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Let us construct a 2D crystal by showing this video example. So, here we have a 2D 

crystal which is infinite along the two directions, which has been generated by two basis 

vectors a and b. 

And the motive is a two circle motive, so let us see how this crystal is constructed, so 

first we impose the lattice translation vector along the x direction this is done infinitely 

along the x direction. Then we impose the lattice translation vector along this row of 

these two spheres along the y direction, it is to be noted that the position of the motive 

relative to the lattice point is exactly identical as we go from one lattice point to the 

other. 

(Refer Slide Time: 01:29) 

 

Let us revise somehow of the aspects we have considered, so far especially with regards 

to crystals. We have seen solids based on atomic structure can be amorphous, quasi 

crystalline or crystalline, and in this current topic we will extensively deal with 

crystalline structures. 



(Refer Slide Time: 01:45) 

 

We are considered the motivation for studying crystalline structures, as we see that many 

of the important engineering materials, like metals, semiconductors and ceramics are 

crystalline in nature in their usual form. We had also seen that some of these can also be 

obtained in non crystalline forms, we are also talked about the language of the 

crystallography, language which is used to describe crystalline structures. 

 (Refer Slide Time: 02:32) 

 

And we had seen that it is a language of succinctness, it is a language of terseness, where 

in we try to represent an infinite crystal in a very finite form in as little as information as 



possible. So, let us try to track the key words which we dealt with, and the first definition 

we had given the important definition was that a crystal is a lattice plus a motif. So, there 

are two key words here, and let me write them down on the board for a continuous 

reference. ((Refer Time: 02:40)) We had mentioned that this is synonym for a motif 

which is called a basis, and we had further mentioned that we will try to avoid this 

terminology, but as it can lead to a confusion with the term basis vectors. 

And, so we will use the terminology motif whenever we are trying to represent 

something, which is going on to decorate a lattice which will finally, give as a crystal. 

The second definition which we are briefly mentioned and perhaps we will not go in to 

lot of detail in this course is the definition of the crystal, where in invoke the concept of a 

space group and a symmetric unit. 

So, the crystal according to the second definition is a space group plus an asymmetric 

unit. The second definition which is based on symmetry becomes important especially 

when we are trying to classify crystals, and one of these classifications we will 

considered that there will be seven types of a crystal systems. And once we define a 

crystal in a regress form the way we had said here, we should typically avoid, glues and 

improper definitions of a crystal as this can lead to lot of confusion. 

And important point we have said was that initially we would start with dealing with 

ideal mathematical crystals. And later on in various ways we will relax a conditions 

which are imposed by this ideal mathematical crystal, and try to develop what we may 

call real or a practical crystals. It is very clear that any crystal found in nature is; 

obviously, not a mathematical crystal, a mathematical crystal is a construct of our mind 

and as we see, one of the conditions in straighter way which cannot be met when we are 

talking about a crystal is the infiniteness, no crystals can be infinite. 

But, we see there are other conditions we will relax as well, and go from a ideal 

mathematical crystal which we are going to learn first. And then we will construct the 

more practical crystals, and that will be our goal in future lectures. 
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So, let us look the definition of a crystal lattice plus motif that is what we have done, we 

have said that lattice tells us how to repeat and the motif tells us what to repeat, this what 

get considered. And we had gone in to considerable depth to understanding what kind of 

motif’s are possible, which can go and decorate a lattice. We had made a additional point 

that the motif is nearly associated with a crystal a lattice point, and not actually need not 

actually position on the lattice point. So, this is a settle point, but never the less important 

in understanding the crystals. 

(Refer Slide Time: 05:42) 

 



So, among the two keyword we have listed on the board the lattice and motif, so we need 

to understand the word lattice first. Typically lattice is also called a space lattices, and an 

array of points and space such that every point has a identical surrounding we define as a 

lattice. And we also said that in Euclidean space that is flat space, and such an array 

would be infinite, often we may also see a definition of a lattice as a translation ally 

periodic arrangements of points and space which we call a lattice. 

(Refer Slide Time: 06:21) 

 

We had also constructed a 1D lattice, which is perhaps a simplest lattice and we saw that 

it is infinite in one dimensions. We have seen that how actually we can construct a 1D 

lattice starting with two points, where in we impose the condition that every point has to 

have identical surroundings. So, the criteria that every point has to have identical 

surroundings, automatically lives us to an infinite lattice in one dimension. 
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And we also saw that such a lattice a one dimensional lattice is described by a single 

lattice parameter, a single lattice translation vector which can be a the vector or if you are 

taking about the lattice parameter, the modulus of a which is the a without the vector 

sign. So, a lattice in one dimension needs just one parameter to describe it completely. 

(Refer Slide Time: 07:15) 

 

Then the second key word in the definition of a crystal is the motif and we wanted to 

understand what can constitute a motif. So, an important point we had made, though we 

did not take up in detailed consideration, so for was that any entity associated with the 



lattice point is called a motif. Such a entity could be a geometrical object, and we 

consider some examples as we see in the next slide or as a physical property or it could 

be a combination of geometrical object and a physical property. 

The geometrical objects we could be a pentagon or any irregular object as well, but we 

also made a point. The typically atomic crystals which is as we see in future lectures is of 

considerably importance to this course could be an atom it could be a group of atoms, it 

could be ions, it could be a molecules, these molecules could be small molecules or 

could be a large molecules or in some cases we may consider some examples, it could be 

an entire virus which is could be an living organism. 

So, a living organism like a virus could be crystalline and therefore, it could be as an 

large object as a virus. An important point about this positioning of the motif with 

respective to the lattice points, we considered was that it has to be positioned identically 

with respective to each lattice point. We are not allowed to rotate distort or any way 

tamper with the motif placing at each lattice point of course, if the object has a kind of 

symmetry those symmetrical rotations would be irrelevant. 

(Refer Slide Time: 09:02) 

 

So, to summaries the importance point of the motif it could be a geometrical entity or a 

physical property. And a typical physical property could be magnetization vector, and 

you could have a cases where in motif is actually a combination of the geometrical entity 

and a physical property. 



(Refer Slide Time: 09:20) 

 

So, some of the examples of motif’s we considered where, on the left hand side are some 

geometrical motif’s and we saw only possibility in one dimension was a lance segment. 

In two dimensions you could have various shapes, regular or irregular some examples of 

regular shapes could be a pentagon, a square, a hexagon, a heptagon, in three dimensions 

you could have various shapes and this could be a cube or a cylinder or a sphere or any 

one of these. 

It is also important for us to consider atomic motif’s as listed on the right hand side, and 

we saw that they could be a single atom, like an organ atom, there could be an single ion, 

they could be a group of ions or a group of an atoms. And their goo group of ions an 

example which of course, we will consider in detail later is example of a sodium and a 

chorine ion, sodium atom ion being positively be charged and chlorine atom is 

negatively charged. 

So, we see that there is a considerable variety when it comes to the various kind of 

motif’s which are possible we also constructed someone dimensional crystals. 



(Refer Slide Time: 10:26) 

 

And an example shown here, where in we start with the line segment which we used to 

decorate a one dimensional lattice. And a crystal obtained is a one dimensional crystal, 

so the only variation we have in terms of the motif here is the length of the motif here 

which is one dimensional. And the only variation which is possible in terms of the lattice 

is the lattice parameter, so these two possibilities with regard to the lattice and motif can 

give you a variety of crystals all in one dimension. 

(Refer Slide Time: 11:07) 

 



We emphasize the fact that a motif actually need not to be physically positioned on the 

lattice, we considered the fact that we could actually move the motif with respective to 

the lattice by a certain shape, which is seen here and position it with respect the lattice. 

The crystal in any sense not changed from the previous crystal it is description would be 

exactly identical as the precious crystal, they the only difference is that the way we have 

put the motif relative to the lattice point. 

And this is a just a convenience we may use it for certain reasons, but never the less the 

crystal we have obtain is a exactly identical to the crystal we had previously obtained 

where in we had placed the motif directly on top of the lattice point. 

(Refer Slide Time: 11:44) 

 

We said that we could actually relax the condition of the strict one dimensional motif 

that means we could have two dimensional motif and three dimensional motifs which we 

can use to decorate a one dimensional lattice and we are doing, so to have a better 

understanding of a crystals here at this point of time. And an example here was a circle 

which we reduce which could be a two dimensional motif or it could be a sphere, which 

is a three dimensional motif which could go on and decorate to our lattice with lattice 

parameter a. 

So, the crystal of obtain is shown in the bottom and truly speaking it is a two 

dimensional or a three dimensional crystal, as the motif’s of a higher dimension then the 



one dimensional lattice we started off with then we went on to understand a slightly more 

complicated motif. 
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And we will consider this motif again and again in various context to understand various 

kinds of important concepts, which comes in to crystallography. And this was the 

example where in we had a up arrow and a down arrow decorating a lattice with a lattice 

parameter a. We had said that the motif in this case is an up arrow and down arrow with 

a spacing between their components of the motif being a by 2. An important point which 

came here was the point we had mentioned slightly before that some parts of the motifs 

or the entire motif actually need not set on the lattice point. 

In this case the down arrow do not sit on the lattice point, it is only the up arrows visit sit 

on the lattice point, which brings us to the important consideration that not all centers of 

these entities are lattice points. Only the up arrows centers are lattice point of course, we 

could also do an alternative, then we could choose the centers of the down arrow lattice 

points, but having chosen either the up arrow center or the down arrow center, we can 

use only one of the two as the point for the lattice of course, we can choose the lattice 

point somewhere in between the two also. 

But, for simplicity we will assume that here that the center of the up arrow is lattice 

point, which automatically implies center of the down arrow is not a lattice point. So, we 

shall revisit this kind of a crystal to understand more concepts later. 
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So, we had also gone head and sort of cleared our fundamentals on this very problem of 

an up arrow and a down arrow by stating that not all points which were originally 

suppose if we had started with an array of points just a by 2. Then after the crystal has 

been constructed then not all centers are lattice point, and that is what we had simplified 

using the figure at the bottom. Then we went on to create 2D crystals and we had done, 

so to understand more concepts which could not be clarified in the case of an 1D crystal. 

(Refer Slide Time: 14:48) 

 



So, we said one set 2D crystal would be a combination of a 2D lattice and a 2D motif of 

course, like as we have done for the 1D crystal we can relax the conditions, and try to put 

three dimensional motif’s on a two dimensional lattice to create a crystal. 

(Refer Slide Time: 15:05) 

 

So, the first example we consider of a two dimensional lattice is as shown in the left, we 

had seen that there are two vectors we need which are not collinear to generate the 

lattice. These vectors are a and b, the a vector along the x direction and the b vector 

along the y direction, and this lattice though it has not been shown here, it is infinite in 

two dimensions and only a part of the lattice is shown here or as because, we cannot put 

doggy entire lattice on a screen. 

So, there are two basis vectors and in the current example the angle between the two 

basis vectors is 90 degrees. But, as we shall see soon this angle can be any arbitrary 

angle for a general lattice, the motif we had considered was a two dimensional motif 

which is the shape of the green pentagon. As we have seen any other two dimensional 

shape regular or irregular ((Refer Time: 16:03)) in understanding or in the process of 

making a two dimensional crystal. 

So, starting with the two dimensional lattice which has been generated with two bases 

vector which are not collinear, and motif is in the shape of a pentagon we went ahead 

and created a two dimensional crystal. 
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And like in the case of the one dimensional lattice and the one dimensional motif there 

are many ways of associating this motif or over laying this motif on the lattice point, and 

one of them has been chosen here where in the tip of a pentagon is a point, which is co 

insides with the lattice point. One point which is very, very clear while we did this just to 

reiterate that we are not allow to rotate or distort the pentagon, as we go from one lattice 

point to the other. 

And once the crystal has been created as the lattice is finite in two dimensions, the 

crystal is also automatically infinite in two dimensions. Now, important point which 

comes out when we look at this crystal is that it has got two kind importance order, one 

is that it has got positional order which is clear from the fact that each of the motif is 

sitting identically on the lattice point. And it has additionally got a orientational order. 

The reason for us to consider this positional order and a orientational order is that, when 

we goes from these mathematical crystals to real crystals we may call something a 

crystal. Even when some of these criteria relaxed that is we want to go from ideal 

mathematical crystals to real crystals, then some of this criteria would be relaxed. That 

means we would may consider either one of the two, we may only consider a 

orientational order or we may only consider the positional order in the definition of a 

crystal. 



So, the important property here was orientational order the positional order of the crystal, 

we had seen that these crystals are infinites. Therefore, we need a method to succinctly 

represent the crystal and the method we had suggested was to choose a unit cell. 

(Refer Slide Time: 18:06) 

 

We have an unit cell and we have a basis vectors, so unit cell is nothing, but a part of the 

infinite lattice or part of the finite crystal. So, unit cells in represent a lattice or they can 

represent a crystal, and when had a super imposed on them the repeated translation 

vectors, one in one dimensions two in two dimensions we would get a crystal or a lattice 

depending on the unit cell you start off with. We had said that the word unit should never 

be confused with the fact that there is one lattice per cell per one motif per cell the 

whenever you have one lattice per cell such a unit cell is called a primitive unit cell. 

And the word unit nearly represents a fact that it is an unit of the entity structure, so it is 

like a building a brick of the wall, starting with the brick you can construct a wall. 

Similarly, starting with the unit cell you can construct the entire lattice or the entire 

crystal and therefore, it is called a unit cell and not because, it has only one lattice point 

per cell. Another important point which we consider was that, in a typical unit cell we 

may have the entities broken into pieces, and we will see that in the examples or we had 

seen that examples which we had considered before. 
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Some of the points we had considered when considering unit cells is a fact that, that in a 

typical unit cell you have only lattice points at the corners, if you have one dimensional 

cell at the end of the unit cell segments you would have lattice points. And this is a 

convention and later we had also considered some examples of unit cells, where in their 

lattice point do not sit at the vertices. If the lattice point only at the corners of the unit 

cell, we call it a primitive unit cell. 

And other wise if there are more than one lattice point per cell we called it a non 

primitive unit cell. We also pointed out there other kind of unit cells or cells which we 

people consider which have moraines cells and ((Refer Time: 20:05)) cells and we will 

not typically deal with this in this elementary course. 
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So, we con further went on to take up the example of a one dimensional lattice, and we 

tried to understand primitive unit cell, the doubly non primitive cells, and the triply non 

primitive unit cell. As you can see in the primitive unit cell we pointed out that the lattice 

point per cell is one, half coming from the left hand lattice point half coming from the 

right hand lattice point totaling up to one lattice point per cell. 

 (Refer Slide Time: 21:01) 

 

In the double primitive non primitive unit cell, the entire contribution of the central 

lattice point to the cell exists one on the left and one the right contribute half each 



contributing a total of two to the unit cell. A triply non primitive unit cell similarly would 

have a contribution of three lattice points per cell. 

We had also said since there are only kind of motif possible in 1D line segment if real 

crystals are made even on one dimensions, they would actually be having a three 

dimension motif typically on the one dimension lattice. So, let us consider at this point of 

force it might be worthwhile just as I to mention then it has prove that one dimensional 

crystals are not theoretically possible. 

So, let us consider the example of one dimensional crystal as shown here, and we wanted 

to see the actually in the unit cell we have only half the circle or the sphere coming 

inside the blue line, which is the unit cell. And the right hand side again it was half put to 

gather to these half’s, you have one circle per unit cell and also correspondingly one 

lattice per unit cell. 

A point again at this stage is that typically sometimes we draw unit cells the way it has 

been shown here, where in you draw the complete circles keep of course, understanding 

at the back of our mind is that, that is just a simplified representation and the real unit 

cell should be look like the one shown here. 

(Refer Slide Time: 22:12) 

 

We also considered to their two dimensional unit cells, and we said we require three 

lattice parameter to describe a two dimensional unit cell, the two lens case a and b and an 



include an angle between them alpha. We also said that there are typical cases or special 

cases where in you have special constraints on the distance lattice parameter or a special 

constraints on the angles. The special constraints on the angles could be 90 degrees or 

120 degrees, while in special cases a could be equal to b. 

There are four types of unit cell which are observed in two dimensions, these are the 

square, the rectangle the 120 degree rhombus and the parallogram. In the square unit cell 

a equal to b and alpha a equal to 90 degrees, in the rectangle unit cell a and b are 

arbitrary numbers which are not equal to each other, and alpha still equal to 90 degrees. 

In the 120 degree rhombus a is equal to b, but the alpha as a special constraint on it that it 

should be equal to 120 degrees. 

The parallelogram unit cell is the most general unit cell possible, where in a b and alpha 

are three parameters which have no constraints placed on them. So, as we have listing 

key words on the board, let us go down the board and right down special key word, the 

word unit cell. ((Refer Time: 23:38)) Let us consider a two dimensional lattice as printed 

on this sheet of a paper, we will try to generate a two dimensional crystal as we have 

done on the computer before, for this sake I have got a pile of three disks. 

And for now you should assume that these three disks are of the same color therefore, we 

will assume that there is no difference in color. And therefore they can constitute an ideal 

motif which is something like a two dimensional motif, and I decorate this two 

dimensional motif on this lattice, as you can see to generate a two dimensional crystal. 

As this motif is got circular symmetry it is not matter if I rotate to the motif with respect 

to the one motif with respect another motif. 

But, suppose this fare of a different shape like the shape shown here, then I am not allow 

to rotate this motif from one lattice point to other, in that case I will have to identically 

place the motif and I cannot rotate the motif as I go from one lattice point to an other. 

But, for now I would continue making this crystal with these set of disks, which I have 

got with me here, so as we had seen the problem before that such a crystal would be 

infinite, and all I can do best here is to only take a finite representation of this crystal to 

generate this two dimensional crystal. 

As you can already see the generating an ideal mathematical crystal on a sheet of a paper 

can be tricky, and there could be impractical certain distortions, which would allow the 



practical crystal to be slightly different then the ideal mathematical crystal, which we 

have describing on a computer. As we are running out of disk I will stop here, and not try 

to fill the hole of this two dimension sheet of paper it is clear that the unit cell for such a 

two dimensional lattice would be this one square, which is here is this square which I 

tried to shade here. 

After considering this two dimension crystal, let me try to focus little bit of attention on 

the unit cell which we have chosen for the two dimensional lattices, and the two 

dimensional crystals. So, I got some models here with me this model as you can see 

consists of balls, and magnets, and this clearly is an example of a square unit cell or a 

unit cell of a square lattice. So, in such a unit cell is repeated you would actually get a 

two dimensional crystal. 

If you want to go from a square unit cell and actually consider a rectangle unit cell, this 

is exemplified by the rectangle shown here of course, this is a very special rectangle 

where in length is a certain faction of the, but in general a rectangle unit cell could be of 

any arbiter shape, the only constraint being is that a should not be equal to b. In both 

cases you can clearly see, the included angle between a and b is 90 degrees I can further 

perform a simple experiment of trying distort this unit cell. 

So, once distort this unit cell clearly now this unit cell as transform into a parallogram 

unit cell. This included angle can any angle depending on the kind of distortion imposing 

on this, and even after the distortion you can clearly see that the two opposite sides are 

parallel. And therefore, this is a parallogram unit cell of the most general type, where in 

there is no constraints either a or b or on the included angle. 

Now, suppose I take this square unit cell, but now perform a very special kind of a 

distortion, where in I will try to match in distortion and try to create a rhombus out of 

that square, when I try to create rhombus; obviously, since the distortion is not going to 

change the length of the four sides it will remain as such. But, the distortion I will carry 

forward, till the included angle between the two sides become 120 degrees and that is 

what I have done here on the right hand side. 

Clearly see, this is a unit cell of an 120 degree rhombus, and after making the distortion I 

have put in the plastic which is shown here. To actually show that the constraint 120 

degree and therefore, you have a 120 degree rhombus unit cell starting with square unit 



cell nearly by a distortion of it such the included angle becomes 120 degree after 

considering some simple practical models, we will return to our discursion of 2Dunit 

cells. 

(Refer Slide Time: 29:06) 

 

We are seen that there are primitive unit cells, doubly primitive cells and higher order 

primitive unit cells, when we talk about lattices. In the case shown in the figure we have 

a two dimensional rectangular lattice, where in the blue unit cells are primitive unit cells 

and the brown shaded once are doubly non primitive and the orange shaded one are triply 

non primitive unit cells. An important point which we make here, and perhaps we return 

to it again and again was a fact that our choice of the unit cell, either for a lattice or for a 

crystal is not going to alter anything about the structure we are considering. 

Just because, I use a unit cell on the blue color shown in the right hand side, which is of 

the shape of parallogram our unit cell or our structure is not going to change in any way. 

And it would be equally well to represent ate in any other of the unit cell, irrespective of 

its primitive or non primitive, so all possible shapes of unit cells are possible, but there 

are other kind unit cell which are we call preferred unit cell, which will we will use of 

am. 
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So, let emphasize perhaps obvious, but important point symmetry of the or a kind of a 

lattice or the crystal is not altered by our choice of the unit cell, so this is simple, but very 

important point. 

(Refer Slide Time: 30:28) 

 

Now, how do we go about choosing the unit cells or as we pointed out there are infinite 

ways of choosing unit cell even for a very simple structure like a two dimensional lattice. 

But, there are certain guidelines which helps us in choosing a unit cells, so that what we 

may call a convention, so that when we communicate with each other we have a standard 



unit cell which we can refer to. So, the first criteria which typically is use is the criteria 

of symmetry, we try to choose a unit cell which has a maximum symmetry. 

And typically the symmetry of the unit cell would be same as symmetry of the lattice or 

the crystal we are considering. The second criteria we impose is the size of the unit cell, 

we will try to keep it a minimum, and if both of this criteria fail then we try to settle 

down on convention where in we resolve the issue by choosing unit cell which we call 

the standard unit cell for a particular kind of a structure. 

(Refer Slide Time: 31:32) 

 

So, the three factors are symmetry size and convention, so suppose have a lattice here as 

shown here. We have something which looks like a centered square lattice, we can 

choose a doubly non primitive unit cell or the blue unit cell which is the primitive unit 

cell. In this case the symmetry of both the unit cell is exactly identical, as we can see 

both of them got a fourfold access in the center, the mirror planes and other symmetries 

are also identical for the two unit cells. 

And now when we are talking about symmetry of the unit cell, it should not be confused 

with the symmetry of the lattice or the symmetry of the crystal, we are describing the 

lattice it is merely the symmetry of the unit cell we are talking here. Since, the symmetry 

of these two cells are identical we would go ahead and choose the one, which is one the 

right hand side, which is the blue unit cell which is the smaller unit cell, yes you would 



have notices all we have done in this case actually draw a square lattice at an angle of 45 

degrees, which makes it look like a centered square lattice. 

(Refer Slide Time: 32:37) 

 

In the same case of the square lattice we could have chosen certain other kind of non 

primitive unit cell as shown in the figure below in this case this is a parallogram unit cell. 

Clearly this is not a preferred choice, as this parallogram unit cell only have a tow fold 

accessory center, while the other two unit cells have four fold access at center. Therefore, 

we would definitely not go ahead and make a choice of the wrong the parallogram unit 

cell, even though it has a size which is identical size in this case implying area, which is 

identical to the primitive unit cell. 

For the sake of understanding I have also drown some of the four fold access of the 

lattice on the same figure. 



(Refer Slide Time: 33:21) 

 

Now, suppose I have a centered rectangular lattice which generated by a two basis 

vectors a and b. Therefore, this lattice is only two fold access, and there are no fourfold 

access in this, and the lattice parameter are a and b which are not equal, and the included 

angle is 90 degrees. The unit cell which we choose for this case is a centered rectangular 

unit cell and even though we have a smaller unit cell ((Refer Time: 33:46)) which is the 

primitive unit cell which is of the shape rhombus. 

We typically choose the rectangular unit cell, we will have a little more to say about this 

later. Because, in this case as it happens both the unit cell have the same symmetry, the 

primitive rhombus unit cell and the rectangular unit cell, but we do not go for a smaller 

unit cell we actually use the convention that we will actually use the bigger unit cell 

which has a shape of a rectangle. So, in this case actually convention which comes to the 

fore because, the rhombus shape unit cell and the rectangle shape unit cell both have a 

twofold symmetry for instance at the center of the unit cell. 
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Now, let us consider how to choose unit cell for a crystal, so we have a simple 

rectangular lattice as shown in the figure on the left. And we want to generate a crystal 

by putting a motif which consists of a green circle and a brown circle, so by putting this 

we are now obtained a infinite two dimensional crystal. The unit cell can be chosen in 

many ways as before, but one choice is clearly not true which is one which is shown in 

the right hand side here. 

You cannot chose the unit cell as the corners of this rhombus are not lattice point, if we 

choose the center of the green circle of the lattice point, than the center of the brown 

circle cannot be a lattice point. And therefore, we had stated that in conventional typical 

unit cell, all the vertices has to a lattice points, this cannot be a unit cell, this unit cell is 

not a centered unit cell. But, a primitive unit cell again because, a center point is not a 

lattice point, and this such a unit cell has only one lattice point for this blue cell. 

And we had also noticed that in this unit cell you can define the shortest translation 

vector as the one, which is shown here by the brown line. We will return to the concept 

of a shortest lattice translation vector, when we deal with this locations especially, we 

have shown in this example that the b vector is actually longer in length as compared to 

the a vector. 

And this is the way we typically show this unit cell, and we are clearly mentioned that 

the preferred or the more correct way to show this unit cell would be a the way that is 



shown in the bottom down diagram, where in the circles have been cut in to four parts 

and placed at the four corners of the unit cell. The contribution of the green and brown 

circles to the unit cell has not changed, all merely changed is the representation. So, this 

is also tells us an important example that the unit cell may have it is the entity is going on 

to decorate the lattice in parts. 

And therefore, we should be little care full in understanding the unit cell if it is drown in 

the way it is shown here. It does not mean that the atom has actually if suppose to 

decorating entity was an atom, it does not mean that their cutting of an atom and placing 

in four parts it is merely a representation of the unit cell. 

(Refer Slide Time: 37:00) 

 

We had asked another question in the previous lecture that should a unit cell have a 

lattice point only at the corners. We said that in a typical conventional case we only keep 

lattice points at the corners, but for special reasons we may want to choose unit cells 

where in lattice point are not just present at the corners. 
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But, there alternatives possible as shown here, so there are three alternatives which are 

shown here, one is the yellow colored unit cell, one is the blue colored unit cell, one one 

is the green colored unit cell, all three are possible space filling geometrical entities in 

this case there are two dimensional entities. And the only requirement that the cell can 

perform the role of unit cell is that it has to be space fully; that means, the structure after 

putting this unit cell with along x and y direction lattice point translation vector, we 

should not be left with any gaps in the structure. 

So, we can clearly see for instance in the example shown that the green unit cell is a 

space filling unit cell. But, it is also clear that the four corners of the unit cell do not 

contain lattice points, nice way of understanding this is that the one nice thing that comes 

out in understanding unit cells like this, it is clear from this that these unit cells are 

primitive. 

Because, clearly there is one included lattice point inside the unit cell there is one 

included lattice point inside the yellow unit cell, there is one included lattice point inside 

the green unit cell. In the case of blue unit cell there are two half’s contributing to the 

one lattice point per cell. 
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And we had said that suppose you are not interested in cutting of the entities in 

representation of the unit cell. Then such a choice of a unit cell one on the left hand side 

as shown entities in cut from the one on the right hand side shows that the unit cell has 

one green circle, and one brown circle which is what we understand from the fact that it 

is the primitive unit cell. Let us now consider a space lattices in little more detail before 

we actually go down and start understanding the three dimensional structures, which are 

the typical crystal structures which are of importance to us. 
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This definition of a space lattice we have already considered and I will merely re state 

that a space lattice and a array of point such that every point has a identical surrounding 

it also consider some one dimensional lattices as shown in the figure. 
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And we are stated that the unit cell has a lattice parameter just given by a, we had also 

considered some two dimensional lattices. 
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And we had said that there are five distinct two dimensional lattices, so this is the new 

point we are considering here, that the two dimensional lattices which can be constructed 



two basis vectors. And which are infinite in two dimensions, there are five different two 

dimensional lattices which are distinct from one another, these five two dimensional 

lattices are the square lattice, the rectangle lattice, the centered rectangle lattice, the 120 

degree rhombus lattice, and the general parallelogram lattice. 

And important point which is to noted here is that, we are previously used some of these 

terms like the square or the rectangle in the context of the unit cells. At no point of time 

there should be any confusion between the shape of a unit cell and the kind of a lattice 

we are considering, often there this is being the course the reason that some the 

important understanding is the secured by the use of the same term for two different kind 

of a object, one in this case being a unit cell whose shape is being described, the other 

being a lattice. 

And we had clearly stated that the lattice will remain un effected by our mere choice of 

unit cell of one type or the other. So, to reiterate there are five types of lattices in two 

dimensions, these are the square the rectangle the centered rectangle, the 120 degree 

rhombus and the general parallogram lattice. In the some of these slides we will see that 

we will not consider all the symmetries over laid on the lattice, but typically for instance 

we will omit glide reflection, and other kind of complicated operators which involves for 

translation. 

But, typically we will only super impose, mirrors and rotational symmetries which will 

be sufficed for us to clarify the point we need to make. So, before I leave this slide let me 

reiterate this point again that this common terminology between lattices, and the shapes 

of a unit cell can be cost for a considerably confusion and it is that every point of time 

clear that even though this word use square is also used for an unit cell, there should be 

no confusion that square lattice is a different kind of entity as compared to a square unit 

cell. 
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So, we had already said that two dimension lattice generated by two bases vector with an 

included angle, and in the example shown in the slide this include angle alpha happens to 

be 90 degrees. 

(Refer Slide Time: 42:14) 

 

We had also seen that four unit cell shapes are typically used to describe these two 

dimensional lattices. We will have a few more thing to say now before we go ahead and 

actually take up the five different two dimensional lattices in detail, that we have this 

five two dimensional unit cells it is clear that some of them we have expenditure of more 



lattice point parameters as compared to some of the others, and some of them have a 

certain constraints on the angle. 

So, we want to put some of these unit cells in certain order, and the parameter we choose 

to defining this order is a parameter we called courteousness. So, that we can order this 

unit cells and clearly this order where help us understand that some of them are somehow 

more symmetric, then the others or some of them are have a lesser expenditure or 

parameters. 
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So, we will define some parameters to understand the terseness, we will define 

something known as p prime which tells you the number of independent parameters 

required. Which is nothing, but the number of parameter, but n number of equations 

which connects some of these parameters, in other words if there are equal to signs 

anywhere in the parameter, then that will go into the contribution of e, c will be the 

number of constraints. 

And if there is a some positive constraints, then we will the numbers will increase, we 

will define terseness as the difference between p and c which is the number of 

parameters minus the number of constraints. So, terseness tells us that what is the 

measure of the expenditure on the parameters, more the expenditure on the parameters 

then lower will be it is place in terms of the lattice parameter tree. 



So, let us concentrate the square lattice where in the number of in all of these cases, the 

number of independent parameters 3, which is just a b and alpha. And we have one two 

equations which connect them, as you can see, so the number of constraints is 2, so 3 

minus 2 is 1 which is the terseness value for the square lattice. If you consider the 

rhombus lattice, the number of variables is 3, the number of constraints one of them 

being a equal to b the other constraint being on the angle, which is 120 degrees. 

Therefore, the distance between 3 minus 2 is 1 and therefore, the terseness value for the 

rhombus lattice is also 1, which is why the square lattice and the rhombus lattice have 

been placed on the same level. Now, if you look at the rectangle lattice there are three 

variables, and the number of constraints post in these variables is that a is not equal to b 

that means, it will remain general while the alpha angle has been constrained to be 90 

degrees. 

Therefore 3 minus 1 is 2 the terseness value is 2; that means, we are having more 

expenditure in this case of a rectangle as compared to the square on the parameters and 

therefore it comes down as compared to the square or a rhombus in terms of the lattice 

parameter expenditure. If you look at the parallogram lattice the a b and alpha are all 

general; that means, number of constraints is 0 therefore 3 minus 0 is equal to 2, the 

terseness value is 3. And therefore the parallogram lattice falls at the lower level as for of 

the expenditure on the lattice parameter goes. 

So, this slide basically tries to tell you that we have a certain expenditure on the lattice 

parameters. And therefore, more the expenditure lower will that unit cell be in the tree, 

and based on the expenditure the square and the rhombus are at the top of this tree. 
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So, let us now consider the 5 two dimensional lattices one by one, so shown in this 

example is a square lattice. In the case of the square lattice there are two vector which go 

on to generate a lattice, but the important thing is that, the modules of a vector is the 

same as the modulus of b vector. In other words a is equal to b the included angle alpha 

is 90 degrees, and this is the characteristic of the two dimensional square lattice, if you 

look at the square of the unit lattice as shown in the blue color here, we can over lay on 

symmetry operators. 

And what we have done is that we have not over laid all the possible symmetry operators 

on the square lattice this is, so that there is some clarity in thought. But, given the fact 

that if there is a symmetry operators sitting here, and there is a lattice transition vector a; 

that means, there has to be another equal ant symmetry operator which is a 4 fold which 

has to sit here. 

Similarly, if you have a green colored 2 fold access sitting here, and if you have the a 

lattice translation vector in this case I would consider a minus a then automatically there 

has to be a green two fold access which has to sit here and correspondingly here, 

correspondingly here correspondingly here. In other word if I can locate one symmetry 

operator anywhere in the lattice, then this symmetry operator would also go ahead and 

completely fill up these two dimensional lattice or a space, given these two lattice 

translation vectors. 



So, there will be 4 fold here there would be another 4 fold here, there will be another 4 

fold here and, so forth. This 4 fold is not actually sitting on a lattice point, but is the 

center of the unit cell, so if I now impose the a translation vector, the minus a in this case 

I will have one more 4 folded this position. And if I translate it by b I have one more 

here, this is nothing, but stating the fact that whatever is contained within a unit cell has 

to be repeated. 

In the previous cases what we considered was motif which was contained in the unit cell, 

and which was repeated by the lattice translation vectors. In this case it is not the motif, 

but the symmetry operators of the lattice clearly again to re emphasis, we are now 

considering the symmetry operators of the lattice and not the symmetry operators of the 

unit cell or other unit of the symmetry of the unit cell. And therefore, the unit cell will 

just repeat all the symmetry operators which are contained within it or across the entire 

two dimensional lattice. 

For sake of clarity I have shown here, the two dimensional unit cell here, along with the 

over laid symmetry operators with rotational symmetry operators. So, you can seen that 

all 4 corners at and the center contain 4 fold rotational access, the center or the edges 

contain a 2 fold rotation access. Further if I want to over lay the mirror planes on top of 

this unit cell, then we can consider unit cell which is been shown below, as before 4 fold 

access continue to be at their original positions or the 2 fold axis which continued to be 

originally positions as in the unit cell before. 

But, additionally we got these mirror planes which are shown by this red lines, so the 

edges of the cell are also a mirror planes, apart from the ones which are shown by these 

red lines which goes pass the center of the unit cell. There are two distinct mirror planes, 

the one which is vertical and the one which is inclined at an angle of 45 degrees, we do 

not have to consider the horizontal or the other diagonal. 

Because, if I consider the vertical mirror plane, then the 4 fold access will take the 

vertical mirror plane to the horizontal mirror plane. Similarly, the one diagonal mirror 

plane will be taken by the 4 fold to the other diagonal mirror plane, the short hand 

notation of describing this kind of a symmetry combination is shown in the blue 

rectangle, which is nothing, but 4 m m, the 4 standing for the 4 fold access 2 m m 

standing for the m 1 which is a vertical mirror and the m 2 which is a diagonal mirror. 



A question which; obviously, comes to mind is that, why do we put rotational symmetry 

elements on to a lattice or n lattice suppose to be constructed only of translational 

elements. This is an important question, it is true with that lattices are built out of 

translations, as in this case it is a and b lattice translation vector, but once a lattice has 

been generated we will notice that the lattice will have certain symmetries, and this is 

very, very important for us to observe these symmetries. 

And note them because, our classification of crystals is typically based on these 

symmetry operators. So, to re emphasize the point I will ask mu self this question again, 

why do we put in rotational symmetry elements on to a lattice, and in addition of force I 

could put mirror and other symmetry operators on lattice. The question we are asking is 

that why do we put these kind of symmetry operators on to a lattice, while the only kind 

of a symmetry which was required to generate the lattice was the translation. 

The answer of this question is that, it is very important that we actually over lay these 

symmetry operators on the lattice. Because, when we try to classify these the crystals 

made out of these symmetry operators, symmetry is of paramount importance more, so 

then even the translation which originally created. So, in all future considerations of a 

lattices we will typically try to over lay these symmetry elements on the lattice, and we 

will try to understand it later how these symmetry elements are come in very handy in 

classifying lattices and crystals based on that. 

What while point may be at this stage which we will re visit in of course, in detail later, 

which is again related to the fact of the symmetry of the lattice and the symmetry of the 

crystal. 
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The symmetry of the lattice is what we considered before is nothing, but the 4 m m 

symmetry. Now, the lattice will always the square lattice that is will always have the 4 m 

m symmetry irrespective of what motif I used to decorate on the lattice, so the 

underlying lattice have 4 m m symmetry. But; however, the crystal based on this lattice 

can have a symmetry lower than that of the lattice, this is a very, very important point. 

So, I will re repeat the sentence crystal based for instance in this example on the square 

lattice can have a symmetry, which is lower than the symmetry of the lattice. For 

instance I could place motif on the lattice such that the crystal has either a 4 m m 

symmetry or a symmetry which is just a 4 fold. Then the crystal which are generate I will 

call it as square crystal otherwise I will not call it as a square crystal, we will of course, 

return to this point detail in later. 

So, at this point all I need you to understand that there are more considerations than just 

symmetry of the lattice or the shape of the unit cell of the lattice, which go into define 

crystals. And if I play some motif of lower symmetry then the symmetry of the lattice is 

then that motif in alter the symmetry of the crystal I have generate, and the original 

symmetry of the lattice may be lower or may even be completely destroyed. 

So, to re emphasis based on the symmetry of the motif which I put on the lattice point 

these symmetry of the crystal which I generate from the lattice may be lower with 



respect to the may first of all of course, remain same as the symmetry of the lattice, it 

may be lower or in extreme example may be completely destroyed. 

And when I talking about completely destroyed I am talking about these mirror planes 

and rotational symmetries, and not the translation symmetry of course, if I had no 

translation symmetry in the final crystal which I have created such a structure is called a 

morphs structure, and not a crystal. 
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The second in the list of lattices is the rectangular lattice, the rectangular lattice is 

generated by two basis vector a and b, which are at an angle of 90 degrees. The 

rectangular lattice has no 4 fold access it has only 2 fold access, and with respective to 

the lattice point as you can see there is the 2 fold access at the lattice point there is a 2 

fold lattice between two lattice points. And there is a 4 fold access which is between 4 

lattice points, which forms the corners of the blue unit cell as shown. 

In the case of this rectangular lattice a or b one of the two may be the shorter one which 

we shall call the shortest lattice translation vector, for this lattice. Any other lattice 

translation vector will be longer for instance suppose I consider a lattice translation 

vector connecting the diagonal of this unit cell. This is going to be longer then a and b; 

obviously, there are lattice translation vectors which are even longer like the one shown 

here or the lattice translation vector which can connect these lens. 



But, the shortest lattice translation vector will continue to remain a as modulus of a is 

less than the modulus of b. On the figure on the right hand side I have shown on a unit 

cell of this rectangular lattice, all the 2 fold access over lay, thus you can see here there 

are various 2 fold operators. And apart from the lattice points there also present at the 

centers or the edges, and also defender of the entire unit cell, and as I have told you 

before that I am for sake of clarity I am not drawing all the lattices all the symmetry 

operators on the entire lattice. 

But, once you obtain a unit cell, than that unit cell is translated to get the entire lattice 

with all the symmetry operators over laid on the lattice. As before apart from these 

rotation operators I can also consider mirrors, and that is shown in the figure below you 

can clearly see that the edges of the unit cell are also mirrors as shown by this red lines. 

There are two other mirrors, the one vertical mirror and one horizontal mirror and an 

important point to note as compared to the square lattices that as there is no 4 fold access 

at the center, these two mirrors are not equivalent. 

The vertical mirror cannot become the horizontal mirror by any rotation of any symmetry 

access. And therefore it is a two independent mirrors, and the short hand notation to 

describe the symmetry operation is 2 m m and if you want little more to be explicit I will 

call the vertical mirror as m 1, and the horizontal mirror as m 2. And therefore, have a 

combination of a 2 fold and two mirror planes which is the short hand notation for all the 

symmetry of this lattice, make the point clear this is the symmetry of the lattice, and not 

nearly the symmetry of the unit cell which I have chosen. 

But, it also happens to be the symmetry of the unit cell as shown in this figure because, I 

have chosen a unit cell in this case which has a symmetry, which completely 

commensurate with the symmetry of the lattice, the third lattice which I consider is the 

centered rectangle lattice. 
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It is clear the centered rectangle lattice as the name suggests has a centering point apart 

from the 4 lattice points of the corner. Of course, the word centering you have to 

understand clearly is with respect to the previous unit cell, we consider a previous cell 

for the normal rectangle lattice. And this is centered with respect to that normal rectangle 

lattice, and not by alternate choice of unit cell where in the alternate choice of unit cell as 

we can see can be primitive unit cell, in which case that unit cell will not be centered. 

The lattice parameter as previously for this lattice are a b which are independent, an 

alpha which is a constraint of 90 degrees. The shortest lattice translation vector as the 

previous case happens to be a, the important thing to note here is in terms of the 

symmetry of this lattice, which is shown here in the right hand side for detail. Here apart 

from the corners, which are originally had 2 fold access in the case of the normal 

rectangle lattice. 

And the side edges which also had a 2 fold access at the center and 2 fold access at the 

center entire unit cell, their additional 2 fold operators ((Refer Time: 59:14)) mid way 

between the two lattice points. So, suppose I take a diagonal and I take half the diagonal, 

then there is a 2 fold operator located exactly at the middle of the diagonal or in other 

words at one fourth distance along the diagonal of the rectangle. So, their additional 

symmetry operators which come in to play, when we are describing the centered 

rectangle lattice. 



And these additional symmetry operators are important, when actually try to decorate 

this lattice with a motif which we lead us formation of crystal. 
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So, let us consider this centered rectangular lattice in little more detail what we had 

considered before in the previous figure has been shown here, which has over laid on it 

rotation and mirror symmetry operators. And we had stated that it has got symmetry 

which is 2 m m, we could alternately choose an primitive unit cell as shown on the right 

hand side, which is rhombus shape. 

And we had earlier pointed out that by convention we actually choose the non primitive 

unit cell, which is in the color blue for the case of the rectangle lattices. Both the 

centered rectangle lattices, and the normal rectangle lattice we actually choose a 

rectangle unit cell. While we had a choice of making a green unit cell which is in the 

shape of a rhombus, which we should have been a which should have had a smaller size 

which should have been a primitive unit cell, we shall continue our discussion of the two 

dimensional lattices in a next lecture. 


