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Diffusion controlled growth 

So in the last lecture we were discussing interface control growth of a stable nucleus and now we 

want to examine diffusion controlled growth. Where we had mentioned something about 

diffusion control growth where diffusion processes will be involved in controlling the growth 

rather than the interface processes.   
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For this let us consider a hypothetical binary alloy. So the phase diagram for this alloy could be 

something like this. This is a alloy between two components A and B and let us say that we 

choose an alloy of composition C0 at a temperature let us say T1 we are in the single phase 

region is alloy and let the single phase region be alpha. Now imagine that we suddenly bring the 

temperature down to some temperature T. So we are at this point and we are now in the two 

phase alpha + beta region. 

So what we have now is a super saturated solid solution of B in A. And hence this super 

saturated solid solution will tend to break and beta nuclei will form at this temperature T and 



once a stable nucleus form that phase will tend to grow then. So beta precipitates will grow and 

they should grow if you look at the equilibrium that is required, the alpha should have a 

composition of C alpha and the beta should have, beta precipitates that from should have a 

composition of C beta according to this phase diagram. 

So this C alpha composition of alpha is in equilibrium with the beta of composition C beta. So 

we are talking about equilibrium kinetics here.  
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So let us try to model this as a one dimensional growth. So let us try to model this as one 

dimensional growth. So at time t is equal to 0 when we bring the alloy to temperature T, we 

(())(04:10) from T1 to T. So at time T is equal to 0 all one has is composition Cnot and we have 

only the alpha phase. 

But as a nucleus forms and then it starts to grow we have a picture like this. So I have Cnot here. 

I have let us say slab of beta that is formed, so I have a slab imagine situation like this, this is my 

beta, this is my alpha, this is my alpha beta interface. And this is of thickness x and this is at 

some time t. This composition of the beta that forms, so this is beta out here is alpha this 

composition is C beta. 

The equilibrium composition from the phase diagram. And let me mark the equilibrium 

composition from alpha here, so let us assume local equilibrium at the interface. If we assume 



local interface at the interface what does this mean that in this region the beta would have the 

(co) equilibrium composition of C beta. And out here alpha at the interface would have a 

composition equilibrium composition of C alpha. 

And far away from this bets precipitate the composition will in inside alpha would be Cnot. So 

hence the composition or the concentration profile within the alpha would be something like this. 

So it will as one moves into the alpha away from the beta precipitate the concentration inside the 

alpha would increase and reach the starting alloy composition of Cnot. This is at some time [t]. 

Now after an elapse of time dt, so this is at time t. At time dt this beta precipitate will grow by a 

by an amount dx and the composition profile in the alpha would also change like this. So this so 

the interface at time t was here, interface at time t+dt has moved by a distance dx. So this is the 

situation that we have. Now in order to solve this in a kind of a simplistic manner just to show 

(how) what is the growth kinetics in this we make a (simp) we make a small simplification. 

And the simplification is that instead of assuming a curve profile like this which actually is given 

by a complex function called the error function. We assume this profile to be a straight line. So 

let me redraw this picture, so simplify, so in this simplified picture the situation can be 

represented like this. This is Cnot, this is C alpha and within the alpha phase I have a linear 

concentration profile. 

And when the after time dt the interface moves by a distance dx. So from a time t the interface is 

here, at time t+dt the interface is moved by a distance dx. The profile becomes something like 

this. And that way the interface will keep moving now what is our objective here. Our objective 

here is to find out the velocity with which this interface will move and how the distance or or the 

distance of the interface changes as a function of time. 

So the velocity of the interface v is simply dx by dt. So our objective here is to find this and that 

would give us the growth kinetics. So we will look at this simplified picture and attempt to solve 

this problem. Now what are the processes that are happening remember this is diffusion 

controlled process that we are looking at so not interface controlled so the jumping of the atoms 

across the interface is a very fast process and therefore we can neglect it and the rate is 

essentially controlled by the rate of diffusion of atoms. 



In this case one would need B atoms to diffuse, so there will have to be a flux of B atoms 

diffusing across the interface in order for this interface to grow or what this interface to move or 

for the precipitate to grow. So let us look at it what is the flux of B atoms, at what rate can B 

atoms move towards the interface that flux.  
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So that I am talking about so flux of B atoms per unit area per unit time. If I call that as J, then 

this is given by D dc by dx. Now what is this relation, this infact is called the Ficks First Law 

which we will be discussing in subsequent lectures. For now let us take this relationship as it is D 

is called in this case the diffusion coefficient of B in A, dc by dx is the concentration gradient 

which is our simplified approach. If you look at this diagram the concentration gradient is a 

constant because we have assumed a linear profile of concentration. 

So this is the rate at which B atoms are going to move per unit area per unit time. The velocity of 

the interface is dx by dt. So at what at what rate the essentially solute is getting added B atoms 

are getting added to beta. So we say that beta grows by dx in time dt. So then rate at which solute 

that is B atoms is added is equal to well look at the amount of B atoms that are added which is 

nothing but C beta minus C alpha. 

But here the concentration was C alpha this is this concentration you can think in terms of moles 

per unit volume. So C beta minus C alpha multiplied by dx by dt, so the concentration let us say 



is in moles per unit volume multiplied by the velocity of the interface dx by dt and units for this 

would simply be we would become in terms of flux of B atoms in moles per unit area per unit 

time. 

So this is the rate at which B atoms are getting added, this is the rate at which B atoms are 

arriving at the interface. And obviously for this rate and for this velocity the two have to match, 

have to balance. And therefore I can simply write C beta minus C alpha dx by dt to be equal to D 

dc by dx. Now let us look at it what is dc by dx go to my simplified representation here dc by dx 

is the slope of this line and that is nothing but Cnot minus C alpha divided by some length L, ok. 

So I write this as D times divided by L. 

Now what do we do with this relationship we have we wanted to find this so this is a unknown 

quantity for us. C beta, C alpha we know from the phase diagram, I know D the diffusion 

coefficient of B in A. I can get from there is a huge database of values of this diffusion 

coefficient D or it can be obtained from experiment. So the other unknown quantity that is left is 

L.  

I do not know what is this distance L. How do I find this distance L, well that is actually quite 

easy in this system there are no atoms going out of the system, no atoms coming into the system 

there has to be a mass balance atoms are conserved. So if the concentration have increasing here 

it is decreasing elsewhere. And hence if I look at this simple diagram, this area should be equal 

to this area for mass balance. 

So from simple mass balance idea the two areas are equal so what is this area this is simply a 

rectangle and this area is C beta minus Cnot multiplied by x. And this is equal to the area of this 

triangle that is there which is half Cnot minus C alpha multiplied by L. So now I can write down 

an expression for L and that is simply rearranging the terms 2 C beta minus Cnot divided by 

Cnot minus C alpha multiplied by x. So this is the value of the unknown quantity L. 

So if I substitute this in this I will get D times Cnot minus C alpha Cnot minus C alpha square 

upon 2C beta minus Cnot times 1 upon x. So this is the rate at which solute atoms are getting 

added and that is equal to this on the right hand side. Now this should be at this in fact is a fairly 

easily quantity to solve is a very simple differential equation.  
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So let me rewrite this as dx by dt equals D times Cnot minus C alpha square upon 2 times C beta 

minus C alpha times C beta minus Cnot times 1 upon x. 

Solving this integrating both sides xdx equals D times (Cnot minus C alpha) square upon 2 times 

(C beta minus C alpha) times (C beta minus Cnot) 0 to t dt. And this gives me x to be equal to 

Cnot minus C alpha upon square root of (C beta minus C alpha) times (C beta minus Cnot). Just 

simple rearrangement of terms and this gives me how x varies as a function of time. 

So the interesting thing is this tells me that x is directly proportional to square root of Dt. Where 

D is a diffusion coefficient and t is the time. And now if I look at velocity which is dx by dt well 

that would be same constant term Cnot minus C alpha upon square root of (C beta minus C 

alpha) times (C beta minus Cnot) square root of D by t. And that is simply that x is directly 

proportional to not x but the velocity v is directly proportional to square root of D by t. 

So one thing is clear that growth rate is not a constant at at a given temperature in fact it is going 

to be a function of time. And if I plot for example x versus t if I plot for example x versus t, I will 

get a curve like this. So as growth is taking place the rate at which growth is taking place is 

continuously reducing with time.  

So in fact points to note here 1 that growth is proportional to root Dt and hence this is called 

parabolic (grow) growth. 2 if you look at this Cnot minus C alpha, this is super saturation when 



you suddenly quenched from T1 to T the alpha concentration was still Cnot. So growth is 

proportional to super saturation, so higher the super saturation higher is the rate of growth. 

As you can see in the velocity also it is Cnot minus C alpha which is the super saturation. And 

third I have already mentioned velocity is proportional to square root of D by t which mean 

velocity reduces as time increases. Now why is velocity reducing or the growth rate is reducing 

with time.  
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This could be understood if I relook at this diagram that as the beta precipitate is growing so I 

have Cnot, I have C alpha, out here I have C beta this is my beta has grown by x and the 

concentration profile is this. Now as growth take place let us say it has grown by delta x the 

profile would become something like this. The slope this is a straight line that this slope will 

reduce, that is dc by dx reduces with time. 

As dc by dx reduces with time, remember the flux which is given by diffusion coefficient time 

gradient of concentration. So if the gradient of concentration is reducing the flux of B atoms are 

reducing. So if I look at this, this is reducing and hence dx by dt has to reduce. So this is the 

reason why growth is reducing with time. So this is what in this lecture what we have discussed 

is diffusion controlled growth. 



So in the last in this lecture in the previous lecture we have discussed 2 mechanisms of growth, 

the interface control growth and diffusion control growth. Interface control growth tells us that 

the growth rate will be constant for a given undercooling while in the diffusion control growth, 

growth rate is not a constant for a given undercooling infact it keeps reducing as a function of 

time. 

With this we finish our discussion on kinetics of growth and what we have done in the last 

several lectures is we have understood nucleation rate and what factors control it. We have 

understood to some extent in the last two lectures, growth rate the two together will have to be 

considered to get overall transformation kinetics of phase transformation. So with this I stop here 

in this lecture, thank you. 

 


