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Lecture - 02 

Geometry of Crystals: Symmetry, Lattices 

 

I have got in front of me certain geometrical shapes, for instance this is called a cube this 

is the octahedron, this is the tetrahedron, this is the dodecahedron, and this is the 

icosahedrons. 
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One thing which might be obvious looking at these shapes is that these are not irregular 

shapes, there is a certain regularity to them for instance every phase of this solid is 

triangular. At every vertex of this solid you find there are 5 triangles, which come 

together, if you look at this solid for instance you find that every face is actually 

pentagonal and at every vertex you have 3 of these pentagons coming together. 

So, there is some inherent beauty in these solids, in fact this shape the dodecahedron was 

considered the crowning glory of Greek civilization, and therefore it up these kind of 

solids appeal to the human mind. So, what is that we have in common in all these solids, 

and how can we understand these solids from a language, which is the language of 

symmetry is what we are going to consider in this chapter. 
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So, we will take up the concept of what is known as symmetry operators, we will talk 

about symmetry operations like translation rotation inversion etcetera, and we will 

briefly introduce the concept of point groups. For students interested in more detailed 

and advanced reading, the classic text by M. J. Buerger on elementary crystallography is 

worthwhile reading. 
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The first question of course, we should ask ourselves is why study symmetry, now 

suppose I look at a crystal what we call a well grown crystal, and on the bottom there are 



2 crystals, which are shown here. One on the left-hand side, and one on the right hand 

side, the one on the right hand side is a potassium di phosphate crystal grown from 

solution. And you are immediately you notice the beautiful symmetry of the external 

faces which are forming, and this is one of the important characteristics of well grown 

crystals. 

That they have an external symmetry or an external shape or a form which is well-

defined, and crystals form an important class of materials. And therefore, the language 

with which you describe crystals is, in fact the language of symmetry, and additionally it 

will be worthwhile noting even quasi crystals are defined and described based on the 

language of symmetry. 

Of course, the in the current context the symmetry we are talking about is what is known 

as the geometrical symmetry, and of course, there are generalized versions of symmetry 

in physics, which we shall not be dealing in these set of lectures. An important point 

another motivation why we need to study the symmetry of a crystal is because, any given 

property of the crystal it could be a refractive index. 

It could be any other property like conductivity is has a cemetery which is at least the 

symmetry of the crystal, typically it could have a symmetry higher than that of the 

symmetry of the crystal, but it at least has the symmetry of that of the crystal. And this is 

known as the Neumann principle, and as you have seen from example of the crystal, 

which is shown below that one of the obvious manifestation of the symmetry inherent in 

a crystal is the external shape of the crystal 

And that is why when we want to describe crystal, the best language is the language of 

symmetry, and which is the crux or the core of the language of crystallography. 

Symmetry in conjunction with other elements help us define an infinite crystal in a very 

succinct or terse manner, and that is one of the reasons why we take up crystallography 

which is centered around the concept of symmetry. 
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Now, there are a lot of concepts we will be introducing during the course of this set of 

lectures, those concepts involve concepts lattices, motifs, unit cell etcetera, but before 

even we introduce those concepts. We should note that when we are talking about 

symmetry it could be the symmetry of any one of these entities, which could be under 

consideration. 

So, suppose I could be talking about symmetry of the crystal which is what is primarily 

important, but in certain specific contexts for instance we could be talking about 

symmetry of the lattice, or the symmetry of the motif, or the symmetry of the unit cell. 

And that is why when description of symmetry is being made it is very, very important to 

note under what context, what is the central focus of the description which is being kept 

in mind. Additionally, we could also be talking about the symmetry of the growth of an 

external shape, which we considered this crystal has a certain symmetry, and we could 

be describing the growth form of the crystal which also would be coming under the class 

of symmetry descriptions. 
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An object is supposed to possess symmetry, when if it is brought into self coincidence 

after some operation, then it is said to possess symmetry with respect to that operation. 

Now, for instance the obvious symmetry which we are all accustomed to for instance is 

the human face or the human body, externally it has got an approximate mirror symmetry 

that is if you place a mirror in the centre of the body. 

Then you will see the left hand side reflects the right-hand side or equivalent lead the 

right-hand side reflects the left-hand side, of course this is an approximate external 

symmetry that we have got. And additionally, the human mind is well tuned to 

appreciate symmetry in any body and as the ancient Greeks had done, they had, in fact 

come across these solids, which are known as the platonic solid, which I had described. 

Sometime, back the cube, the dodecahedron, the icosahedron and the tetrahedron, and 

therefore this a natural ability of the human mind to appreciate symmetry, but in this 

context we will take up symmetry in a more formal way. A way which is ideally suited 

for describing crystals, and the other entities we have talked about in the previous slide 

like unit cell lattice etcetera. So, if an object is brought into self coincidence after some 

operation, it is said to possess symmetry with respect to that operation. 

So, naturally question is that what is a symmetry operator, given a general point a 

symmetry operator leaves us a finite set of points in space, that is if I have a symmetry 

operator and I have a general point in space. Then at the end of the symmetry operations 



it you end up with a finite set of points, and in other words you can describe the 

symmetry operator as that, which closes space into itself. 

Later on, we will be talking about symmetry operators which involve translation, and in 

that case we will have to assume that it leaves a finite set of points within the unit cell, 

which is another concept we will be dealing with later. But, essentially as you start with 

a point then the symmetry operator acts on that point, creates a finite set of points, and 

typically this finite set of points we're referring to is within the unit cell. 

Of course, the question we sort of allude at to we can ask more formally, then why do I 

need to talk about symmetry and symmetry operators. If an object for instance a crystal 

or it could be another general object, which is under consideration has some symmetry 

then we need not go and describe the whole of the object. 
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We can just describe a part of the object in conjunction with the symmetry operators, and 

I will get the whole object. In other words I am conserving my information or conserving 

my labor in describing only part of the object in conjunction with symmetry, that the 

object is got, therefore I will get an entire object without having to describe a lot or 

prescribe or a lot of information. 

For instance, I have got a square in my example, and the square has a mirror symmetry, 

we will formally de look what is a mirror symmetry, but we all know from our 



commonsense experience, we know what is a mirror. So, the mirror for instance would 

reflect the left-hand side of the blue rectangle into the right-hand side, and therefore 

create the entire square. Additionally, we can also imagine horizontal mirror which is 

present, which means that this horizontal mirror can actually reflect top part of the blue 

rectangle to the bottom part, which I will describe here. 

So, this part is reflected to the part below, and therefore I will get my entire blue 

rectangle, in other words instead of working with the entire square. I can work with half 

the square or quarter the square, and these 2 mirrors will produce all the 4 quadrants of 

the original square, additionally if I notice this object additionally has a mirror which is 

the diagonal mirror which is shown in the figure in the right-hand side. 

So, if further I do not have to describe the entire what do we call one fourth of the 

square, I can actually describe one triangle in conjunction with this mirror, which will 

produce this square. In other words what I have done is that all I need to prescribe is this 

one triangle, in this triangle in conjunction with these 3 mirrors, one diagonal mirror, one 

vertical mirror, and one horizontal mirror will give the entire blue square back to me. 

Therefore, I conserved my information or I have described my object into the least part 

conjunction with the symmetry operators, symmetry present in the object, and therefore I 

get my entire original square. Yes, we shall see soon there are other symmetry operators 

which could we could invoke for instance, what is something known as the fourfold axis, 

which could also generate my original square, from one quadrant of the square. 

In other words the language of symmetry to be in physio, so that we can be very terse in 

our description, so that we can supply minimum information and generate the maximum 

amount of knowledge possible. This is very, very useful, because typically crystals are 

infinite and many, many crystals we will be talking about have very, very many number 

of atoms inside them or for instance there could be irons present in crystals. And I do not 

want to be prescribing the position, and the type of iron present for hundreds of them, so 

I can actually conserve my effort by putting the minimum required information along 

with the symmetry present in the system. 
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How can I classify my symmetry operators, and what kind of symmetry operators exist is 

the next question we will try to address, so based on dimensional of the operator, based 

on if the symmetry operator takes the object to its mirror form or not. Based on the fact 

that if the operator acts at a point or moves a point, or if it plays a role in the shape of the 

crystal or not, for instance is it microscopic or is it macroscopic. 

So, I have multiple ways of classifying symmetry operators, and therefore coming to 

know of the very many different kinds of symmetry operators, which are present which 

are especially relevant to crystal. So, to summarize once again this slide, so I can classify 

symmetry operators based on the dimension, based on if it takes an object to its mirror 

form or not, based on the fact that if it leaves a an object around the point or moves it 

from place to place, or if it has any role to play in the external shape of the crystal or not. 
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So, we have certain symmetry operators, which whose names are on the right hand side 

here, for instance the translation, the rotation, the mirror, and the inversion. And further 

we will see that there are other symmetry operators like roto-reflection, and roto-

inversion we shall be taking up some of these very soon, but this is an attempt to give a 

broad overview and classification of all the possibilities. 

So, there are type 1 symmetry operators, which take to an object to it is same form, and 

there are type 2 symmetry operators, which take an object to it is what is known as the 

mirror form or the enantiomorphic form. Now, it is to understand what is a mirror form, 

the best example we can consider is our hand the human hand. So, you got the left hand 

and the right hand, I can perform no rotation or translation operation to make my left 

hand coincide on top of the right hand, because my left hand and right hand are related 

by a mirror operation right in the middle of my 2 hands. 

Therefore, there is no possible translation or rotation object which can take my right 

hand to my left hand, or equivalently my left hand to my right hand. These are 2 different 

kind of objects, and one is if you call the right hand one, the other one is the 

enantiomorphic form or the left-hand one. Therefore, there are symmetry operations like 

mirrors and inversion, which take an object to its mirror form or the enantiomorphic 

form, so do roto reflection and roto inversion, but a near translation for instance. 



Suppose, I just move my hand by a certain distance such an operation will not take an 

object to its mirror form, so does, so does not rotations, so I rotate my hand I still land up 

with a left-hand and not a right hand. I can classify my symmetry operators based on the 

dimensional of the operator, from since inversion is a zero dimensional operator, rotation 

is a one dimensional operator, and mirror is a two-dimensional operator. And of course, 

this dimensional is assuming that our whole space in which we are working is the three-

dimensional space, and not a lower dimensional space. 

We shall these aspects shall become clear once we actually take up these operations, and 

see how his operations have an effect on space, and have a effect on points in space. So, 

we can classify symmetry operators based on if the symmetry operator takes an object to 

its mirror form or leaves, it in original form symmetry operators, can also be classified 

based on its effect on the external shape of the crystal. 
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And therefore, we talk about macroscopic symmetry operators and microscopic 

symmetry operators, screw and glide reflection for instance which we will take up much 

later in the describing of symmetry. Do not have an external any effect on the external 

shape of the crystal, they are actually they involve translations the screw and glide 

reflection which are of atomic dimensions. 

And therefore, or dimensions of the order of lattice parameters typically in crystals, and 

therefore they have no effect on the external shape. Well on the other hand rotation 



mirror and inversion, which has a 3 macroscopic symmetry operators, have an effect on 

the external growth shape of a or a for instance the external equilibrium shape of a 

crystal. 

(Refer Slide Time: 14:59) 

 

Additionally, we have to note that there are many symmetry operators available to us, 

but some of them are absolutely necessary to describe crystal, well some of them could 

be redundant. In other words I can get away by not using all the symmetry operators, 

which I had described, so far for instance, suppose I want to describe a crystal, I can 

work with rotation and mirror and not, in fact invoke inversion at all. 

Otherwise, I can actually work with rotation and inversion, I cannot invoke mirror for 

instance, so there is a possibility that I can work with a lower set of symmetry operators, 

then actually available in the crystal. And this was also obvious from the example we 

considered before for example, this square, the blue square had 2 horizontal one 

horizontal mirror one vertical mirror and one diagonal mirror, but we saw that. Actually, 

it additionally has some other symmetry operator, which we call the fourfold axis, but I 

did not have to invoke the fourfold axis to create my full square. 

Therefore, there are some additional redundant operations, which also might be present 

which I need not invoke, to if I want to generate all the symmetry acting at a point then 

the bare minimum I require is rotation and something known as the root inversion. And 



in this case of course, I am at a point I am not moving from one point to another in space 

and these points remain localized. 

And we land up with a finite set of points at the end of what is known as a loud 

combination of operators, but on the other hand if you are talking about guide reflection 

screw. Then we end up actually moving the point and land up with an infinite array, but 

within an unit cell there will be only a finite number of points. 
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So, what is the first operation which we need to consider, which is very, very relevant to 

crystals because every crystal has at least guaranteed one minimum symmetry associated 

with it, which is the translation. And in fact, the very definition of lattices, which we will 

come across later is based on this operator, which is the translation operator. A 

translation operator just simply moves are point by a certain vector t, and in three-

dimensional space, actually you could have 3 different components along with 3 basis 

vectors. 

Here is an example below in the figure, in which I have an one dimensional crystal, in 

which I have the crystal beam created by one dimensional translation operator the t 

vector. Therefore, I have a lattice point, from this lattice point I generate another lattice 

point, and so forth, therefore if I have this translational symmetry, it does not matter to 

me, where in this array I am sitting. For instance, if I am sitting at this point the entire 



space would look exactly identical, as if I have had to sit in a different point to its left for 

instance at this point. 

Similarly, if I have a crystal here and in this crystal which is now consisting of 

pentagon's, and which has got translation symmetry it does not matter if I am sitting at 

point A which is here, or at a point B which is here, or at a point C which is here. And 

entire space will look identical to me and that is why, it is this crystal is expected to 

possess or it is supposed to possess translation symmetry, and what does a translation 

symmetry do. 

It actually produces a periodic array of point starting with a single point and if you start 

in an object, it will produce a periodic array of objects. And this translation could be in 

one dimension as the example below, it could be in two-dimensions or it could be in 3 

dimensions. Therefore, if I have translation symmetry I do not have to describe the entire 

crystal, all I have to do is take up for instance an one unit of crystal for is in this 

pentagon. And in addition to this pentagon I can describe a translational vector t, and I 

will land up with the entire crystal. So, there is a certain advantage certain brevity certain 

succinctness, when I use symmetry operators to describe crystals. 
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The next symmetry operator, we consider is the mirror and the inversion, the left-hand 

side shows a mirror operator which we had of course, briefly construed just now, and the 

right-hand side shows a inversion operator. Now, as I pointed out suppose I have my 2 



hands, I can visualize a vertical mirror plane between 2 hands on the other hand. 

Suppose, I place my 2 hands like this that is my one hand is above, and then one hand is 

below, then I can think of an operation, which is an inversion operation right at the 

middle of between the 2 planes in which my 2 hands exist. 

Therefore, both of these operators, my mirror operator and my inversion operator take an 

object to its enantiomorphic form or take an object to its mirror form. The mirror is a 

plane, therefore it is a two-dimensional operator, in three-dimensional space my mirror is 

actually a plane, which takes my left hand to my right-hand, while the inversion 

operation is actually a point. 

So, inversion is zero dimensional mirror is a 2-dimensional operator, so this 0 

dimensional inversion operator, again takes my left hand to a right hand, but as you can 

see that a point xyz becomes minus x minus y minus z, when an inversion operator acts 

on it. So, these are 2 ways of taking an object to an enantiomorphic form, but given the 

dimensionality it is clear that they are not identical. 

And also given its effect on a general point how a mirror acts is that suppose, it had a 

point here which is at a plus x then the mirror operator takes it to minus x, but leaves it at 

the same distance y height. On the other hand an inversion operator takes an object 

which is at point at plus x, plus y plus z to a point which is right below here, which is 

minus x minus y minus z. So, if you take which is also shown in a diagram right here 

below, if I start with an vertical mirror here and a right-handed object, which is above the 

plane of a thin sheet. 

Then the right-hand object is taken to its left handed object by the mirror plane, of course 

you could have an horizontal mirror as shown here. In which case you will start with a 

point which is say for instance a green right-handed object above the plane, is taken to a 

red square which is actually below the plane by an exact distance, which is if this were 

this were at a distance of plus z. 

Then this red square would be attempt of minus z from the plane on the other hand a 

inversion operator, as I pointed out is a zero dimensional operator, which takes an right-

handed object to the left-handed object, the right-handed object being above the plane 

and the left-handed object is below the plane as shown here. 
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The next operation they consider here is known as the rotation axis, in the case of the 

rotation axis, we if we start with a general point and an axis which is known as the 

rotation axis. It rotates a point and leaves a finite set of points, now an what you call an n 

fold rotation axis is a rotation axis, which rotates a point by 360 degrees divided by theta. 

Therefore, if you have a fourfold axis, then the rotation angle theta would be for a 

fourfold axis on the other hand, suppose I am talking about a threefold axis, therefore 

there is a characteristic rotation associated with every axis which is an n fold axis. 

In general of course, you would notice that I can actually start with the single point, and 

land up with an finite set of points if I have an axis of rotation. And this n code actually 

be any number starting from 1 2 3 all the way up to some higher numbers up to infinity, 

but then in the description of crystals. We are especially concerned with those rotations 

which are compatible or consistent with translational symmetry, or the basic inherence 

ability of crystals. 

And when we are putting this restriction of course, I am not showing the proof here, you 

would note we will land up with certain only certain allowed rotational symmetries. So, 

in general an we could have a n fold rotation axis, which is having any value of n like 1 2 

3 4 5 etcetera, but then when you are talking in crystallography. We want to consider 

only those rotation axis, which are compatible with translational symmetry, which is 

basics requirement of all crystals. 



And in that case we will only consider for instance the one fold which is a very trivial 

rotational symmetry, the 2 fold the 3 fold the 4 fold and the 6 fold rotation axis. In other 

words I do not have to consider the entire set of rotation axis, which includes for instance 

there is no 5 fold involved here, there is no 7 fold here, there is no 11 fold etcetera, 

etcetera. 

Therefore, there is only a small finite set of rotation axis I need to consider, then I am 

talking about symmetry, rotational symmetry, which is consistent with translational 

symmetry or that which is consistent with crystals. Therefore, future focus will be on 

those rotations, which are compatible translations, which are the 1 fold, the 2 fold, the 3 

fold, and the 6 fold, rotation axis, so let us try to understand what this rotation axis is and 

what it does to a general point. 
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Now, a 2 fold rotation axis is an axis for instance, which is perpendicular to the plane of 

the figures shown here, for instance this is my circle, and a 2 fold rotation axis which has 

got as a symbol as shown here. It is caudal lens hype of a symbol and this rotation axis is 

perpendicular to the plane of the slide, this rotation axis therefore, is a one dimensional 

axis. 

We have previously seen that the mirror is a 2-dimensional plane, the inversion is a zero 

dimensional point while rotation axis is an one dimensional line. And what does it do for 

instance a 2 fold axis due to a point for instance ring circle, which is above the plane of 



the slide, what it does we know that n is equal to 2 implies that the rotation is. Therefore, 

a twofold rotation axis rotates a point, and therefore the entire space for that matter by 

180 degrees, therefore it rotates this point and takes it to this point. 

So, I start with a 0.1 it produces 0.2 and a further action on that, finally closes space on 

itself and comes back to 1, therefore irrespective of how many times, this rotation axis 

operates it is going to leave only 2 points in space. This is an important point to be noted, 

similarly if you look at 3 fold axis would mean a rotation of 360 by 3, which we had seen 

before which is 120 degrees, and if you start with the general 0.1. Then a threefold 

rotation axis which is got a symbol of a filled triangle takes it to 0.2, which further takes 

it to a 0.3, and finally this 0.3 is closes close comes back to 0.1. 

Therefore, irrespective of how many times this threefold rotation axis operates, you will 

have only 3 points, and to show this I have got a model here for instance, here I have got 

an axis which is threefold rotation axis and this threefold rotation axis is at a end of a 

triangle. So, now, I have a triangle, suppose I this assume is a threefold axis, it operates 

on this object then it is a triangle which is in distributable, with the triangle before, it 

operates again it produces a triangle in identical orientation. 

So, just to make it clear here, so let me rotate it around, so that you can see the triangle 

better, so I have a threefold axis and I rotate by 120 degrees, I land up with a triangle 

pointing up wards, I rotate again by 120 degrees I land up with a pointing triangle 

pointing upwards. Therefore, a threefold axis is a triangle, as a triangle before and after 

its operation, similarly the other important crystallographically compatible rotation is the 

fourfold rotation axis, which produces a which is associated with a rotation of 90 

degrees. 
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And, as before suppose I start with the general 0.1, then it rotates to a the point to 0.2 it 

rotates to the point to 0.3 comes back to 0.4, and finally the 0.4 is rotated to 0.1 which 

implies that space has closed on itself. And we have only 4 points starting with the 

general point, and a 6 fold rotation axis has a rotation of 60 degrees associated with it, 

and like before it leaves 6 distinct points in space starting with 1. I get 2, which is rotated 

to 3, which is rotated to 4, which is rotated to 5, which is rotated to 6, and this can be 

understood by taking an hexagon. 

For instance you talk about hexagon, this hexagon it has got 6 fold rotational symmetry, I 

can rotate by 60 degree, it looks exactly identical. I rotate it by 60 degrees again, it looks 

exactly identical, I rotate it by 60 degrees again, and it looks exactly identical. Therefore, 

irrespective of many times I rotate it 60 degrees this entire hexagon will continue to look 

like an hexagon, so this brings us back to some of the geometrical objects we had 

considered before for instance. 

For instance, we have a cube this cube has some beautiful symmetry that it has got a 

mirror plane, which is exactly splitting my cube into 2 parts, therefore if I only consider 

right-hand part of the cube along with the mirror, then I will get the left-hand part back. 

Similarly, you can also visualize a mirror which is the diagonal mirror, which is going 

vertically, so I can visualize a diagonal mirror going into this plain vertically like this. 



And therefore, the right-hand part of the cube would reflect to the left and part of the 

cube, additionally you will notice that, suppose I look along the top of a cube then the 

top of the cube has a fourfold rotational symmetry. So, let me show it from this direction 

is it clear from this perspective, so the cube has got a fourfold operational symmetry, in 

other words suppose I rotate my cube by using this fourfold rotation axis, it will rotate 

and look exactly like before. 

Similarly, the body diagonal of the cube has a threefold rotation axis, that means, if I 

rotate my cube, for instance this is a cube oriented like this and I rotate it along the body 

diagonal by an angle of 120 degrees, then it will look exactly identical. So, this rotation 

along this axis, for instance now I am holding the body diagonal horizontally and I rotate 

it by 120 degrees, the cube looks exactly as before and so forth. 

Therefore, these geometrical figures have beautiful symmetries, and we will see later that 

some of the symmetries are compatible for instance with translation symmetry, like this 

is tetrahedron has got a threefold axis which is vertical. It is additionally got a mirror 

plane which is going through in the vertical fashion right here, on the other hand the 

symmetries with the icosahedrons, which is got a fivefold symmetry here or the 

dodecahedron, which is also got a fivefold symmetry here. 

So, this pentagonal face has got a connecting the opposite face is got a 5 fold symmetry, 

but these 2 objects these 2 platonic solids are not compatible with translational 

symmetry. And therefore, you would not find crystals having these symmetries; 

however, there are quasi-crystals which have these kind of symmetries, so coming back 

to our rotational symmetries. 

We summarize this slide by saying that in general of course, any fold rotational axis is 

possible, but we restrict ourselves to the one fold which means that basically you have a 

point which comes back to itself, which is a equivalent to a 360 degree rotation. A 

twofold equivalent to a 180 degree rotation, 3 fold which is 120 degree rotation, a 

fourfold which associated with 90 degree rotation, and a 6 fold associated with 60 degree 

rotation. 



(Refer Slide Time: 31:58) 

 

Therefore, we need to only consider these rotational symmetries, when I am talking 

about crystals, in addition to these simple or what you might call individual symmetry 

operators. There are other symmetry operators which are compound symmetry operators, 

and also there is a possibility of what is known as a combination of symmetry operators. 

We will try to distinguish these two, a compound symmetry operator is one which is a 

combination, but a fixed combination, in other words it is a compound of 2 symmetry 

operators like a rotation and an inversion. 

And we have to notice here very carefully that this is not a rotation plus an inversion, but 

a roto inversion. And I will try to distinguish the difference between a rotation plus an 

inversion and a roto inversion or equivalently a rotation plus an reflection, as 

differentiated from a roto reflection compound symmetry operator. So, what are the 

simple symmetry operators we have talked about, so far it is the translation a mirror 

inversion and rotation, and now we are talking about compound symmetry operators like 

the roto inversion, and the roto reflection. 

It is to be noted that these symmetry operators and entire symmetry operation acts before 

leaving a point, in other words a roto inversion is not a rotation plus an inversion. You 

cannot leave a point after rotation you'll have to start with a point perform the roto 

inversion, and then leave a point. Similarly, if I am talking about roto reflection I have to 

start with the general point I have to perform a roto reflection, and then leave the second 



point. While, if I was talking about a combination of a rotation and a reflection, which is 

a possibility then I can rotate. 

For instance, suppose I am talking about a combination of 2 fold, and a mirror first I will 

rotate my 180 degrees, I will land up with 2 points, then I can perform the mirror 

operation, which will take these 2 points to further 2 more points, but in we will see what 

this roto reflection does by actually considering equivalent things. So, to summarize this 

initial part of this slide roto reflection and roto inversion are compound symmetry 

operators, we do not involve translation both these take left-handed objects to right 

handed forms. 

So, these are operators of the second kind which we had considered, which take an object 

to it is enantiomorphic form, for generating point groups, which we will consider very 

soon. One of the operators, one of the 2 which is the roto reflection or the roto inversion 

is more than sufficient, and in general we will take up roto inversion in the further 

examples we take up. 

Further, we can have compound symmetry operators which involve translation here, and 

a mirror for which is known as the glide reflection or we could have a translation in 

combination with a rotation, which is known as the screw symmetry operator. Therefore, 

we can have a glide reflection or a screw, and the important distinction between the 2 is 

that a glide reflection takes an object to its mirror form. While, screw takes an object to 

same form which means a left handed object in combination with screw will lead with a 

lead to an object, which is only left handed. 

In some cases these compound symmetry operators which we have considered, for 

instance the roto inversion can be broken down into certain simple operations, but this 

does not mean that individual components are exactly identical to the components, which 

is giving rise to the compound operator. This will become waste when we perhaps 

consider an example, in other words in a combination like a compound the individual 

operators express themselves fully. That is the first operator acts first, and then the 

second operator results acts on the result of the first operation, that is what we call a 

combination while in a compound you have a combined operator acting all at once. 
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So, let us talk about one compound operator which is a roto inversion, which will clarify 

the position a roto inversion operate rotates a point and then inverts, it all in one goin 

other words it does not do in steps. And as I pointed out it will take a left hand object to 

its right handed form, and the roto inversion operations which are compatible with 

translational symmetry or the once which we had considered like in the case of simple 

rotation or the 1 bar, the 2 bar, the 3 bar, 4 bar, and the 6 bar. 

In other words the symbol used to describe roto inversion is a number like the normal 

rotation with a bar on top, which tells us that it is actually a roto inversion operation and 

not merely a rotation . So, therefore, the roto inversion operations I need to consider are 

the ones, which are highlighted here which are the 1 bar, the 2 bar, 3 bar and 4 bar and 

the 6 bar, and let us see what how these operators act, when you start with the general 

point. 

So, suppose I start with the right hand object above the plane, then the one bar operation 

implies that I rotate by 360 degrees; that means, the rotation is 360 degrees I come back 

here. But, I do not stop there, I do not leave a point there I invert immediately and when I 

do the inversion, I will land up with a left handed objects below the plane of the slide. 

So, and of course, what will happen further, if this roto inversion operates again I will 

start with this left hand point rotate by 360 degrees. 



In other words I will go again 360 degrees and come back to the left handed object, but I 

will not leave a left handed object below the plane, of the board I will immediately invert 

and land up with a right handed object above the plane; that means, I have closed space 

on itself. Therefore, n inverse one bar operator, which is exactly equivalent to an 

inversion as we can compare it with an inversion operator, which also leaves to a points 

like this. One right-handed above the plane, one left-handed below the plane therefore, 

an one bar operator is exactly identical to the inversion. 

And it leaves only 2 objects and not more not less and these 2 points would be one right-

handed, and one left-handed. Similarly, I can talk about the 2 bar operator which will 

again involve a rotation and an inversion, but all in one go suppose I start with the right-

handed green circle above the plane of the board. Then I can wrote what does a 2 bar 

imply that the rotation associate with the 2 bar is 180 degrees like in the case of a 

twofold, therefore I will rotate I will go all the way, but I will come back here, but I will 

not leave a point after the rotation. 

So, I will come back right exactly above the green circle, but after that I will invert and 

so I made a mistake here. So, what I will do is I will start with the green circle I will go 

and rotate and come to a point which is 180 degree apart, and I will land up with a circle 

which is a green circle which is about the plane of the board. 

So, I have performed my 180 degrees rotation, but I will not leave this point here, so this 

is not a point which is to be left here, but I will immediately invert, which will mean it 

will take this point to a point, which is below the plane of the board. And which is this 

red square which is minus n which is a left-handed object, therefore when I have 2 bar 

roto inversion operation. I start with a green circle rotate it do not leave a point invert it 

and come back right below the green circle, which completes my roto inversion 

operation. 

If we will see that it is actually this 2 bar is equivalent to a one followed by a mirror, 

which is nothing but, an horizontal mirror. So, let us summarize the 2 bar operation, 

which we said is equivalent to 1 my m operation or a mirror horizontal mirror, therefore I 

start with the green circle above the plane of the slide. It rotates it by 180 degrees we 

landed here we do not leave a point, but invert right at the centre, and therefore I land 

with a red square, which is a left-handed object below the plane of the slide. 



And a symbol as you can see for all these operators is the one bar is a one circle, the 2 

bar has a symbol like a twofold, but with the circle in the centre, the 3 bar as you can see 

here is a triangle with the circle, in the centre the 4 bar operation is shown here, and 

similarly you can have a 6 bar. This slides also explain to you that actually the concept of 

the compound versus the combination. So, the 1 bar the 2 bar the 3 bar the 4 bar and the 

6 bar are compound operators, but you have just now seen the 2 bar can be thought of as 

an horizontal mirror; that means, if I start with an green circle actually put horizontal 

mirror. 

The mirror being this m which is marked here which is nothing but, the red circle on the 

plane, actually I will land up with these 2 points and irrespective of how many times this 

mirror acts. I will land up with only 2 points one left-handed, one right-handed the left-

handed being above the plane of the slide and the left right-handed or the left handed 

being below the slide plane of the slide. 

Therefore, I can break down this 2 bar operator, as a combination of one and an m, 

therefore this is my compound operator, and this is my combination of a one fold and a 

perpendicular mirror. Similarly, I can think of a 3 bar operator as a combination of a 

threefold and an inversion, therefore when I am talking about a combination, then each 

one can act independently. 

From this I can start with a green circle, it can first act and leave a point here, then it can 

rotate and leave a point here, and finally this can rotate and come back to it is point. I am 

not performing the inversion like as 3 bar operator, and just performing the 3 which is 

mentioned here, further if I invert these then I land up with these 3 red squares, which are 

nothing but, left-handed objects below the plane of the slide. 

Therefore, I can break down my 3 bar, which is a compound operator into a combination 

which is a 3 and an inversion combination, therefore there is a possibility in some cases 

of decomposing my compound operators into a combination operators. However, we 

should always remember that a compound operator leaves a point after performing it is 

complete duty which is for instance, in this case of a roto an inversion and then only you 

have a identity point. 

You just try to understand for instance, this 3 bar roto inversion operation with respect to 

a cube for instance, where is a 3 bar roto inversion operation in a cube, and what do we 



see in a three-bar roto inversion operation there are 6 points which are created by this 

operation. So, I have a cube here, and originally I had pointed out that the body diagonal 

is has a threefold symmetry, but actually it has got a symmetry, which is higher than the 

threefold, because the threefold symmetry generates only 3 points. 

While, we have just now seen that the 3 bar or the 3 bar roto inversion symmetry 

generates 6 points, therefore it is an operator having higher order as compared to a 3. So, 

the 3 bar operators and higher order as compared to the 3 fold rotation axis, now let us 

try to understand how where is a 3 bar operation and how we get to 6 points. So, if I 

consider my cube and my body diagonal which is passing as you can see here, so what 

does it do, if I start with the general point here which is one of the vertices of the cube. 

So, I have totally 8 vertices for the cube, 2 of them I have taken away by putting my 

body diagonal line across that, and in addition to that I have 6 more vertices left. So, I 

can start with any one of those vertices for instance, and when a 3 bar rotation axis acts 

on this it is rotate it by 120 degree, which will take it here and invert it. So, as to produce 

an this vertex from that, so it will rotate by 120 degree giving me this and then it will 

invert it and produce this vertex from that. Therefore, when I start with this vertex, 120 

degree rotation will take it to this vertex, and the inversion operation. 

So, the inversion centre for this cube is the centre of the cube and that will take me to 

this point. Similarly, when I perform this roto inversion operation or the 3 bar operation 

again and again, I will obtain all the 6 vertices which are not contained in this body 

diagonal. Therefore, if you really want to describe the body diagonal symmetry of a 

cube, it is not just a threefold actually it is a 3 bar roto inversion symmetry operation. 

Another compound symmetry operator is the screw axis, which is a combination of 

rotation and translation, and as before you will perform a rotation and a translation and 

leave a point. 
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The screw axis operator rotates a point object and then moves it by a fraction of the 

repeat distance in 1 go, so this fraction of the repeat distance is the fraction of the 

translational symmetry which we talked about. So, all pixels have translational symmetry 

which we shall later on be correlated to the lattice parameter, therefore this fraction 

would be a fraction of the lattice parameter, which we are talking about. And since, 

typical crystals, for instance the copper crystal or for instance the magnesium crystal all 

have translational symmetries of the order of angstroms. 

This fraction which of the screw axis the translational fraction is actually a fraction of 

that lattice parameter which again is order of angstroms. Therefore, this there is no 

external effect of this screw axis, on the external symmetry or the growth form of the 

crystal, therefore you cannot observe a screw axis looking at the external shape of the 

crystal. 

The fraction by which the screw axis move called the pitch of the screw, and again like 

before we only consider the 1, 2 and 3 4 and the 6, which are the translationally 

compatible rotational symmetries, when you are talking about screw axis. This screw 

axis which we need to consider are the 2 subscript 1, the 3 subscript one the 3 subscript 2 

and so forth as listed here, going up to 6 subscript 1, 6 subscript 2 to see 6 subscript 5. 

And in this notation which we are seeing here for instance this figure below shows a 2 

subscript 1 the 2 is the usual 2 fold rotation, which is implied and the 1 is implies that the 



translational fraction is 1 by 2. So, suppose I have an screw operator, which gives us m 

subscript n, which implies a rotation of m fold and a translational component, which is n 

by m, so this is my translational component involved in a screw axis. 

So, let us see the effect of what a screw axis can do for instance a 2 1 screw axis, so a 2 1 

screw axis is associated with twofold symmetry, and the 2 subscript one implies the 

translational component is half the repeat distance or the translational periodicity. So, I 

start with the general point here, so it will perform a 180 degree rotation from here to 

here and, but as I told you this is the compound operator, and therefore I will leave no 

point here, but I will translate by distance half my repeat unit. 

So, this is my repeat unit and I will only translate by half the repeat unit and leave a point 

here, I will progress with this set of 2 one operations, which means that again I will 

rotate it. And come here by 180 degrees, but again I will not leave a point here, but 

translate it by a fraction of half, therefore when I start with a point here I will land up 

with a point exactly above the original point. 

Now, this symmetry operator connecting this point to this point to this point is the 2 1 

screw axis, which is shown by a symbol as it is a lens with certain amount of tail on both 

sides. So, this is an extended symbol it has got, so this is a the effect of a 2 one screw 

operator, later on we will also talk about the other kind of screw operators talked about 

here like the 3 1, 3 2, 4 1, 4 2, 4 3 etcetera. 

But, we have to remember that all these screw operators move an identity point to its 

same form it will not take a mirror form; that means, if I start with the left hand objects, 

it screw operator will only leave left-handed objects. As, it goes along performing its 

rotations and translations, and as I pointed out, since the small fractional translations is 

not seen in the external growth shape of a crystal, the normal and the screw axis have the 

same effect on the external symmetry of a crystal or the growth form of a crystal. 
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So, let us see how a 3 1 screw operator for instance acts, a 3 1 screw operator you start 

with a point it will rotate by 120 degrees, but it will not leave a point there, and it will 

translate by 1 by 3. Therefore, it will translate by 1 third, so this is my one third of the 

translational repeat distance, which is the total height t. Therefore, it will translate by one 

third and from starting with this 0.1, rotation by 120 degrees and followed by a 

translation of one third I will land up with this 0.2. 

Further again this operator will act it will rotate by one third, which will take it to this 

point here, but it will not leave a point there translate by one third which will land up 

with 0.3. This will again rotate by 120 degrees and it will come here, but it will not leave 

a point there, it will translate by this one third and leave a 0.4 finally, which is exactly 

translationally related to 0.1 along the z direction. 

Now, a 3 2 screw axis rotates by a certain rotation, which is 120 into 2, but actually if 

you want to compare a 3 1 rotation axis with a 3 2 rotation axis. You will notice that you 

can perform the operations of the 3 2 axis, but you will land up with the points, which 

are exactly related by a mirror operation m on the 3 1 screw axis. So, you can see that the 

symbol of the 3 1 axis is radiations like this, the 3 2 axis is exactly the mirror symmetry 

symbol, and so are the effects on the points left out by a 3 1 or a 3 2 screw axis. 

So, a 3 1 axis leaves these set of points, while a 3 2 axis is exactly like a 3 1 axis, but if 

you consider 3 1 as a right-handed screw, then 3 2 is a left-handed screw, which again 



leaves 2 set of points like 1 2 is that. You start with 0.1, you rotate by the amount given 

by the rotational symmetry, which is written as the main part of the symbol, then you 

translate by a fraction which is a fraction of the repeat unit. 

(Refer Slide Time: 50:44) 

 

So, in the case of the 4 1 square axis for instance, you will rotate by 90 degrees and the 

translational component will be one fourth of the total translational symmetry, which is 

one unit along that z direction. So, and similarly like before the 4 1 rotation axis is 

related to the 4 3 by a mirror plane, and the symbols are also related by a mirror plane as 

shown here in the above view graph. 
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Similarly, we have a 4 2 axis which has got a symbol here, and you can see that in the 4 

2 axis you have and 90 degrees rotation, and a translational component which is 2 by 4 

which is half. 
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So, in effect all these rotation axis are very similar in their effect, and we need to 

consider them when we are talking about symmetries of crystals. And one of the some 

we will return to this concept later for instance the 6 3 screw axis is at the heart of for 

instance the hexagonal close pack crystal to be called hexagonal close pack crystal. So, 



some of these concepts we will return to later, but once we have understood one screw 

operator all the others are very, very similar in their effect, in leaving a set of points 

which are all either left-handed or all are right-handed operations. 

(Refer Slide Time: 52:11) 

 

Another, we talked about a compound operation which is the glide reflection operator, 

and in the glide reflection operator you start with the point there is a translational 

compound which is a fraction of the translation. For instance, it could be a fraction of the 

translation along for instance the x-axis, and you reflect for instance suppose my 

translational component along a certain component is this. This is my translational 

periodicity, say for instance a then my glide reflection operator is a combination of a 

translation and a reflection. 

So, the at the heart of a glide reflection operator is a mirror, so this is my mirror plane 

and what does a glide reflection operator do you start with a point, which is for instance 

a right-handed object above the plane of the mirror plane. It translates by a fraction of the 

periodicity now for instance, this is my periodicity along this direction is a then my 

translation component is a by 2. 

Therefore, this is called a by 2 glide, therefore you translate by half and reflect, therefore 

you land up with a mirrors form of this object which is a left handed form and below the 

plane. Further, if this glide reflection operator acts again then you will move this point 



and reflect, and you will and up with the point exactly like the right-handed object above 

the plane, but now move by a point by lattice parameter a. 

Now, this implies that if I have a glide reflection operator, then it will leave half its 

points as left-handed objects, and half the points would be right-handed, and not only 

that as the like in the case of the screw operator. When the glide reflection repeatedly 

operates it moves a point in space, and therefore it fills up along one direction in infinite 

set creates an infinite set of points as it repeatedly acts. 

But, as you can notice the number of points within this unit cell or the repeat distance, 

now my this is my repeat distance is only 2, there is one here, and there is one here, one 

is a right-handed object, one is a left-handed object. In other words even though the 

screw and which we can go back, and see now for instance the screw if it keeps on acting 

would create a infinite number of points, but the number of points within this repeat 

distance t is only 2 1 here, and one here. 

And similarly, for the glide reflection operator the number of points within the repeat 

distance is only a finite number, though if it these glide reflection operators act they keep 

on acting repeatedly and create an infinite set. The number I need to worry about is the 

number, which is a single repeat unit or the single unit cell as we will see later, so but 

there are many, many possible type of glides which are listed here. 

Though, we will not be going into detail it is worthwhile to know that these kind of 

glides exist, for instance you could have a glide with the translation component along the 

one direction. You could have translation component for in this is along for instance the 

x direction, this could be a translation component along y direction or you could have a 

glide operator, which has a translation component along the z direction. We could also 

have what are known as diagonal glides which are given a symbol n, in which case the 

translational component is again half, but it has an average of the translation along x and 

y direction both. 
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So, this can be seen here, so for instance this is my a glide for instance I can show here, 

which has a translational component, along the a direction. You could have for instance a 

diagonal glide, which has a translational component like you can see here a plus b by 2; 

that means, it is along the face diagonal or you could have, as you have seen before. 

Here, a diamond glide in this the translational component is one fourth and not half, as in 

the case of the axial glide or the diagonal glide, to summarize glides we have got axial 

glide, diagonal glide, and diamond glides, all of which basically take an object to it is 

enantiomorphic form and involve a translation. 
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Now, the next important concept in crystallography is the concept of point groups, and a 

more advanced concept which of course, we will not take-up in this course in detail is a 

concept of space groups. But, it is worthwhile to be exposed to such terminology, 

because when someone somebody reads an official text on crystal structure, you will be 

exposed to these concepts like point groups and space groups. 

And especially, this point groups are very, very important from the point of your 

properties of crystals as we have noted before, so far we have seen various kinds of 

symmetry operators. And we know that they leave a finite set of points within a unit cell, 

but are there combinations of symmetry operators, which are possible, we have actually 

seen some examples. For instance, we have seen a combination like 1 by m or the 3 dot i 

in which the combination of 3 and inversion, and we have to note that in general of 

course, all possible combinations are not allowed. 

There are only certain distinct combinations allowed, which can leave a finite set of 

points in space, like the case of the normal operators which also leave a finite set of 

points in a unit cell. Therefore, there are only certain allowed combinations of symmetry 

operators, and is, so happens luckily that this number is very not very large. And there 

are only 32 allowed combinations of symmetry operators, which are not known as the 32 

point groups, and if you are talking about those symmetry operators, which involve the 

translation like the screw or the glide. 

Then there are 230 allowed combinations, which are called the 230 space groups, in the 

point groups you stay around a point you do not move the point from one place to 

another. But, suppose I am talking about those symmetry operators, which involve 

translation like the glide or the screw; that means, that I am going to move the point. And 

if you include those symmetry operators 230 such combinations are allowed, which are 

known as the 230 space groups. 

It is very, very important to have these numbers in mind because the we will later on be 

exposed to the concept of seven crystal systems, and in fact and also additional concept 

known as the 14 Bravais Lattices. The 14 Bravais Lattices are created purely by 

translational symmetry, but it is interesting to note that, if you are talking about these 230 

space groups, and those which are compatible with among those which are consistent 

with lattices, then these 230 space groups will lead to the 14 Bravais Lattices. 
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So, let me summarize this rather complicated slide that, if you are talking about 

symmetries acting at a point, then the allowed combinations will lead to 32 point groups. 

And we will see some at least couple of examples, if What we mean by allowed 

combinations. Then among these those symmetries, which survive when I am talking 

about symmetries of lattices are 7 in number, which are nothing but, which correspond to 

the 7 crystal systems. 

Simply, suppose I am talking about allowed combinations of symmetry operators, which 

involve translation, then I land up with the 230 space groups. And out of those if I am 

only considering those symmetries out of these 230 symmetries of the space groups, 

those which are compatible with lattices, then I will land up with the number 14 which 

are known as the 14 Bravais Lattices. Of course, one could land up with the 14 Bravais 

Lattices, as we shall see that by purely considering translations 

So, this is a what you might call a real look ahead or a very difficult concept, but here we 

just want to introduce the important, what you call essentials of these concepts, because 

some of these would form the basis some of the descriptions you would read. For 

instance when you are studying about crystal structures, in an interactional tables or 

you're studying about the report about some crystal structures. 

So, for instance suppose I am talking about allowed combinations, one such allowed 

combination is a 4 mm symmetry. And for instance, suppose I am talking about a 



disallowed combination, for instance a 2 2 symmetry with 14 degrees included angle 

would be a disallowed combination. 
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So, let us see how is for instance how can we talk about an allowed combinations 4 mm 

suppose I am talking about a 4 mm symmetry, here I am talking though the symbol does 

not tell all the details about this allowed combination. What we exactly mean by this 4 

mm symmetry is a fact that, you got a fourfold you got one vertical mirror, and one 

diagonal mirror, and the orientation between the 2 mirrors is 45 degrees. 

So, these are things which are implied, which are not expressly written out, but which are 

implied in the symbol. So, when I am talking about 4 mm, actually what we are talking 

about is four fold in combination with m 1 and m 2, if you call this m 1, the diagonal 

mirror will be m 2. And as you can see the line of intersection of the 2 mirrors m 1 and m 

2 is the line of the rotation axis which is the fourfold, now suppose I start with the 

general point which is a right-handed are drawn here. 

Then my fourfold will take me lead me from this green to this green to this green, and 

finally to the fourth green, and finally it will close space on itself, but this mirror for 

instance will produce a left-handed R. And this horizontal mirror will produce take this 

to this right-handed, in other words; however, how many ever times this 4 mm symmetry 

acts, either individual mirrors or this combination or the fourfold you will notice that I 

will land up with 8 objects only. 



And if I had started with a point I will land up with 8 points, if I am talking about this 

right-handed objects R, then I will have four right-handed objects then I would have 4 

left-handed objects, which are shown in orange color. Therefore, we know from the mere 

action of this operator 4 mm, that it does not allow combination, because first of all I will 

land up with an finite number of points starting with or a number of objects starting with 

one object R a green R. 

For instance, I will land up with 4 green R's and 4 red R's or 4 orange R's, therefore I 

have only 8 objects, if I start with an one object, therefore I can clearly see 4 m m is an 

allowed combination as far as crystals go. Now, another allowed combination is shown 

here, for instance which is the 6 2 2 and these combinations are typically written out 

using what is known as the Hermann Mauguin symbol, which is a short hand notation for 

these symmetry operations. 

And in the second example shown here, as I had pointed out before if I am talking about 

2 2 folds any arbitrary angle between the 2 2 folds is not allowed, but a 30 degree 

included angle. For instance, as shown here is an allowed combination, and in that case 

suppose I start with 2 2 folds, and an included angle of 30 degrees, then I will land up 

with, you can see here 12 twofold axis. 

And which automatically implies that, there is a 6 fold rotation axis and the total 

Hermann Mauguin symbol for this combination is 6 2 2. And I can actually perform an 

experiment like I had done with an green R right here, I can put one of those objects here 

and I can confirm to myself that actually I will land up with a finite set of objects if I am 

talking about this allowed combination of 6 2 2 symmetry. 
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There could be a couple of reasons why symmetry combination is disallowed, one of the 

reasons is that suppose I talk about to mirrors at 15 degrees apart, then this mirror will 

keep on this mirror will rotate it to this mirror. And this will rotate it to this mirror and so 

forth, you land up with a array of rotation axis, for instance this is now. So, suppose I am 

talking about disallowed combinations, and going back to the previous slide we have 

talked about allowed combinations. 

And one small error here is that these are actually rotation one and rotation 2 which are 

nothing but, 2 fold axis, and here we are considering disallowed combinations of 

symmetry operators. In fact, if you randomly already seen the number of allowed 

combinations is only 32, for symmetry operators which act around a point. So, that that 

implies that most of the other combinations are disallowed, we cannot have a random 

combination of 2 symmetry operators, which will leave space closed. 

For instance, suppose I talk about a combination like a twofold axis another twofold axis, 

which are 15 degree apart then this twofold axis will rotate it to another twofold and so 

forth. And I will have an array of twofold axis as shown here, but this combination of 2 

folds would imply a 12 fold axis perpendicular, and if you had we go back to a the place, 

where we had sent that 12 fold is not a symmetry, which is crystallographically 

compatible. 



Similarly, another reason why a particular combination may not be allowed is that the 

combination would start producing, an infinite number of symmetry operators, which 

also mean that if you start with the general point. You may land up with an infinite 

number of symmetry operators, such example would be 2 twofold axis with an included 

angle of about 7 degrees. Then you will land up with an infinite number of points starting 

with one point, and therefore we shall restrict ourselves to only the allowed combinations 

which are crystallographically allowed. 
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Now, let us briefly talk about the 32 point groups, which are nothing but, the 32 ways in 

which symmetry operators can combine, and leave of one start leaving with a point, it 

gives you a finite number of points in region of space. So, these 32 point groups, in fact 

can if you consider them to have the highest symmetry, which is compatible with lattices 

then you will land up with 7 which we pointed out. 

Where, the symmetries of the 7 crystals systems, which we will take up later during the 

course, though and important point is that at this we can actually, associate these point 

groups. Like you have a allowed combinations like 2 3, the 4 bar 3 and the m 3 bar, the 4 

3 2 and the 4 by m 3 bar, 2 by m, these point groups come under the cubic class. In other 

words if I have a cubic crystal, then it has to fit into one of these symmetry classes, and 

typically if you take for instance we will consider examples like copper crystals or for 

instance polonium crystal or for that matter iron crystal. 



These would have the highest allowed symmetry, which is four by m 3 bar 2 by m 

symmetry, while it is possible that there are certain lower symmetry cubic crystals, 

which does not have the full or the higher symmetry allowed for a cubic class. Similarly, 

we can talk about hexagonal crystals having the higher symmetry which is 6 by m, 2 by 

m or anyone of the lower symmetries, which is allowed for a hexagonal crystal. 

And by noting all these different point groups, and the different crystal classes into 

which or the crystal systems to which they belong, we can actually sort of come out with 

a characteristic symmetry or a symmetry which is basically required for a crystal. For 

instance if you have a cubic crystal it needs to have four threefold axis, a hexagonal 

crystal needs to have at least one 6 fold axis, and that is all possible there is only one 6 

fold axis. 

A tetragonal crystal needs to have at least one fourfold axis, a hexagonal crystal has only 

1 3 fold axis, and if it if a crystal ends up having 2 3 fold axis then it will end up having 

4 3 fold axis and actually then it will start coming into the cubic class. And not in the 

triangular class, similarly an orthorhombic crystal has 3 perpendicular 2 fold axis a 

monoclinic crystal has 1 2fold axis, a triclinic crystal at best can have an inversion 

symmetry or at worst can have only translation symmetry. 

In other words if a crystal does not even have a translation symmetry, it cannot be called 

a set crystal, then it'll be classified as an amorphous material, on the other hand if it at 

least has translation symmetry we will qualify to be at least a try triclinic crystal. 
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And if any more symmetry is possible in the system, then it can climb up the ladder and 

go all the way up to the cubic crystal, which is a crystal having very high symmetry, and 

it can have a symmetry up to 4 by m 3 bar 2 by m. 


