the solution

for this once you put in that relation it will come out like this. So, now, what it is saying

is that if we were looking at this, this is just telling you the concentration variation with x

when you look into this is also telling you how the concentration,  this part as if you

ignore this part then it is only telling the concentration with x, and when you include this

it is also telling concentration variation with time.

So, there you have t which is varying which is starts from 0 and changes, but tau is a

constant. What is tau it is given by l square by pi square D B and it is equal to a constant.

So, you can see all the quantities here is a constant. So, it is in this respect that you are

calculating time.

Now, what will happen when you increase time, what how should this plot change? This

according to  this  solution  that  you have obtained if  you solve using the relation  we

derived earlier you would get something like this. So, this is let us say this is t equal to 0



this is t equal to t 1, and you can you realize that here imagine that when you go to even

higher  time it  will  become something like  this.  So,  what  is  changing here? It  is  the

amplitude.

So, basically you can also write a relation for how the amplitude is changing and you can

say beta is equal to beta naught, which is the amplitude at the very beginning exp minus t

by tau and this is nothing, but concentration at x equal to l by 2. So, basically if you start

from l equal to 0 here x sorry x equal to 0 here and then x equal to l by 2 is what you are

getting from this relation. So, this is the same thing, but we are only putting x equal to l

by 2 and you will get how the amplitude is changing with time.

So, in this particular problem, the way we have framed it what is changing is primarily

you  know  not  primarily  only  the  amplitude,  but  that  itself  is  now  making  the

concentration homogeneous. So, here you can imagine the variation was from plus beta

naught  to  minus beta  naught,  and that  has  changed from a much to a  much smaller

quantity let us say it is one-fourth of beta naught, so, one-fourth of beta naught to minus

one-fourth of beta naught.

So, that is how this homogenization is taking place. So, in the end what you will get?

Completely homogenized in terms of composition and if I want to plot it over here then

let us this should be the ideal final solution. So, the concentration has bit reached the

expected value across the volume. So, here we have looked at only 1 x or in only one

direction one d. So, these are these problems are being solved in one d, but the same can

be extended to three dimensions.
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Next example that we will look at is carburization. Why would you want to carburize

something? Now again this is example related to steel. So, in steel you add you may

want to add carbon, only on surface why because when you add carbon what happens

this is. So, if we plot percentage carbon and if you plot strength, then you would see that

strength actually increases up to certain value.

On the other hand if you look at ductility. So, at this point you would be imagining very

good carbon percentage, we can keep the carbon percentage throughout the material very

high and we will get very high strength, but then when you look at the ductility plot then

you would realize that it is not always a good thing your ductility would drop sharply

with increasing carbon percentage.

So, what is happening is that maybe the total toughness is same, but this material when

you have very high percentage of carbon, if it develops cracks it will fail very easily and

therefore, it will not be suitable for any component. And therefore, you do not want the

material ductility to drop, but at the same time you have you are getting much higher

strength and along with that you are also getting very good wear resistance. So, wear

resistance also increases. So, this is ductility this is strength and the light blue one here is

wear.

So, another important  characteristics,  when you increase carbon percentage,  which is

actually direct effect of increased strength is that wear resistance increases now let us say

you are talking about gears on the surface the gears are in continuous contact with the



other gears they mesh. So, they move and slide onto each other what does that do; that

means, that it is slowly eroding each other. And therefore, you need high strength and

high wear resistance on the surface.

And from this plot, you can see that if the carbon percentage was very high then wear

resistance would be high strength would be high, but at the same time you do not want

the gears to fail from interior. So, what you can do is that have carbon concentration high

only at the surface and not in the interior and therefore, this process of carburization

comes into picture.

So, now if you are talking about let us say. So, this is a gear, what you want is that

carbon is high only up to certain region only near the edges why would you want to

increase carbon concentration throughout the surface throughout the bulk that will make

it brittle. So, you would increase carbon concentration only on the surface and this is

done by exposing it to very large carburizing atmosphere. And hence you would be able

to get very high concentration only on the surface.

So, we will look at how this particular carburization process not how, but the diffusion

mechanics  of  this  particular  process  carburization  in  the  next  lecture,  and  in  the

meantime it will be good if you can try to go through and the this process carburization

and understand what is what does it actually do and what it and how is it useful. So, I

will see you in the next class.


