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Avrami Kinetics - 3 

So continuing with what we were discussing in the last lecture that is Avrami kinetics.  
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We had consider two cases but first let me just write down to basic relationships the fraction in 

alpha to beta transformation the fraction transformed is given by 1-exponential minus the 

extended volume V beta e divided by the volume of the system. And the extended volume of the 

transformed beta was written as 4 pi by 3 integral 0 to t, the nucleation rate times the radius of a 

nucleus nucleated at time tau cube d tau. 

And the two cases we had discussed were cases where nucleation rate was a constant. So 

constant nucleation rate I and hence I can be taken out of the integral. And in case 1, one 

considered constant growth rate given by v and therefore the size of the nuclei which nucleated 

at time tau would be at any time t was written as the growth rate times the instant of time (t-tau). 

Substitute substituting this radius into this integral taking this I out of the integral we can then 

integrate to get the extended volume and substitute the extended volume into the top equation 



and which gave us the fraction beta transformed as 1-exponential {- (pi by 3 Iv cube) t to power 

4}. We can lump all of these quantities which are a constant in one parameter k and hence the 

relationship that was written turns out to be exponential (-kt to power 4). 

Similarly Case 2 was (cons) considered and in the case of case 2, nucleation rate was parabolic 

no sorry nucleation rate was still kept constant. We have parabolic growth rate, that is growth 

rate is proportional to the square root of time and hence r tau in this case becomes a constant B 

times (t-tau to power half). From this one got the function for fraction of beta transformed as a 

function of time as 1-exponential (-kt to power 2.5 or 5 by 2). 

Where k in that case was 8 pi by 15 the nucleation rate times the constant B cube. So what we 

find is that we have different exponents of time depending on what model of growth rate one 

chooses. And of course what model of growth rate one would choose would depend on the 

system whether you have interface control of diffusion control here as shown here.  

Similarly one can look at couple of other cases here we had considered nucleation rate occurring 

throughout the transformation there is a possibility where you would have most of the nucleation 

getting completed in the very early stages of transformation. And that can happen when site 

saturation takes place. Site saturation means sites for nucleation get completely exhausted. 
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So let us take am extreme case where site saturation takes place at basically at the start of the 

transformation or time t equal to 0. And let us say that we have N0 nuclei per unit volume 

present at time t is equal to 0 and beyond this time there is no more nucleation is going to take 

place. Hence all growth would take place for only those nuclei essentially which formed right at 

the start of the transformation. 

In this case the extended volume would then become (dep) or rather the extended volume would 

would have to take this into account that there is no (nuclei) nucleation occurring beyond time t 

is equal to 0. But we still have to choose what growth model to take for example suppose we 

consider a third case where we assume a constant growth. So constant growth rate v since all the 

nuclei are formed at time t is equal to 0. 

Volume of all any nucleus at any time t would simply be 4 pi by 3, 4 pi by 3 r0 cube, where r0 is 

essentially the the (())(07:56) zero is designating all the nuclei which formed at time t equal to 0. 

The total extended volume would then this volume of 1 nuclei multiplied by the total nuclei 

present in the system and volume of the system we have been taking as V and we have N0 nuclei 

per unit volume therefore the total number of nuclei present at the start of the transformation is 

N0 times V multiplied by volume of each nucleus. 

This then becomes simply the extended volume, we substitute this extended volume into this 

exponential relationship to get fraction beta transformed as 1-exponential -4 pi by 3 N0 and 

inside here is r0 cube and this r0 cube can be replaced by r0 is simply the growth rate times t. 

And hence r0 cube can be replaced by v cube t cube. So in this expression then f beta is equal to 

1-exponential {(4 pi by 3 N0 v cube) t cube}. 

Here again you will see that one can take these terms in the circular brackets as a constant k. And 

this time we have fraction beta transformed as 1-expoential (-kt cube). Here is now the exponent 

of time in this case is 3 as compared to the previous two cases where we had an exponent of time 

of 2.5 and exponent of time of 4. Let us consider one final case as well and of course one can 

look at other cases as well but here in this lecture I will just take one more case where the growth 

rate is (parabol) parabolic. 

Now the extended volume would simply be (N0V) times 4 pi by 3 rnot cube and r0 would be 

written as (vt) to power half. So it is following square root of time or rather this should not be v 



at all we can just put it by some constant B t to power half. Substituting this in r0 one will get 

(N0V) 4 pi by 3 B cube t to power 3 by 2. And from this now the fraction beta transformed at 

any instant of time t is given by f beta 1-exponential {-(4 pi by 3 N0 B cube) t to power 3 by 2}. 

Again we can put lump all of these parameters as a constant k and one will get f beta equals 1-

exponential (-kt to power 1.5). So in these 4 cases that we have considered we have got different 

exponents for t 1.5, all the way to 4. So there is whole range of exponents we get and we can try 

other combinations of nucleation rate and growth rate for example sometimes nucleation rate 

could be consider itself as an exponential function of time. 
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So which could also be plugged in and one would get a somewhat different relationship. So in 

general then, so in general the Avrami relationship could be written as f is equal to 1-exponential 

(-kt to power n). Now what kind of a function is this if I plot this as f versus t, then of course the 

fraction transformed f will (cha) vary between 0 and 1. So this function is going to basically vary 

between 0 and 1 as time increases from 0. 

And one would get a curve a typical curve like this which is also call the sigmoidal curve. In fact 

this is the same kind of curve we had got right when we had started discussing the kinetics of 

phase transformation and I had shown you simulation, which ofcourse did not assume any of 

those equations but the simulation gave me the same kind of sigmoidal curve. And in fact in that 



simulation if you fit it that curve one would get different value of n depending on what growth 

model one has taken and what nucleation model one has taken. 

Another thing about this function to note is that at t is equal to 0, the fraction transformed is 0 as 

expected. And as t tends to infinity the fraction transformed tends to 1. And then this function 

can be examined for different values of n, so for example you will get a shape like this for n 

greater than 1.  

So this is a shape corresponding to n greater than 1. What happens for let us say n less than or 

equal to 0, if I take n less than or equal to 0. This function for n is equal to 0 this function would 

be a constant. So it will have some constant value which essentially appears to be in that 

whatever has transformed has transformed at t is equal to 0 and then it remains fix.  

So that is kind of absurd so you cannot have value in the Avrami parameter n to be 0 or in fact if 

n become less than 0 then this function would have a decreasing value that again will not make 

any sense. That without any transformation the fraction transformed is reducing hence for n less 

than or equal to 0, this relationship has no meaning. Between n greater than 0 and less than 1 this 

function looks like a continuously decreasing rate of transformation. 

But will still go from 0 to 1. Here for n greater than 1 there is a kind of in incubation period 

before which any measurable transformation takes place then the transformation rate keeps 

increasing until it reach a point where the transformation rate will start to reduce again and as 

you can see towards the end the transformation rate becomes very slow. It can be explained on 

the basis that initially very few nuclei are present and hence the rate is slow and then large 

number of nucleation is occurred by this time. 

And they are all growing, so the rate is going up but towards the end now fraction of 

untransformed material has become less and hence the number of nuclei that are new nuclei that 

are forming also reduced and therefore your transformation rate slows down. With these few 

comments I will basically look at this relationship and see how I can apply.  

Suppose I what I had experimental data and I wanted to fit this relationship to experimental data. 

Then how do I fit this equation to experimental data in order to determine k and n. And what is 

the purpose of that is that I have an experiment I do an experiment in which I am I have 



measured fraction transformed as a function of time. I fit that data into this expression and try to 

find n and k. 

And interestingly the value of n would give me a clue as to what kind of a mechanism that may 

be operative. For example if I get value of n close to 4, this tends to suggest that I have a 

constant nucleation rate constant growth rate. If I had a value of n equal to 1.5 or close to that 

then this may suggest that site saturation is taking place and the growth rate may be parabolic.  

But we cannot make this conclusion unambiguously because there may be other processes that 

may be operating which may also lead to similar values of n. But this only would give us a clue 

as to what kind of mechanism of transformation that may be taking place and one will have to 

generate more evidences from other kinds of experiments in order to finally make a conclusion 

as to the mechanism of phase transformation.  
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So let us look at this equation and how we can apply it. To what kind of systems first of all we 

can apply this Avrami relationship well this Avrami relationship can be applied to very large 

number of systems. It could be applied to polymorphic transformations. It could be applied to 

recrystallization kinetics. It could be applied to some order disorder transformations. 

Polymorphic transformation for example could be iron in the face centered cubic state gamma 

iron transforming to alpha iron or the body centered cubic iron. Recrystallization kinetic we 



deform a material and we anneal it so there is recovery recrystallization in grain growth so one 

can look at the kinetics of those using this relationship, order disorder transformation an example 

of that could be a gold copper alloy. 

For example there are other order disorder transformation as well, so for example this particular 

alloy (go) gold copper AU3CU at high temperature this is disordered face centered cubic this is 

at high temperature. This undergoes a transformation on lowering the temperature to ordered 

simple cubic. This is at low temperature.  

Disordered FCC implies basically that it is an face centered cubic structure where gold or the 

copper atoms can be at any of the lattice points whether it is a face centered cubic or whether it is 

a face centered lattice point or a corner lattice point of the cubic unit cell. But when it transforms 

to this ordered simple cubic then copper atoms are at the corners of a cube and gold atoms reside 

at the phase centers of the cube. 

So even this can be analyzed with the Avrami relationship, then you can have diffusional 

transformations. None of these actually require long range diffusion, so when I talk about 

diffusion transformation I am implying long range diffusion. In the case of diffusional 

transformation we can look at steel or the iron carbon system. In the iron carbon system gamma 

can austenite can transform to ferrite, austenite can transform to pearlite lamellar of ferrite and 

cementite one can look at these transformations in the light of the Avrami relationship. 
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So just to quickly understand the diffusional transformation of austenite to ferrite and austenite to 

pearlite you can see the iron carbon phase diagram here and if I (che) choose a steel with the 

hypoeutectoid composition so less than 0.8 percent or 0.76 percent carbon then the kind of 

microstructure I will get as I start to cool down from austenite region into this ferrite plus 

austenite, ferrite will start to transform in a diffusional manner. 
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And that finally (go) going below the eutectoid line the remaining austenite transforms to pearlite 

and this is what is displayed in the microstructure here. So there are pearlite islands in an (aust) 

in a ferrite matrix and you can more clearly see the structure in a scanning electron (micro) 

microscopy image and the pearlite can be even more clearly seen in an atomic force microscope 

image here, where the lamellar of ferrite and cementite are very clearly visible. 
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So whether it is austenite to ferrite transformation one can study this it is a diffusion 

transformation one can study it from the perspective of the Avrami relationship and determine 

what the parameters n and k are experimentally as we will soon see how in these micrograss one 

can also see that the ferrite these dark regions all around and inside here is pearlite so all these 

ferrite is actually heterogeneously nucleated onto the austenite grain boundary. 

So austenite grain boundary are the sites for nucleation and it could so happen at least in some 

systems that you may end up getting site saturation.  
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Similarly if I take a hypoeutectoid steel composition greater than the eutectoid 0.8 percent 

carbon then in this case the (mic) microstructure one would get would be cementite all along the 

austenite boundaries and pearlite developing in the rest of the region. 
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And finally of more interest to us right now is the eutectoid composition itself, where all of 

austenite transforms to pearlite through the eutectoid reaction gamma going to ferrite plus 

cementite and the microstructure one would get would be pearlite everywhere. At one can (de) 

design an experiment to experimentally investigate the kinetics of this particular transformation 

of austenite to pearlite. 
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So we start with eutectoid steel heat it up into the austenitic region as per the phase diagram and 

then cool it just below the eutectoid temperature of 723 degrees centigrade to do this we have to 

do this very quickly. So let us say our steel was kept at 850 degree centigrade it has to be cooled 

rapidly to let us say 700 degree centigrade below the eutectoid temperature it could be 650 

degree centigrade as well. 

In order to do this rapid cooling one quenches the sample in a molten salt bath kept at the 

temperature of transformation whether 700 degree centigrade or 650 degree centigrade or 680 

degree centigrade at whatever temperature one (wans) wants to investigate this particular 

transformation of austenite going to pearlite alpha plus Fe3C. So one will have to quench several 

samples each sample being kept at different times in the salt bath. 

You keep it for certain amount of time in the salt bath and then quench it in water. The idea of 

that is that the remaining austenite the untransformed austenite is made to transform to marten 

site which is a metastable phase in the steel system. So then finally the microstructure one would 

get at some time t kept at some temperature capital T the initial austenite grain boundaries. 

Suppose these are my initial austenite boundaries one will start to form pearlite at those 

boundaries. And rest of the untransformed austenite will be made to transform to marten site. So 

I will have marten site and pearlite, one will take this sample polish it put it under a microscope 



and then determine what is the volume fraction of pearlite that is there. That can be (deren) 

determine by standard stereological technique of for example point counting. 

That you put a grid of points and count the number of points following inside pearlite that 

number divided by the total number of points I have superimposed would give me an estimate of 

the volume fraction of pearlite. So what I will have in the end is f pearlite versus time for some 

given transformation temperature t. So I will have f1 t1, f2 t2, fraction transform is f3 at time t3 

and so on. 

Now I take this data and then analyze it in terms of the Avrami relationship in order to find the 

parameters n and k.  
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So what do I do, I take this relationship f is equal to 1-exponential (-kt to power n). I rearrange 

the terms write it as 1-f is equal to exponential (-kt to power n), take logs on both sides. So I will 

have natural log (1-f) equals –kt to power n. Now f is of course a fraction less than 1, so 1-f 

would be less than 1 so natural log of 1-f would be a negative number so what I do is I take this 

minus sign here and make this plus here. 

So now what I have is positive values on both sides of this relationship. So I can take logs again, 

so natural log of minus natural log of 1-f would be equal to lnk + nlnt. What was the purpose of 

doing this well the purpose of this was to linearize the Avrami relation. Now the left hand side 



which is the function of two logs is a linear relationship with log t. So if I take that experimental 

data that I have and plot on the Y axis ln-ln (1-f) versus lnt, I (sh) if the data follows the Avrami 

relation then the experimental data points must roughly fall on a straight line. 

I can put a best fit line through these data points, the slope of this line then would be from this 

linearized relation is simply n. And the intersection with the Y axis would give me l and k so. 

The intercept gives me log k, the slope gives me n. So this way from experimental data I can 

easily determine the parameters n and k. I will stop here in this lecture and in the next lecture we 

will take a very important topic where the Avrami from the Avrami relation how we can go to 

what is called as the time temperature transformation diagram, thank you. 

 


