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Let us consider another example to clarify some of the basic concepts, which we have 

been considering on this chapter. For instance, there is a structure shown to you on the 

screen. 

(Refer Slide Time: 00:37) 

 

Let us draw the conventional unit cell and also the smallest unit cell for the structure, 

what is the lattice parameter for the structure and what is the motif. We should also try to 

calculate the number of lattice points per cell and also draw the shortest lattice 

translation vector. As you can look at the structure, it is got 2 large circles, which are 

white colored, there are 2 grey colored circles, one of them dark grey, the other one light 

grey and they form a pattern, which looks very beautiful in two dimensions. 



(Refer Slide Time: 01:12) 

 

Now, I need to identify the lattice points, before I can start to draw lattice translation 

vectors or the unit cell. Let us look at two circles, which look identical at least in form 

but, we will try to identify, if they both qualify to be lattice points or not. So, let us 

consider A and B as the two circles, if I look at A then, at a certain distance of course, by 

going along x and in coming along y direction, I land up at a dark grey circle. If I do the 

same translation operation as shown by this red vector, I land up on a light grey circle, 

this implies A and B do not have identical surrounding. 

That means, A and B both cannot be simultaneously lattice points so now, for my choice, 

let me go ahead in choose A as a lattice point that means, all the A’s would form a lattice 

these point, (Refer Slide Time: 02:14) this point, this point. Equivalently, I could choose 

B as the origin and the set of B’s would also form a lattice point but, the point to be 

noted is that, A and B both simultaneously cannot be lattice points because, of the 

environments being different. 



(Refer Slide Time: 02:30) 

 

Now, let us overlay the unit cells, the shortest lattice translation vector and the motif, 

which will go on to generate this crystal. Now, as you can see, if I join the 4 corners 

made of A kind of circles then, I can get a blue unit cell, which is also happens to be the 

smallest unit cell. However, I can go and choose an alternate unit cell, as shown by the 

green colored outline, which also happens to be the smallest size unit cell. How do we 

know it is a smallest size unit cell of course, I can calculate the area and find out that, 

both of them have the same area. 

There is another possibility, let me calculate the number of lattice points in this blue cell, 

each one of these corners contribute one fourth and therefore, the net contribution to this 

is 1 lattice point per cell. Similarly, since these two circles do not belong to lattice points, 

which are of the B type, only the corners contribute and the net contribution from these 

corners to the green unit cell is again 1, which tells you that it is the primitive unit cell. 

So, if you choose at the conventional unit cell, you would actually go and choose the 

blue unit cell. 

Now, what is the shortest lattice translation vector, the shortest lattice translation vector 

in this case is, the one which connects the A position to another A position, as shown by 

the red colored translation vector. Of course, I would have also chosen the equivalent 

one, which is the one connecting A position along the y direction to another A position 

so, both of them will be the shortest lattice translation vectors. This obviously, the vector 



connecting this A atom to the B atom, is not a lattice translation vector, that point has to 

be noted. 

Mister Deaiptosh has a question for us. 

Student: What is the difference between conventional and shortest unit cell? 

You mean, that smallest shortest unit cell so, question of Mister Deaptosh is, what is the 

difference between a conventional and the smallest unit cell. This point we are 

considered in somewhat detail before that, we used to 3 criteria when we go ahead and 

make a choice of an unit cell. Number 1 being the symmetry so, we choose a unit cell, 

which has symmetry common cell with that of lattice and the highest possible symmetry. 

Number 2, if there are 2 unit cells having the same symmetry then, I would choose a unit 

cell which has the smaller size. But, if both of these fails to resolve the issue then, I 

would choose an unit cell, which is guided by some kind of a convention. May be, there 

we will considering example later on, in which we will see that, even this convention is 

not without some kind of a common sense logic. 

Now, in this case, the blue versus the green is choice, which we are trying to make, it is 

clear of course, again to reattribute important fact, we are not talking about just the 

symmetry of the lattice, we are independently considering the symmetry of the unit cell 

also. So, the symmetry of the obviously, the square unit cell is higher, compared to the 

symmetry of the parallelogram saved unit cell. Because, this square unit cell will have 4 

fold symmetry in the centre, it additionally will have those mirrors, which we have seen. 

And therefore, my preferred unit cell for this, which solves for the conventional unit cell 

is the square unit cell. So now, let us me find out, what is the motif for this structure, 

which I need to put at each lattice point so that, I can generate entire structure. The motif 

happens to be consists of 2 open circles, the A and the B circles, as I labeled them before, 

it consists of 4 dark grey circles, which are filled are gray and 4 light grey circles, which 

I have been put within this red dotted line and shaded yellow for metastabiility. 

So, this is my motif, which goes and sits at each lattice point to generate this crystal 

structure, which is shown in the figure. Now, what is the lattice of this structure, it is 

primitive square lattice and what is the number of lattice points per cell, since it is a 



primitive lattice, it is got 1 lattice point per cell. So, this example again brings out the 

importance of the lattice and also the motif, and the ways we can choose a unit cell and 

also the shortest lattice translation vector. 

(Refer Slide Time: 06:52) 

 

Now, it is time for us to go and consider 3 D lattices so far, we have been dealing with 

one dimensional and two dimensional lattices. Now, let us consider some three 

dimensional lattices and we shall try to study their properties as well. Now, to generate a 

lattice in three dimensions, I need 3 non coplanar vectors. 

(Refer Slide Time: 07:12) 

 



For instance, in this figure you can see, these non coplanar vectors marked as A, B and 

C, there are 3 angles which can be considered. The angle between the A and the B, 

which is given by the gamma, angle which is actually opposite the C vector, it is the face 

which is opposite to the C vector. Similarly, you have the beta angle and the alpha angle, 

which go on to define a general parallelepipedon, a parallelepiped in three dimensions. 

Now, these lattices are infinite in three dimensions and we can, as usual choose a unit 

cell, which can be used to describe these lattices in three dimensions. These as shown in 

this figure, we have 6 lattice parameters to describe a general lattice in three dimensions, 

these are 3 distances a, b and c, and there are 3 angles the alpha, the beta and the gamma. 

Now, as you go along studying these lattices, we will see as we deal two dimensions, 

there will be always be special cases wherein, some of the distances like a or b or c 

maybe equal to each other and there maybe some of the angles, which have some special 

values. 

(Refer Slide Time: 08:21) 

 

Now so, this is for instance, shown that you can actually have a three dimensional cube, 

which is a space filling cube. To visualize the step by step construction, let us launch a 

small video. 



(Refer Slide Time: 08:35) 

 

(Refer Slide Time: 08:44) 

 

So, let us start with the single cube and then, go on to make a cubic lattice, the lattice 

points are at the vertices of the cube and have been left out from the construction for the 

sake of clarity. 



(Refer Slide Time: 08:50) 

 

So, first starting with the cube by make a layer of cells of course, this layer has to extend 

to infinity, along two dimensions and then, I make the second layer. And on top of that, I 

can make a third layer and going for to infinity in the direction, which I am considering. 

(Refer Slide Time: 09:06) 

 

You can clearly center of this figure, which is been darken by the blue line, this exercise 

additionally shows the important point that, cube is a space filling solid. 



(Refer Slide Time: 09:22) 

 

So, if I have such a lattice, which is a cubic lattice then, the lattice parameters of the unit 

cell, which goes on to describe this lattice will be a equal to b equal to c, and alpha is 

equal to beta is equal to gamma is 90 degrees. Again to emphasis, this actually a lattice 

that means, that it only conserve array of points at the corners of these or the vertices of 

this cube. And these lines are just for visualization and they have no physical meaning as 

far as the structure goes. 

And we have to also remember that, these lattices would be infinite along the 3 

directions, the x direction, the y direction and the zee direction. 



(Refer Slide Time: 09:58) 

 

Now, this was a very special case of a 3 D lattice, which I started off with let me now, 

switch to the other extreme case wherein, we have the most general possible 3 D lattice 

wherein, I have no constraints on the alpha or the beta or the gamma. And a, b and c also 

have to be independent parameters, which contains values depending on the kind of 

lattice I am considering, the size of the lattice I am considering. 

Now, let us try to visualize, how this lattice can be constructed starting with the cubic 

lattice, which I saw before. And additionally, this will show us, this excise will show us 

that, any general parallelepiped in three dimensions is actually a space filling 

parallelepiped. This might seem obvious after the construction of from the figure, which 

is drawn for you here but, unless this exercise is taken up at least for once. 



(Refer Slide Time: 10:54) 

 

It is sometimes is confusing, when you see some general kind of parallelepiped and it 

makes you wonder, are they really space filling. 

(Refer Slide Time: 11:04) 

 

So, let us start with the original cube, which I had construct before, this is the cubic 

lattice with the cubic unit cell overlaid on the central one. I have the 3 directions, first I 

start by dilating along the zee direction, I pull this lattice along the zee direction. So that, 

now the C lattice parameter becomes different from the other two lattice parameters. 

Further to this, I can perform additional operations like I contract the lattice along the 



other direction, which is so that now, I am have a squeezing operation, which is taking 

place. 

I do not want to stop here so, I done a dilation operation then, squeezing operation, I 

again go ahead and do a shear operation on this kind of a lattice. The shear operation is 

shown by the two shear vectors and the top and the bottom. 

(Refer Slide Time: 11:30) 

 

And you can see that, this a finishing lattice has been completely distorted with respect 

to the starting lattice and none of the original directions or distances are equal and also 

the angles have been distorted. So, this is now, a general parallelepiped and it happens to 

be a space filling parallelepiped. So, we have now considered the important fact that, any 

general parallelepiped can be a unit cell for a lattice in three dimensions and that is space 

filling solid as well. 



(Refer Slide Time: 12:22) 

 

Now, the lattices in three dimensions are called the bravais lattices and there are 14 of 

this so, let us try to read the matter written in the slide to understand, what are these 

bravais lattices. As usual, a lattice is set of points constructed by a translating a single 

point in discrete sets by a set of basis vectors. So, there are 3 basis vectors in three 

dimensions and we land up with 14 unique bravais lattices distinct from each other, have 

different space groups. 

We have not constructed this conceptual space groups in detail but, in this slide we try to 

have a broad overview, eventhough some of the concepts are beyond this elementary 

course. All crystalline materials recognized still now, fit in one of these arrangements 

made by this 14 bravais lattices. In geometry in crystallography, a bravais lattice is a 

infinite set of points generated by a discrete set of translation operation. 

Like before, translation is the key operation, when it comes to distinguishing lattices and 

important property of the bravais lattice is, a bravais lattice looks exactly the same, no 

matter from which point in the lattice one using so, that is an important property of 

lattices. And we will have few more things to say about this important property of having 

identical surroundings and the view from any lattice point. Bravais had concluded that, 

there are only 14 such possible lattices and we introduce some conventional units as to 

represent these lattices as before and an important point to be noted, that these 14 bravais 

lattices belong to the 7 crystal systems. 



Of course, we will have much more to say that, how we go from lattices to crystals and 

then, how we classify these lattices into the 7 crystal systems, what do I mean when I say 

a crystal system, all these aspects we will consider in considerable detail when we 

actually start to build lot of crystals using these lattices. An important point, which might 

be noted is that, there are 14 bravais lattices, which are space group symmetries of the 

lattices. 

So, this again is the advance concept but, just for the passing, it is worth wide to note this 

statement, which is written in the end. So, we are not showing the derivation of either 

these 14 bravais lattices or we do not prove the existence of 7 crystals in this elementary 

course, but it is worth wide to note these important numbers, which will form the basis 

for quite a bit of the treatments, we will be did in this course. Once again, I have 

highlighted the important property of lattices. 

(Refer Slide Time: 14:50) 

 

And also, the existence of 7 crystal systems and the 14 bravais lattices. 



(Refer Slide Time: 14:55) 

 

Further, let us consider few more important points, before we actually take the three 

dimensional lattices one by one, lattices exist independent of our intentions to make 

crystals using them. So, this is has to be understood clearly, yes in crystallography, our 

idea is to use these lattices from making crystals but, their existence is a mathematical 

fact and they do so without our intention to make crystals using them. The 14 bravais 

lattices are 7 distinct symmetries and this aspect that, based on symmetry we can assign 

these 14 bravais lattices to the 7 crystal systems. 

So, there is a logical reason, why do we have 7 crystal systems and that is the symmetries 

of the 14 bravais lattices, there are preferred unit cell to describe these lattices and 

crystals. The number of such unite cells is 7, which we used to describe the 7 crystal 

systems however, we should again note that, the shape of the unit cells should not be 

constitute confused with the crystal system or the lattice. So, this is an important point, 

will again return to it in various forms to understand this varying point so, what are the 

14 bravais lattices. 



(Refer Slide Time: 16:05) 

 

 I have a question from Mister Patel. 

Student: Sir, here the which lattice and crystal systems, they are 14 and 7, they are fixed 

number or we can vary. 

Very very good question I have got from Mister Patel again here, first thing the s is 

slightly silent in bravais. So, it has to be pronounced as bravais lattices, in English we 

often have lot of words, in which the last alphabet is silent like p a p e r is paper and not 

paper, the r has to be little silent. So, this is bravais lattice and address to the specific 

question, are these numbers fixed, yes mathematically speaking, these 14 bravais lattices 

exist independent of anything else, that is a mathematical construct. 

So, as long as you impose requirement, that you have translation as a symmetry and 

every point has identical surroundings then, you will land up 14 bravais lattices. If you 

look at the symmetry of these bravais lattices, you will see that there are 7 distinct 

symmetries. Now, would they still an independent question, would you want to call the 7 

symmetries as 7 crystal systems or would I want to play some games further to it. 

We had seen in two dimensions that, the crystals with three fold symmetry of course, we 

will come to this topic little more detail later also. But, we had briefly considered this 

aspect that, crystals with three fold symmetry and crystals with six fold symmetry both 



are put under the same umbrella and they come under the 120 degree parallelogram 

crystal or the 120 degree rhombus crystal. 

Now, if you do not want you 7 boxes to put and call 7 different crystal names, with some 

people do, some of the people actually put crystals in the hexagonal class and the 

trigonal class, which we will construct of course, very soon. That means, crystals having 

only one three fold axes or having one six fold axes under the same group that means, 

they do not want classify them as separate classes. So, in that, if you do such a kind of a 

classification, you land up with only six crystal systems but, the preferred system is a 7 

crystal system. 

Because, as you can logically see because, they come from the 14 bravais lattices, which 

exist independently and if you look at the symmetries of these 14 bravais lattices, there 

are only 7 distinct types, which form the 7 crystal systems. So, let us try to divide this 14 

bravais lattices into the 7 crystal systems and also study some important properties of 

them. So, we have an idea on the second column, which is a symmetry based concept, 

which is a crystal system. 

On the second, third column, we got the shape of the unit cell, which is wherein, as we 

saw certain guidelines of here, apply when we try to choose the shape of the unit cell. On 

the right hand side, we have the bravais lattices, which is purely a translation based 

concept. So, what are the bravais lattices and how to be divide them into the 7 crystal 

systems. So, the 7 crystal systems are the cubic, the tetragonal, the orthorhombic, the 

hexagonal, the trigonal, the monoclinic and the triclinic crystal systems. 

Now, sometimes a word crystal class is also used to describe the 32 point groups and that 

terminology is confusing with, when you talk about crystal systems and therefore, 

toward crystal classes, is to be typically avoided when describing crystal structures. Now 

of course, we just not very important at this stage but, just to for instance, list the some of 

the shapes of these typical unit cells, a cubic crystal is described by typically a cubic unit 

cell, a tetragonal crystal is described by a square prism of a general height, the 

orthogonal again which is of the general height. 

That means, the height has to be different from any one of the other two lattice 

parameters in the plane. The hexagonal crystal is described by 120 degree rhombic 

prism, the trigonal crystal is described by a parallelepiped, a special kind of 



parallelepiped which is equilateral and equiangular which means, every face is identical 

and every angle is identical. 

And we might also briefly see, how we can go from trigonal cubic crystal to a trigonal 

unit cell, the monoclinic crystal is described by a parallelogramic prism. And a triclinic 

crystal is described by an unit cell, which is of the most general kind of a parallelepiped 

wherein, there are no special constrains either on the sides or on the angles. On the right 

hand side, are the bravais lattices we shall of course, take up each one of these bravais 

lattices point by point, there are 4 types of bravais lattices, which are possible. 

The P which stands for the primitive, I which stands for the (Refer Slide Time: 20:50) in 

German, which is the body centred. So, please remember, this is not from the English 

word therefore, I stands for body centred, F stands for face centred and the alphabet C is 

used sometime as a side centred or the base centred or sometimes it is also called the C 

centred lattice. 

How could the C centred need not be along, only the c axes you could have A centring or 

the B centring but as a class, they form the C centred lattices. So, if you look at this table, 

let us see that, what kind of cubic lattices are possible, you can have the primitive cubic 

lattice, the body centred cubic lattice and the face centred cubic lattice but, there is no C 

centred cubic lattice possible. Similarly, you can see in tetragonal class, you can have the 

primitive, the body centred but, there is no face centred or C centred cubic lattices in the 

list. 

In the hexagonal class, again you have certain things missing, in the trigonal class the 

same I, F and C are missing, the monoclinic class as you can see from the list, is the 

orthorhombic case wherein, you have the primitive, the body centred, the face centred 

and the C centred lattice possible. So, let us take up these 14 bravais lattices, as they are 

divided into the 7 crystal systems, we will return into this concept of a crystal system in 

little more detail. 

Therefore, if any confusion exist, would be clarified at later point so now, we are 

basically trying to understand the lattices. One important question, which comes to our 

mind when we consider these lattices is that, why are some of the entries missing. It was 

very clear when you looked at this list for instance, the hexagonal lattice there was only 

one the primitive, all others was missing. 



(Refer Slide Time: 22:37) 

 

So, in the list there are many of these lattices, which were missing and like in the case of 

two dimensional lattices, we can ask this question, why some of these lattices are 

missing for instance specifically, why there is no C centred cubic lattice. Why the F 

centred tetragonal lattices missing, we will soon return to this question and answer with a 

few examples, why some of these lattices gone missing. 

(Refer Slide Time: 23:02) 

 

So now, since there are 4 types of lattices possible, the primitive, the body centred, the F 

centred or the face centred and the C centred lattice possible now, let us look at the 



contribution each lattice point makes to or unit set. Now, in a primitive lattice, each 

lattice point at the corner contributes only a average of one eight of course, depending 

upon the shape of the lattice, this contributions may or may not be equal, as we have seen 

before. 

But typically, you have 8 of them contributing a total of one eighth on an average, giving 

rise to 1 lattice contribution, in the case of a primitive unit cell therefore, primitive 

automatically implies 1 lattice point per cell. In the case of the body centered lattice, the 

8, as before give a contribution of 1, at the which once located at the vertices of the 

lattice or the lattice of unit cell, they give a contribution of 1. There is one, which 

completely included within the unit cell, which is giving a contribution of 1 therefore, all 

body centred lattices have to contribution of 2 lattice points per cell. 

For the face centred, you have we will see that, there are lattice points at the corners and 

in addition, there are lattice points at the centre of each face of course, you will see 

examples to make this matter very clear. But, there are lattice points at the centres of 

each face, each face is shade between 2 unit cells and therefore, they have contribution of 

half. Since there are 6 faces, we have contribution of 3 from the faces, 1 from the corner 

making it a total of 4 lattice points per cell. In the case of the C centred lattice, there are 

1 contribution as usual coming from the corners in addition, there is 2 half contributions 

coming from the opposite set of faces, making contribution of 2 to the unit cell. That 

means, they are effectively 2 lattice points per cell, in the case of a C centred or A 

centred or B centred lattice. 



(Refer Slide Time: 25:12) 

 

So, now, let us try to take these lattices one by one in three dimensions and try to 

understand a additional using model, that how can we understand lattices. So, let us start 

with the cubic lattice, as we saw in the cubic lattice we can, the shape of the unit cell is a 

cube as shown you in the centre. There are 3 kinds of centrings or additional lattice 

points possible, only two of them are present one is missing so, you have the primitive, 

the body centred and the face centred, no C centring is possible. 

And you also additionally, can ask the question why is the C centring not possible now, 

whenever we are showing such a figure, I will have the general figure in the middle, 

which show the basis vector and the relationship between the angles of these basis 

vectors. We will also show this relationship, interrelationship between the lattice 

parameters explicitly at the bottom in addition, we will also show the three lattices 

possible. 

An important point to note in these figures would be the symmetry, which is on shown in 

the blue colored box. Now, this is the very important point to note because, we said that 

this 14 bravais lattices only 7 distinct kind of symmetries. That implies automatically, 

that let it be a P lattice or a P cubic lattice or the body centred cubic or the face centred 

cubic, the symmetry of all of those kind of lattices will be the same, which will be along 

according to the Harmon MoGwan symbol, 4 by m 3 bar 2 by m. 



So, what I will do now is that, let me show this is a cube on the left hand side image 

only, lattice points are present along the vertices. Like I told you in the body centred 

case, we have lattice points in the corner and in addition, there is a lattice point at the 

centre of the cell. And if you want to track the vertices of that or coordinates of that 

lattice point, it will be half half half and such a lattice point will be, line along the body 

diagonal of the cube. 

So, it will be half the distance of the body diagonal of the cube now, in the case of the 

face centred cubic lattice, you obviously, have the lattice points at the corners and in 

addition, you have lattice points at the centres of each face. So, there are 6 faces and 

percent of each one of these faces, we have a lattice point. (Refer Slide Time: 27:38) and 

as we are pointed out in the previous slide, each one of these can only contribute half to 

the unit cell. 

Because, each unit such unit cell will be shared between two neighbors and therefore, 

this is lattice point make a contribution of half to this unit cell. Before I take up the case 

of tetragonal lattices, let me try to illustrate what we have seen so far, for the cubic lattice 

using some other models I have got right with me here. And before I go to the model, 

Mister Patel has got a question. 

Student: Sir, how can I determine the symmetry independently, (Refer Slide Time: 

28:14) 

Very good, so this symmetry representation though, we have dealt with an a little bit or 

in a brief manner in the very first chapter maybe, we can return to it later in the course. 

But, this is basically, what is called the Harmon MoGwan symbol and we saw that a 

cube actually has a symmetry. So, may be using a model, I briefly show how the 

symmetry elements are possible but, as you might remember, we have consider this in 

the early chapter on symmetry cut (Refer Slide Time: 28:47). 

So, to answer Mister patel’s question, I got a model here of a cube and using this, I will 

show the symmetries of this cube and for now, I will assume to the points, which are 

relevant of these lattice points at the corners, which are in red color. So, you can see the 

red colored points and I wish to show the symmetries of this cube obviously, this cube 

has a four fold symmetry, which goes from the centre of one face to the centre of the 



other face. This is my four fold axis and as if you look at the Harmon MoGwan symbol, I 

have got the symmetry of the cube as 4 by m, which I can write on the board. 

(Refer Slide Time: 29:27) 

 

Now, the symbol 4 by m tells me that, there is a mirror perpendicular to this four fold 

axis and actually, the seat of the mirror is exactly half way between the top face and the 

bottom face. Similarly, the cube would have a four fold axis along any one of these 

directions, joining the centre of the opposite faces and there would be a mirror, which 

bisects these edges so, that is the 4 by m symmetry, which is the cube having. 

It has an additional symmetry, the 3 bar symmetry which you can see, a 3 bar symmetry 

implies a three fold roto inversion axis, which is actually an higher order operator as 

compared to the three fold axis. Yes, a cube also has a three fold symmetry along the 

body diagonal, as you can see, this is my body diagonal of the cube and there is a 

threefold symmetry. 

But, whenever I have a higher order symmetry then, I use that symmetry to describe the 

object and not the lower order symmetry to give an example, let me consider a hexagon 

on the board. So for now, will have to assume this is a regular hexagon and this hexagon 

would have a six fold symmetry at the centre. Needless to say, this hexagon also have a 

two fold symmetry and a threefold symmetry but, these symmetries are lower order 

symmetries as compared to the six fold symmetry. 



And therefore, whenever a question is asked, what is the symmetry of this hexagon, I 

will report the symmetry of this hexagon is six fold and I will not use lower order 

symmetries, which happened to be sub group of these six fold symmetries. Similarly, 

even though the cubic lattice of the shape of a cube has a three fold axis along the body 

diagonal, I will report the symmetry to a 3 bar symmetry and not merely a three fold 

symmetry. 

Now, as you will see very soon, the very characteristic symmetry of a cubic crystal is 

this existence of this three fold along the body diagonal and not the existence of the four 

fold. The last symmetry, which I need to consider in the symbol is the 2 by m symmetry, 

the two fold axis is exist at the line joining the opposite edges. So, the opposite edges are 

joined by line and that line is the direction of the two fold axis, you take any pair of 

edges say, the this edge and this edge, and you have a two fold symmetry. 

How do I now got a two fold symmetry, I can rotate it by 180 degrees and the cube will 

look exactly identical. It is similar to the existence of a three fold symmetry along the 

body diagonal, in which case I would rotate by 120 degrees to leave the shape invariant. 

Now, apart from this two fold, there is a mirror perpendicular to two fold so, my two fold 

direction is this, to joins the opposite ends to the body diagonal and the mirror bisects 

this two opposite faces as a diagonal. 

So, I have a plane, which passes through like this, the mirror plane which actually bisects 

this line joining the two opposite edges. So, I have a 2 by m symmetry and therefore, as a 

combined symmetry, I can write the symmetry of this object as 4 by m 3 bar 2 by m, 

which is the characteristic symmetry of all cubic lattices. As we were discussing cubic 

lattices, I have it means some models here, which I am going to use to explain the 

lattices, which we just known so on the computer. 

In between, I have a question from Mister Ravi. 

Student: Sir, is there any 4 bar symmetry in cubic crystal? 

A good question again, can be a 4 bar symmetry into the crystals but yes, there can be 4 

bar symmetry in cubic crystals and we were actually consider some examples of those 

crystals wherein, 4 bar symmetry exist. But, the higher symmetry in this case happens to 

be the four fold and therefore, we consider the higher symmetry to describe these 



lattices. And then, we make crystals out of this we will see that, those crystals can 

actually have lower symmetry and along those possible symmetries is the 4 bar 

symmetry. 

So, now, let us focus on these 3 models I have got with me here, in this case you will 

have to assume that, these are actually not large blue spheres but, actually points. 

Because, now we are considering lattices and therefore, lattice consists only of points so, 

these for my consideration, are points. Later on, I will use a same models to describe 

crystals, at that point of time, you will have to assume they are motifs but for now, they 

are lattice points. 

So, I have a model of the simple cube on the left hand side, I have a model of the body 

centred cubic structure on the right hand side here and behind those two models, I have 

got the structure of a face centred cubic unit cell. So, let take up one of them in hand the 

simple cubic unit cell, as I can clearly see that, this has got 8 points at it is vertices, each 

one of these points is now shared between 8 such cubes. one cube of course, is this one 

there will be cube to it is right, which also share this lattice point, there will be a cube 

above it, which will share a lattice point, there will cube on this quadrant, which is also 

share this lattice point. 

And correspondingly, there will be 4 cubes behind it 1, 2, 3 and 4, which will share this 

lattice point effectively, this sphere has been shared by the one eighth of region of this 

lattices and therefore, effectively the contribution to this lattice is just 1. So, this is my 

simple cubic unit cell, which is the unit cell of the cubic lattices now, let me pick up the 

body centred cubic lattice, again I have to assume that these are not spheres and these are 

merely points. 

Now, if I look at the unit cell now, the unit cell is a cube as before because, all the edges 

of the cube are marked in red. These additional points have to be ignored because, these 

additional lines or strands have to be ignored because, they are just merely there in place 

to hold the central position in place and they are not meant us to be any descriptors of 

this unit cell so, unit cell itself is made of these red strands. Now, as you can clearly see, 

these 8 points contribute one eighth to the cell, totally making a 1 lattice point. 

In addition, there is 1 in the centre, which is completely contained within the unit cell 

and that has a contribution of 1 to this unit cell and therefore, it has a contribution of total 



2 lattice points per cell. Now, as I pointed out well I mentioned in the videos, that this 

lattice point bisects the body diagonal. What is the body diagonal of the cube, the body 

diagonal of the cube is the one, which is the connecting this bottom sphere to the top 

sphere, which is along the three fold axes of the cube or before if we use the correct 

terminology 3 bar axes of the cube and this body diagonal is bisected by this point in the 

middle. 

Now, how many of such body diagonals are there in this cube, it is obvious from this, 

there are 1, 2, 3, 4 body diagonals within this cube and each one of those four body 

diagonals is bisected by the central point, which is the position half half half in the cube. 

Now, let us take up the next model, the model of the face centred cubic lattice now as 

usual, we have points in the corners the 8 points in addition, every face centre has a point 

in the middle. 

As before, I should only focus as far as unit cell goes on the red strands and not on these 

other metallic strands because, those are there just to hold the balls in place and not to 

describe the unit cell or the structure. Now, the contribution as I pointed out from these 

opposite face falls is just half the unit cell, as you can see only half of this slides in the 

unit cell, other half is on the unit cell in the right. And therefore, have the contribution of 

3, these opposite back contributes 1 and there are 6 such pairs therefore, you got the 

contribution of 3, one from the corner, 4 lattice points per cell. 

Now, this lattice point bisects the face diagonal, which is the 1 1 0 direction of the cube 

and therefore, all the face diagonals are bisected by this lattice point. Now, an important 

point to note, either for this kind of lattice or for the body centred cubic lattice is the 

existence of identical surroundings. When we say existence of identical surroundings, I 

mean if I am a sitting at this lattice point or I am sitting at this lattice point, space should 

look exactly identical to me. 

If I am sitting at this lattice point, I travels along the x direction by a distance half, 

travels my x direction along half, z direction half, I would come to the lattice point. If I 

do the same exercise half half half, I land up on another lattice point, and which clearly 

shows that, every lattice point has an identical surrounding. The same visualization 

sometimes is little more difficult for the cubic lattice but, we should nevertheless try to 

do the same. 



And in this case, what is my shortest lattice translation vector, my shortest lattice 

translation vector in this case is not a cubic, it is actually this vector, which joins the 0 0 

0 position to the half half 0 position. So, this is my shortest lattice translation vector, 

which I can show by this red arrow here so, this my shortest lattice translation vector and 

if I use miller indices to describe this vector, it appear half half 0 vector or the half 1 0 

vector, as it is conventionally written. 

Now, as responding out, each lattices has an identical surrounding that means, if I start 

from for instance, this point travel along the x direction half, travel the y direction half, I 

land up at a lattice point. Let me do the same exercise and let me see what happens so, I 

travel half half and land up at a lattice point. Similarly, I can locate longer and longer 

translations to locate different kind of suppose, I want to land up at this lattice point, I 

can go x half, y half, z 1, if I do the same operation again, I will land up at the lattice 

point. 

So, even though, when at the way I am representing this cube, the way this cube has been 

drawn it seems to me that, these lattice points are somehow looking different from these 

lattice point. It is not the case, every lattice point is exactly identical, I could have chosen 

the origin here and the unit cell will look like this. I could have chosen the origin at this 

half half 0 point and origin again would look exactly identical. 

(Refer Slide Time: 40:13) 

 



So, we have seen, that there are 3 distinct cubic lattices the primitive, the body centred 

and the face centred. 
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Now, let us go down to certain lattices, which slightly lower symmetry like the 

tetragonal lattice. The typical unit cell as you can see, which is used to describe these 

tetragonal lattice is a squared prism that means, there is a base which is square and it is a 

prism in the zee direction. If I want to write down the lattice parameters for such a unit 

cell, it will be a equal to b, which is not equal to c and alpha is equal to beta is equal to 

gamma is equal to 90 degrees. 

Therefore, is an orthogonal system, if you look at the lattices which are possible for the 

tetragonal system, they are the primitive lattice and the body centred tetragonal lattice, 

the face centred and the C centred lattices are not there in the listing. As before, the 

primitive lattice means there are only lattice points at the corners of the cell and I mean, I 

am talking about a body centred tetragonal lattice, there is one point at a distance half 

half half, which is the body centring position. 

As before to qualify for a lattice, every lattice point should have a identical surrounding 

which is what, is true for this kind of a body centred lattice aspect. Now, the symmetry 

of these tetragonal lattices happens to be 4 by m 2 by m 2 by m. Now, all the tetragonal 

lattices that means, both the once shown here, the primitive and the body centred 

tetragonal lattice should have the symmetry 4 by m 2 by m 2 by m symmetry. Now, you 



can clearly see that, the 3 in the second place is missing and that is important to note. 

Additionally, we saw in the case of a cubic lattice, that the 3 face, 3 orthogonal faces you 

put along the x, y, z direction, you would actually have a four fold axis like here. 
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I could draw four fold axis starting from this and going upward, the fourfold axis which 

connects the centers of these two opposite faces and one along the y direction. 
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You can clearly see, there is only one four fold axis in the case of the tetragonal lattice 

and that fourfold axes happens to be along the C direction. You can draw the four fold 



directions starting from the centre of this face to the centre of the top face. So, the 

symmetry of all these tetragonal lattices is 4 by m 2 by m 2 by m so, where are these 

mirrors, the mirrors are the ones as before, bisecting the body into two. So for instance, 

four fold would be along this direction and the mirror would be bisecting this face. 

Now, corresponding to the mirror, which is this mirror you can have a two fold axis, 

which goes in the this, what we might call the y direction, which is along the b direction. 

So, the b direction is a direction of two fold, the a direction is the direction of two fold 

and only the c direction has four fold symmetry in the case of the lattice or there are 

mirror itself, which is been shown here. 
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We can now consider even lower symmetry crystals or lattices and in this case, the third 

lower in the list is the orthorhombic lattice. The unit cell you used to describe such a 

lattice is the rectangular prism and this rectangular prism means, you got a rectangle, 

which is been allow to grow in the third dimension and therefore, grows to be a 

orthorhombic unit cell. The one typical convention used when you describe these kind of 

a unit cells is that, a is chosen to be smaller than b, which is showed in to be smaller than 

c. 

But, there are other convention which are also possible but, there is no great sanctity as 

for the symmetry or of the lattice in this choice of the order of the lattice parameters at 

lengths. But however, certain conventions obvious help in communication across 



crystallographers and medical scientists working in the area. What are the kind of lattices 

possible in the orthorhombic case, all possible lattices are there the primitive, the body 

centred, the face centred and the C centred lattices are possible. 

And as you can see from the figure, there is no relation between the A, B and the C 

lattice parameter however, all the angles have been constrained to be 90 degrees. As in 

the case of the cubic lattice, the primitive lattice has only points in the corners, the body 

centred orthorhombic lattice has one additional point in the centre, the face centred 

orthorhombic lattice has points in all the corners and additionally, at the centre of each 

face. 

As before, these lattice points make a contribution of half to the unit cell, while the ones 

in the corner make a contribution of one eighth to the unit cell. There is an additional 

lattice possible for the orthorhombic case, which is the C centred lattice and there could 

be cases where, instead of the centring b along the c direction, you can choose a centring 

along the b direction or the a direction and this additional lattice points only contribute 

half to the unit cell. 

So, this is the C centred orthorhombic lattice, which is an addition to the previous list as 

far as, the cubic and the tetragonal lattices go. In the tetragonal lattice we saw that, the 

lattice has got a four fold symmetry and therefore, we have a symmetry of 4 by m 

because, you can see clearly, this is these 4 points are related by a four fold symmetry. 

Now, these 4 points are not related by four fold symmetry and therefore, you got a 

symmetry of the orthorhombic lattices, as being 2 by m 2 by m 2 by m. That means, each 

one of these directions would be a two fold axis and the mirror is perpendicular to it. So, 

let me go down to the board and draw such a lattice just for the sake of convenience and 

see, how they can get the 2 by m symmetry. 
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So, this is my for instance, a general orthorhombic unit cell suppose, I am not 

considering the a’s and b’s as shown in the diagram but, I just considering a random 

orthorhombic lattice. So now, this is my directional the two fold for instance, which I 

show by the symbol, which connects the opposite faces. Now, the mirror plane in this 

case scales as before so, to combine symmetry of these two operators, I write as two by 

m symmetry. 

Now similarly, this direction is also a direction of two fold and there a direction also has 

two fold. Correspondingly, there are mirrors, which connect these faces as well and to 

avoid drawing too many mirrors, I just draw two of them you can see that, there are 

mirrors which are perpendicular to these 3 two fold directions. Therefore, I got two fold 

axis and the mirror perpendicular to it, this two fold axis has this mirror perpendicular to 

it, I just outline this mirror in red direction so that, I know that this is the one, which is 

perpendicular to the two fold so, I got 3 2 by m symmetry. 
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So, let me return to the slides so now, orthorhombic lattices have 2 by m 2 by m 

symmetry. And as we shall see later that, some of the crystals, which belong to the 

orthorhombic crystal class could can have a lower symmetry. 
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The next lattice we consider is the hexagonal lattice and as the name suggests, the 

hexagonal lattice has got a six fold symmetry. Now, the only kind of a hexagonal lattice 

possible is the primitive hexagonal lattice, the body centred, the face centred and the C 

centred hexagonal lattices are not possible. If you look at the unit cell of a hexagonal 



lattice, it is actually 120 degree rhombic prism, it is the prism which is drawn in the blue 

color. 

Now, often you would see representations in text books wherein, you would have 

actually see an hexagonal cell is being drawn. It is to be absolutely clear, this is actually 

a combination of 3 cells, it is a composite of 3 cells and not a single unit cell for the 

hexagonal system. Now, the reason for drawing 3 unit cells is obvious it is show that, we 

can actually visualize the hexagonal symmetry, which is present in these lattices. 

The basis vectors for such a unit cell are a, b and c, the angle between a and b is 

constrained to be 120 degrees, if it not constrained then, this lattice would not have this 

hexagonal symmetry. The angle between a and c and similarly, the angle between b and 

c is 90 degrees so, we can have that, the relationship between among the lattice 

parameters as a equal to b is not equal to c. Alpha is equal to beta is equal to 90 degrees, 

the alpha and beta are in the angles between a and c, and the b and c axis and the gamma, 

which is the angle between a and b is equal to 120 degrees. 

The hexagonal lattices have a symmetry of 6 by m 2 by m 2 by m symmetry now, what 

we shall do before we go to deep into this hexagonal lattices. We would like to actually 

see a model of this hexagonal lattice and try to understand, this lattice in a little more 

detail. And the model we have got here, is again a combination of 3 unit cells and we 

again, will deal in a single unit cell within these 3 unit cells. 

To understand the concepts we were just talking about, the existence of an hexagonal 

lattice, I have model here infront of me, which I will use to illustrate the hexagonal 

lattice and also the unit cell of the hexagonal lattice. But before that, I have a question 

from Mister Patel. 

Student: Yes, we know that, here I, F and C points are absence but, we are determined to 

know, what will be the symmetry points if we locate some points. 

Very good question so, Mister Patel has asking I know for sure, that given the fact that I 

can listed only a simple hexagonal lattice. What happens if I actually enforce by putting 

centrings for instance, I can put a C centring, I can put a centre at each one of these faces 

a lattice point and I can have an F centring or I can do a body centring to this kind of a 

lattice, what would happen. 



This is precisely the kind of questions we will ask in coming slides and we will answer 

that, how these lattices, all these other possibilities are not available. So, we will 

precisely take up this very question, we will do the hypothetical experiment, which have 

precisely suggesting in the coming slides and we will answer that such other additional 

lattices do not exists so, very good question and we will been taking it very soon. 

So, let us look at this lattice and ask before, you will have to assume that these are 

merely points and this is a lattice therefore, there is no motif to decorate this lattice. The 

typical unit cell is the one, which is shown in red color you can see here and if you look 

from the top, you can clearly see that, this unit cell has got this structure, has got 

hexagonal symmetry the six fold symmetry. 

As before, I think there is one additional red which hss been marked here but, please 

ignore this two red’s of the top and the bottom because, they are not part of the unit cell. 

The only red’s, which need to be consider are the ones, which are this rhombus shape 

and one at the bottom, which are rhombus shape. Therefore, this is a composite of 3 unit 

cells and this unit cell cannot be taken to this unit cell, which would be another rhombus 

by merely a translation. 

And therefore, I would reduce our composite and not a alternate unit cell or a parallel 

unit cell so, if I use this unit cell to describe this lattice then, I cannot use this unit cell or 

this unit cell to describe this lattice. However, this unit cell is related to this unit cell by a 

rotational symmetry of the hexagonal lattice. Now, let me take up this model in my hand 

and try to understand it from various perspectives. 

So, we saw that, this is got the six fold symmetry, which is obvious along the c direction 

now, it is also got a mirror perpendicular to the c direction, which is the mirror which 

passes through the centre of this body along the c direction. So, I can put a plane, which 

is a mirror which is going exactly between the top and the bottom planes. Now, in some 

terminology, this is sometime called the basal plane, these planes are called the basal 

planes and these are called the prism planes and some inclined planes are called the 

pyramidal planes. 

Now, the other symmetry, which is worthwhile to note is the two fold symmetry and you 

can notice, that this structure between it is opposite edges has got a two fold symmetry 

and therefore, if I rotated it by 180 degrees, you have a two fold rotation axis. And 



additionally, I can pass the mirror, which is perpendicular to this two fold and the mirror 

would pass, as you can see from this side, would pass like this. So, if I have a sheet of 

paper then, I can show you and Mister Ravi will help me with a sheet of paper, will show 

you where is that plane. 

So, took a sheet of paper here then, you can see that the plane, which passing through 

this central plane is actually the mirror plane. And this sheet shows you, that this mirror 

plane is perpendicular to this two fold axis therefore, this structure has quarter 6 by m 2 

by m 2 by m symmetry. One question we can ask is that, how was this hexagonal 

structure related to some common crystal, which we come across the hexagonal close 

packed crystal and this we shall answer in due course of time. 

So, again to repeat, the important salient feature regarding the hexagonal lattice, this 

whole hexagonal structure is not the unit cell, though it could still classify as a cell for a 

structure. The conventional cell is this one marked in this red which is nothing but, a 

rhombic prism.  


